-
随着工业的发展以及人类消耗的激增,经各种途径排放进入环境中的重金属和纳米材料大为增加[1-2]. 其中土壤和水体是重要的汇[3]. 同时使用纳米颗粒减少作物中重金属累积、去除水中重金属污染等的发展[4-6],也导致了环境中重金属和纳米颗粒的共存问题. 重金属可在不同营养级生物体内发生生物积累,还可影响生物的代谢活动和免疫能力,改变生物生理生化状态,诱发动物和人类多种疾病产生[7-8]. 纳米颗粒由于尺寸微小,相较于大颗粒更易进入生物体内且进入后更难清除. 另外,纳米颗粒可诱导DNA突变,损伤线粒体结构,产生氧化应激、炎症反应,破坏细胞和器官的正常功能[9-10]. 传统污染物Cd、Pb、Cu、As等金属和类金属元素,以及新型污染物金属和非金属纳米材料,都是当前毒理学的重要研究对象.
实际环境中,生物往往暴露于多种污染物,产生不同于单一污染物暴露的毒性效应. 首先,一种金属的存在可影响其他金属的生物效应. 如Cu可增强海洋浮游硅藻对Zn的吸收[11],而Zn与Ni对小麦毒性存在拮抗作用[12]. 其次,一种纳米颗粒可通过干扰其他纳米颗粒的分散稳定性、表面性质以及离子释放等[13],进而影响其生物效应. 最后,重金属与纳米颗粒之间也存在相互作用. 一方面,纳米颗粒可改变金属的生物吸收,如叶面喷洒TiO2纳米颗粒可减少玉米幼苗对Cd的吸收[14];另一方面,重金属的存在会影响纳米颗粒的团聚行为,同时重金属对生物生理(如细胞膜通透性、氧化损伤等)的影响也会改变纳米颗粒的生物转运与毒性[15]. 当有其它因素存在时,纳米颗粒与重金属的联合效应更为复杂,如TiO2 NPs与Cd的联合效应与水中Ca的浓度密切相关[16].
显然,研究污染物的联合毒性比研究单一污染物对生物的毒性效应更具实际意义. 然而由于污染物的联合毒性取决于其组成,对环境中各种污染物组成混合物的联合毒性均采用实验研究又不切实际[17-18],因此需要根据各种污染物的混合体系采用适合的数学模型进行毒性评价. 对于多元混合物的毒性评估经历了从定性到定量的发展阶段,出现了多种模型预测方法. 但由于环境中污染物种类多、性质差异大,对于不同类型污染物的评估方法差异较大. 鉴于重金属和纳米颗粒对生态环境和人类健康的不利作用,本文概述了重金属、纳米颗粒以及两者共存的联合毒性评价模型,总结了各评价方法的优缺点及其应用,旨在为这些混合物毒性的精确评估提供方法参考.
重金属-纳米颗粒联合毒性评价模型研究进展
Toxicity prediction models for heavy metal and nanoparticle mixtures
-
摘要: 基于单一污染物的毒性研究无法准确评估真实环境中多污染物共存的生态与健康风险,因此大量研究开始关注混合物联合毒性这一更具挑战性和现实性的课题. 本文围绕当前毒理学领域的主要研究对象——重金属、纳米材料,综述了重金属混合物、纳米颗粒混合物、以及两者混合物的联合作用评价方法,包括基于重金属间无相互作用或相互作用可忽略的浓度加和(concentration addition,CA)模型、独立作用(independent action,IA)模型及其改进模型,基于生物生理过程的生物配体模型(biotic ligand model,BLM)、毒代-毒效动力学模型(toxicokinetictoxicodynamic,TK-TD)、动态能量平衡(dynamic energy budget,DEB)理论,基于颗粒物结构性质的定量纳米结构-活性关系(quantitative nanostructure-activity relationships,QNAR,或nano-QSAR)模型等,介绍了各类模型的基本原理、适用条件和应用情况. 最后对重金属-纳米颗粒联合毒性的未来研究方向进行了展望.Abstract: Toxicity studies based on single pollutant can not exactly evaluate the ecological and health risks of multiple pollutants in environment, a large number of studies have focused on the joint toxicity of mixtures, a more challenging and realistic topic. Heavy metal and nanomaterial are two of the most notable pollutants in the field of toxicology, thus this paper summarizes the evaluation methods of heavy metal mixtures, nanoparticle mixtures and their combined effects, including models based on no interaction or negligible interaction between pollutants (e.g., the concentration addition model, CA; independent action model, IA; and their derived models), models based on physiological process (e.g., biological ligand model, BLM; toxicokinetictoxicodynamic, TK-TD; dynamic energy budget theory, DEB), models based on the structural properties of particles (quantitative nanostructure activity relationships, QNAR or nano QSAR), etc. The basic principles of these models and their applicable conditions are introduced first, and then perspectives for future research in combined toxicity of heavy metals and nanoparticles are discussed in the end.
-
Key words:
- heavy metal /
- nanoparticle /
- joint toxicity /
- toxicity prediction model.
-
表 1 联合毒性评价方法在重金属混合物研究中的应用
Table 1. Application of joint toxicity assessment methods for heavy metal mixtures
测试金属
Test metal受试生物
Test organism评价方法
Evaluation method模型评价效果
Result of model evaluation参考文献
ReferenceNi、Zn、Cr、Cd四元混合物 V. fischeri (费氏弧菌) CA、IA CA和IA模拟效果基本一致,对四元重金属混合物拟合效果较好 [20] Zn、Ni、Pb、Cr、As、Cu
二元混合物Scenedesmus obliquus
(斜生栅藻)CI CI方法可以较为准确地表示出污染物联合毒性随组分和比例变化时联合作用的转变 [24] Fe、Mn、Zn、Cu、Pb、Cr
多元混合物Human lung epithelial cells(A549) CA、IA、IAM、IAI模型 CA、IA、IAM模型的预测结果
与实验值存在偏差,IAI模型
模拟效果最好[25] Ni、Fe、Cr、Cd二元混合物 Chlorella pyrenoidosa(蛋白核小球藻)、Selenastrum capricornutum(羊角月牙藻) CA、IA、PCR-IAM CA和IA会高估或低估混合毒性,PCR-IAM可准确评估二元混合物的联合作用 [26] Cu、Zn、Cr、Cd二元混合物 Caenorhabditis elegans CA、IA 相较于IA模型,CA的预测能力更好 [27] Ni、Cu、Mn二元混合物 Paronychiuruskimi (Collembola) TU 对于低效应区评价结果较为可靠 [28] Ni、Zn、Cu、Cd、Pb
二元混合物Daphnia magna、Ceriodaphnia dubia、Hordeum vulgare CA、IA IA评价结果更为准确,CA结果比较保守. 在低效应水平下,CA高估了对Daphnids和H. vulgare
的混合毒性[29] Cd、Cu、Ni、Pb、Zn
二元混合物Phaeocystis antarctica、Cryothecomonas armigera CA、IA 适合重金属对这两种受试生物的毒性预测 [30] Ni、Cu、Cd三元混合物 Lemna minor CA 基于内剂量的CA可以在一定范围内准确评估毒性 [31] Cd、Cu、Ni、Zn三元混合物 Daphnia magna CA、IA CA模型预测Cd、Cu、Ni三元混合物的死亡率优于IA模型,总体预测结果表明CA预测较好 [32] Cd、Ni、Cr二元混合物 Chlorella pyrenoidosa、Selenastrum capricornutum CA、CI CA可描述混合物毒性作用. CI可定量表征二元混合物毒性效应大小,且能比较置信区间内任一效应水平下混合物的联合作用强度 [33] Y、La、Ce二元混合物 Triticum aestivum L. CA、IA CA与IA模型预测结果的准确性相当 [34] Ag、Cd、Cu、Ni、Pb、Zn
二元混合物Lymnaea stagnalis CA、IA 与CA相比,IA的预测偏差相对更小 [35] Hg、Cu、Ni二元混合物 Tetrahymena thermophila
(嗜热四膜虫)MTI 可判断1﹕1浓度比和1﹕1毒性比下金属混合物的联合毒性作用 [36] 表 2 联合毒性评价方法在纳米颗粒混合物研究中的应用
Table 2. Application of joint toxicity assessment methods for nanoparticles
纳米颗粒
Nanoparticle受试生物
Test organism评价方法
Evaluation method模型评价效果
Result of model evaluation参考文献
ReferenceZnO NPs和CuO NPs二元混合物 Scenedesmus obliquus CA、IA CA比IA模型更精确 [76] Cu NPs和ZnO NPs二元混合物 Lactuca sativa L CA、IA IA模型更适合评估Cu NPs和
ZnO NPs混合物的毒性[77] TiO2纳米球和TiO2纳米管二元混合物 Scenedesmus obliquus
Chlorella pyrenoidosaTU、CA、IA TU评估表明TiO2 NPs和TiO2 NTs混合物对藻类产生相加作用. CA和IA模型能分别有效的预测混合物对 S. obliquus 和 C. pyrenoidosa的联合毒性 [78] ZnO NPs和Ag NPs二元混合物 Daphnia magna CA、IA CA对二元纳米混合物的毒性预测
偏差较IA小[79] Zn NPs、Cu NPs、ZnO NPs、CuO NPs
二元混合物V. fischeri IA IA模型预测结果存在较大偏差 [80] ZnO NPs、NiO NPs、CuO NPs、TiO2 NPs、 Fe2O3 NPs的二元混合物 Chlorella vulgaris CA、IA CA比IA模型更精确 [81] -
[1] SENGUL A B, ASMATULU E. Toxicity of metal and metal oxide nanoparticles: A review [J]. Environmental Chemistry Letters, 2020, 18(5): 1659-1683. doi: 10.1007/s10311-020-01033-6 [2] 朱慧萍, 方凤满, 林跃胜, 等. 荻港镇某水泥厂周边不同介质中重金属含量、来源及潜在生态风险分析 [J]. 环境化学, 2017, 36(12): 2711-2718. doi: 10.7524/j.issn.0254-6108.2017032302 ZHU H P, FANG F M, LIN Y S, et al. Distribution, source apportionment and potential ecological risk assessment of heavy metals in different environmental media around a cement factory in Digang Town [J]. Environmental Chemistry, 2017, 36(12): 2711-2718(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032302
[3] MEESTERS J A J, QUIK J T K, KOELMANS A A, et al. Multimedia environmental fate and speciation of engineered nanoparticles: A probabilistic modeling approach [J]. Environmental Science:Nano, 2016, 3(4): 715-727. doi: 10.1039/C6EN00081A [4] SHARIFAN H, MA X M, MOORE J M, et al. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. longifolia) [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16401-16409. [5] LIU W Z, WENG C Z, ZHENG J Y, et al. Emerging investigator series: Treatment and recycling of heavy metals from nanosludge [J]. Environmental Science:Nano, 2019, 6(6): 1657-1673. doi: 10.1039/C9EN00120D [6] ABUHATAB S, EL-QANNI A, AL-QALAQ H, et al. Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles [J]. Journal of Environmental Management, 2020, 268: 110713. doi: 10.1016/j.jenvman.2020.110713 [7] 李梓萌, 李肖乾, 张文慧, 等. 重金属复合污染对生物影响的研究进展 [J]. 环境化学, 2021, 40(11): 3331-3343. doi: 10.7524/j.issn.0254-6108.2021033107 LI Z M, LI X Q, ZHANG W H, et al. Research progress on the effects of heavy metal compound pollution on organisms [J]. Environmental Chemistry, 2021, 40(11): 3331-3343(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033107
[8] VARDHAN K H, KUMAR P S, PANDA R C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives [J]. Journal of Molecular Liquids, 2019, 290: 111197. doi: 10.1016/j.molliq.2019.111197 [9] HRISTOZOV D, MALSCH I. Hazards and risks of engineered nanoparticles for the environment and human health [J]. Sustainability, 2009, 1(4): 1161-1194. doi: 10.3390/su1041161 [10] HE H, ZOU Z, WANG B, et al. Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-mediated P38 MAPK activation in vascular endothelial cells [J]. International Journal of Nanomedicine, 2020, 15: 3291-3302. doi: 10.2147/IJN.S241157 [11] RUSTENBIL J W, POORTVLIET T C W. Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatomDitylum brightwellii [J]. Environmental Toxicology and Chemistry, 1992, 11(11): 1615-1625. [12] XU X, LI Y, WANG Y, et al. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay [J]. Toxicology in Vitro, 2011, 25(1): 294-300. doi: 10.1016/j.tiv.2010.09.007 [13] BATLEY G E, KIRBY J K, MCLAUGHLIN M J. Fate and risks of nanomaterials in aquatic and terrestrial environments [J]. Accounts of Chemical Research, 2013, 46(3): 854-862. doi: 10.1021/ar2003368 [14] MIAO W, ZHU B R, XIAO X H, et al. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae [J]. Aquatic Toxicology, 2015, 161: 117-126. doi: 10.1016/j.aquatox.2015.02.002 [15] WANG J J, DAI H, NIE Y G, et al. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process [J]. Ecotoxicology and Environmental Safety, 2018, 162: 160-169. doi: 10.1016/j.ecoenv.2018.06.051 [16] TAN L Y, HUANG B, XU S, et al. Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna [J]. Environmental Science & Technology, 2017, 51(2): 932-939. [17] 杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法 [J]. 生态毒理学报, 2016, 11(1): 1-13. YANG R, LI N, RAO K F, et al. Review on methodology for environmental mixture toxicity study [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 1-13(in Chinese).
[18] 曾鸣, 林志芬, 尹大强, 等. 混合污染物联合毒性研究进展 [J]. 环境科学与技术, 2009, 32(2): 80-86. doi: 10.3969/j.issn.1003-6504.2009.02.021 ZENG M, LIN Z F, YIN D Q, et al. Progress on joint effect of mixture pollutants [J]. Environmental Science & Technology, 2009, 32(2): 80-86(in Chinese). doi: 10.3969/j.issn.1003-6504.2009.02.021
[19] BERENBAUM M C. A method for testing for synergy with any number of agents [J]. The Journal of Infectious Diseases, 1978, 137(2): 122-130. doi: 10.1093/infdis/137.2.122 [20] 莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估4种重金属及2种农药混合物对费氏弧菌的毒性相互作用 [J]. 生态毒理学报, 2018, 13(1): 251-260. doi: 10.7524/AJE.1673-5897.20170115002 MO L Y, LIANG L Y, QIN L T, et al. Qualitative and quantitative assessment for the toxicity interaction of mixtures of four heavy metals and two pesticides on Vibrio fischeri [J]. Asian Journal of Ecotoxicology, 2018, 13(1): 251-260(in Chinese). doi: 10.7524/AJE.1673-5897.20170115002
[21] 李小朋, 张琛, 李娟, 等. 基于析因设计的多种重金属对发光菌联合毒性研究 [J]. 环境科学与技术, 2012, 35(12): 169-174. doi: 10.3969/j.issn.1003-6504.2012.12.036 LI X P, ZHANG C, LI J, et al. Joint toxicity of multi-heavy-metal to Photobacterium phosphoreum based on factorial design [J]. Environmental Science & Technology, 2012, 35(12): 169-174(in Chinese). doi: 10.3969/j.issn.1003-6504.2012.12.036
[22] LOEWE S. Die quantitativen probleme der pharmakologie [J]. Ergebnisse Der Physiologie, 1928, 27(1): 47-187. doi: 10.1007/BF02322290 [23] BLISS C I. The toxicity of poisons applied jointly1 [J]. Annals of Applied Biology, 1939, 26(3): 585-615. doi: 10.1111/j.1744-7348.1939.tb06990.x [24] 刘砥, 曾鸿鹄, 邓杨, 等. 二元重金属混合物联合胁迫斜生栅藻毒性研究 [J]. 科学技术与工程, 2019, 19(22): 374-383. doi: 10.3969/j.issn.1671-1815.2019.22.056 LIU D, ZENG H H, DENG Y, et al. Combined stress toxicity of binary heavy metal mixture to Scenedesmus obliquus [J]. Science Technology and Engineering, 2019, 19(22): 374-383(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.22.056
[25] YUAN Y, WU Y, GE X L, et al. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells [J]. Science of the Total Environment, 2019, 678: 301-308. doi: 10.1016/j.scitotenv.2019.04.431 [26] 邓杨, 覃礼堂, 曾鸿鹄, 等. 基于主成分回归的整合模型预测重金属混合物毒性 [J]. 中国环境科学, 2018, 38(5): 1970-1978. doi: 10.3969/j.issn.1000-6923.2018.05.043 DENG Y, QIN L T, ZENG H H, et al. Prediction of toxicity of heavy metal mixture by integrated model based on principal component regression [J]. China Environmental Science, 2018, 38(5): 1970-1978(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.043
[27] CHEN J D, JIANG Y, XU C, et al. Comparison of two mathematical prediction models in assessing the toxicity of heavy metal mixtures to the feeding of the nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2013, 94: 73-79. doi: 10.1016/j.ecoenv.2013.04.026 [28] SON J, LEE Y S, KIM Y, et al. Joint toxic action of binary metal mixtures of copper, Manganese and nickel to Paronychiurus kimi (Collembola) [J]. Ecotoxicology and Environmental Safety, 2016, 132: 164-169. doi: 10.1016/j.ecoenv.2016.05.034 [29] NYS C, VERSIEREN L, CORDERY K I, et al. Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment [J]. Environmental Science & Technology, 2017, 51(8): 4615-4623. [30] KOPPEL D J, ADAMS M S, KING C K, et al. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity [J]. Environmental Pollution, 2018, 242: 1319-1330. doi: 10.1016/j.envpol.2018.07.110 [31] GOPALAPILLAI Y, HALE B A. Internal versus External Dose for Describing Ternary Metal Mixture (Ni, Cu, Cd) Chronic Toxicity to Lemna minor [J]. Environmental Science & Technology, 2017, 51(9): 5233-5241. [32] TRAUDT E M, RANVILLE J F, MEYER J S. Acute toxicity of ternary Cd-Cu-Ni and Cd-Ni-Zn mixtures to Daphnia magna: Dominant metal pairs change along a concentration gradient [J]. Environmental Science & Technology, 2017, 51(8): 4471-4481. [33] MO L Y, ZHENG M Y, QIN M, et al. Quantitative characterization of the toxicities of Cd-Ni and Cd-Cr binary mixtures using combination index method [J]. BioMed Research International, 2016, 2016: 4158451. [34] GONG B, HE E K, QIU H, et al. Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability [J]. Environmental Pollution, 2019, 246: 114-121. doi: 10.1016/j.envpol.2018.11.106 [35] CRÉMAZY A, BRIX K V, WOOD C M. Chronic toxicity of binary mixtures of six metals (Ag, Cd, Cu, Ni, Pb, and Zn) to the great pond snail Lymnaea stagnalis [J]. Environmental Science & Technology, 2018, 52(10): 5979-5988. [36] 马正学, 王业秋, 宁应之, 等. Hg2+, Ni2+和Cu2+对嗜热四膜虫的急性及联合毒性效应 [J]. 环境科学研究, 2008, 21(4): 174-178. MA Z X, WANG Y Q, NING Y Z, et al. Acute and joint toxicities of Hg2+, Ni2+ and Cu2+ to Tetrahymena thermophila [J]. Research of Environmental Sciences, 2008, 21(4): 174-178(in Chinese).
[37] 刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用 [J]. 化学学报, 2013, 71(10): 1335-1340. doi: 10.6023/A13040355 LIU S S, LIU L, CHEN F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340(in Chinese). doi: 10.6023/A13040355
[38] 李恺, 刘树深, 屈锐. 组合指数在环境混合物联合毒性研究中的初步应用 [J]. 生态毒理学报, 2017, 12(3): 62-71. LI K, LIU S S, QU R. Application of the combination index in the assessment of combined toxicity of environmental mixture [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 62-71(in Chinese).
[39] MARKING L L. Method for assessing additive toxicity of chemical mixtures[M]//Aquatic Toxicology and Hazard Evaluation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 99-99-10. [40] KÖNEMANN H. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results [J]. Toxicology, 1981, 19(3): 229-238. doi: 10.1016/0300-483X(81)90132-3 [41] WANG Y H, CHEN C, QIAN Y Z, et al. Ternary toxicological interactions of insecticides, herbicides, and a heavy metal on the earthworm Eisenia fetida [J]. Journal of Hazardous Materials, 2015, 284: 233-240. doi: 10.1016/j.jhazmat.2014.11.017 [42] HEYS K A, SHORE R F, PEREIRA M G, et al. Risk assessment of environmental mixture effects [J]. RSC Advances, 2016, 6(53): 47844-47857. doi: 10.1039/C6RA05406D [43] QIN L T, LIU S S, ZHANG J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture [J]. Toxicology, 2011, 280(3): 164-172. doi: 10.1016/j.tox.2010.12.007 [44] MWENSE M, WANG X Z, BUONTEMPO F V, et al. Prediction of noninteractive mixture toxicity of organic compounds based on a fuzzy set method [J]. Journal of Chemical Information and Computer Sciences, 2004, 44(5): 1763-1773. doi: 10.1021/ci0499368 [45] MWENSE M, WANG X Z, BUONTEMPO F V, et al. QSAR approach for mixture toxicity prediction using independent latent descriptors and fuzzy membership functions [J]. SAR and QSAR in Environmental Research, 2006, 17(1): 53-73. doi: 10.1080/10659360600562202 [46] RA J S, LEE B C, CHANG N I, et al. Estimating the combined toxicity by two-step prediction model on the complicated chemical mixtures from wastewater treatment plant effluents [J]. Environmental Toxicology and Chemistry, 2006, 25(8): 2107-2113. doi: 10.1897/05-484R.1 [47] OLMSTEAD A W, LEBLANC G A. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model [J]. Integrated Environmental Assessment and Management, 2005, 1(2): 114-122. doi: 10.1897/IEAM_2004-005R.1 [48] KIM J, KIM S, SCHAUMANN G E. Development of a partial least squares-based integrated addition model for predicting mixture toxicity [J]. Human and Ecological Risk Assessment:an International Journal, 2014, 20(1): 174-200. doi: 10.1080/10807039.2012.754312 [49] RIDER C V, LEBLANC G A. An integrated addition and interaction model for assessing toxicity of chemical mixtures [J]. Toxicological Sciences, 2005, 87(2): 520-528. doi: 10.1093/toxsci/kfi247 [50] FENG J F, GAO Y F, JI Y J, et al. Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model [J]. Journal of Hazardous Materials, 2018, 345: 97-106. doi: 10.1016/j.jhazmat.2017.11.013 [51] SPURGEON D J, JONES O A H, DORNE J L C M, et al. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures [J]. Science of the Total Environment, 2010, 408(18): 3725-3734. doi: 10.1016/j.scitotenv.2010.02.038 [52] CAMPBEL P. Interactions between trace metals and aquatic organisms: A critique of the Free-ion Activity Model [J]. Metal Speciation and Bioavailability in Aquatic Systems, 1995: 45-102. [53] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals [J]. Environmental Science & Technology, 2004, 38(23): 6177-6192. [54] PLAYLE R C. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results [J]. Aquatic Toxicology, 2004, 67(4): 359-370. doi: 10.1016/j.aquatox.2004.01.017 [55] WU M Y, WANG X D, JIA Z G, et al. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L. ) using the biotic ligand model-based toxic units method [J]. Scientific Reports, 2017, 7: 9443. doi: 10.1038/s41598-017-09940-5 [56] WANG X D, JI D X, CHEN X L, et al. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L. ): Incorporating the effects of concentration ratio, major cations and pH [J]. Environmental Pollution, 2017, 230: 210-217. doi: 10.1016/j.envpol.2017.06.037 [57] LIU Y, VIJVER M G, PEIJNENBURG W J G M. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L. ) [J]. Chemosphere, 2014, 112: 282-288. doi: 10.1016/j.chemosphere.2014.04.077 [58] JAGER T, ALBERT C, PREUSS T G, et al. General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology [J]. Environmental Science & Technology, 2011, 45(7): 2529-2540. [59] GAO Y F, FENG J F, WANG C C, et al. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae [J]. Ecotoxicology and Environmental Safety, 2017, 138: 146-153. doi: 10.1016/j.ecoenv.2016.12.028 [60] GAO Y F, FENG J F, HAN F, et al. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae [J]. Environmental Pollution, 2016, 213: 16-29. doi: 10.1016/j.envpol.2016.01.073 [61] JAGER T, VANDENBROUCK T, BAAS J, et al. A biology-based approach for mixture toxicity of multiple endpoints over the life cycle [J]. Ecotoxicology, 2010, 19(2): 351-361. doi: 10.1007/s10646-009-0417-z [62] KOOIJMAN S A L M, SOUSA T, PECQUERIE L, et al. From food-dependent statistics to metabolic parameters, a practical Guide to the use of dynamic energy budget theory [J]. Biological Reviews of the Cambridge Philosophical Society, 2008, 83(4): 533-552. doi: 10.1111/j.1469-185X.2008.00053.x [63] PÉRY A R R, GEFFARD A, CONRAD A, et al. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation [J]. Ecotoxicology and Environmental Safety, 2008, 71(3): 869-873. doi: 10.1016/j.ecoenv.2008.04.009 [64] XIE M D, SUN Y X, FENG J F, et al. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model [J]. Aquatic Toxicology, 2019, 210: 106-116. doi: 10.1016/j.aquatox.2019.02.018 [65] MARGERIT A, GOMEZ E, GILBIN R. Dynamic energy-based modeling of uranium and cadmium joint toxicity to Caenorhabditis elegans [J]. Chemosphere, 2016, 146: 405-412. doi: 10.1016/j.chemosphere.2015.12.029 [66] KUNHIKRISHNAN A, SHON H K, BOLAN N S, et al. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams [J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 277-318. doi: 10.1080/10643389.2013.852407 [67] ARMSTRONG D, BHARALI D. Oxidative stress and nanotechnology: Methods and protocols [J]. Methods in Molecular Biology, 2013: 155-164. [68] MA H B, WALLIS L K, DIAMOND S, et al. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution [J]. Environmental Pollution, 2014, 193: 165-172. doi: 10.1016/j.envpol.2014.06.027 [69] HAILAN W A, AL-ANAZI K M, FARAH M A, et al. Reactive oxygen species-mediated cytotoxicity in liver carcinoma cells induced by silver nanoparticles biosynthesized using Schinus molle extract [J]. Nanomaterials (Basel, Switzerland), 2022, 12(1): 161. doi: 10.3390/nano12010161 [70] RODRIGUEZ-YAÑEZ Y, MUÑOZ B, ALBORES A. Mechanisms of toxicity by carbon nanotubes [J]. Toxicology Mechanisms and Methods, 2013, 23(3): 178-195. doi: 10.3109/15376516.2012.754534 [71] GARCÍA-ALONSO J, KHAN F R, MISRA S K, et al. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor [J]. Environmental Science & Technology, 2011, 45(10): 4630-4636. [72] WU D, ZHANG J J, DU W C, et al. Toxicity mechanism of cerium oxide nanoparticles on cyanobacteria Microcystis aeruginosa and their ecological risks [J]. Environmental Science and Pollution Research, 2022, 29(23): 34010-34018. doi: 10.1007/s11356-021-18090-1 [73] TSUGITA M, MORIMOTO N, NAKAYAMA M. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses [J]. Particle and Fibre Toxicology, 2017, 14(1): 11. doi: 10.1186/s12989-017-0192-6 [74] TONG T Z, FANG K Q, THOMAS S A, et al. Chemical interactions between nano-ZnO and nano-TiO2 in a natural aqueous medium [J]. Environmental Science & Technology, 2014, 48(14): 7924-7932. [75] TONG T Z, WILKE C M, WU J S, et al. Combined toxicity of nano-ZnO and nano-TiO2: From single- to multinanomaterial systems [J]. Environmental Science & Technology, 2015, 49(13): 8113-8123. [76] YE N, WANG Z, FANG H, et al. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus [J]. Journal of Environmental Science and Health, Part A, 2017, 52(6): 555-560. doi: 10.1080/10934529.2017.1284434 [77] LIU Y, BAAS J, PEIJNENBURG W J G M, et al. Evaluating the combined toxicity of Cu and ZnO nanoparticles: Utility of the concept of additivity and a nested experimental design [J]. Environmental Science & Technology, 2016, 50(10): 5328-5337. [78] WANG Z, JIN S G, ZHANG F, et al. Combined toxicity of TiO2 nanospherical particles and TiO2 nanotubes to two microalgae with different morphology [J]. Nanomaterials, 2020, 10(12): 2559. doi: 10.3390/nano10122559 [79] LOPES S, PINHEIRO C, SOARES A M V M, et al. Joint toxicity prediction of nanoparticles and ionic counterparts: Simulating toxicity under a fate scenario [J]. Journal of Hazardous Materials, 2016, 320: 1-9. doi: 10.1016/j.jhazmat.2016.07.068 [80] ZHANG H J, SHI J H, SU Y L, et al. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria [J]. Environmental Monitoring and Assessment, 2020, 192(8): 484. doi: 10.1007/s10661-020-08444-6 [81] KO K S, KOH D C, KONG I C. Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count [J]. Materials (Basel, Switzerland), 2018, 11(1): 121. doi: 10.3390/ma11010121 [82] ROUBEAU DUMONT E, ELGER A, AZÉMA C, et al. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum [J]. Science of the Total Environment, 2022, 803: 150001. doi: 10.1016/j.scitotenv.2021.150001 [83] HOLMES A M, SONG Z, MOGHIMI H R, et al. Relative penetration of zinc oxide and zinc ions into human skin after application of different zinc oxide formulations [J]. ACS Nano, 2016, 10(2): 1810-1819. doi: 10.1021/acsnano.5b04148 [84] KADRI O, KARMOUS I, KHARBECH O, et al. Cu and CuO nanoparticles affected the germination and the growth of barley (Hordeum vulgare L. ) seedling [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 585-593. doi: 10.1007/s00128-021-03425-y [85] YE N, WANG Z, WANG S, et al. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: Particles outperform dissolved ions [J]. Nanotoxicology, 2018, 12(5): 423-438. doi: 10.1080/17435390.2018.1458342 [86] PUZYN T, LESZCZYNSKA D, LESZCZYNSKI J. Toward the development of â Nano-QSARsâ: Advances and challenges [J]. Small, 2009, 5(22): 2494-2509. doi: 10.1002/smll.200900179 [87] FOURCHES D, PU D, TROPSHA A. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles [J]. Combinatorial Chemistry & High Throughput Screening, 2011, 14(3): 217-225. [88] SIFONTE E P, CASTRO-SMIRNOV F A, JIMENEZ A A S, et al. Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells [J]. Journal of Nanoparticle Research, 2021, 23(8): 161. doi: 10.1007/s11051-021-05288-0 [89] ROY J, ROY K. Assessment of toxicity of metal oxide and hydroxide nanoparticles using the QSAR modeling approach [J]. Environmental Science:Nano, 2021, 8(11): 3395-3407. doi: 10.1039/D1EN00733E [90] THWALA M M, AFANTITIS A, PAPADIAMANTIS A G, et al. Using the Isalos platform to develop a (Q)SAR model that predicts metal oxide toxicity utilizing facet-based electronic, image analysis-based, and periodic table derived properties as descriptors [J]. Structural Chemistry, 2022, 33(2): 527-538. doi: 10.1007/s11224-021-01869-w [91] CHEN G C, VIJVER M G, XIAO Y L, et al. A review of recent advances towards the development of (quantitative) structure-activity relationships for metallic nanomaterials [J]. Materials (Basel, Switzerland), 2017, 10(9): 1013. doi: 10.3390/ma10091013 [92] PUZYN T, RASULEV B, GAJEWICZ A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles [J]. Nature Nanotechnology, 2011, 6(3): 175-178. doi: 10.1038/nnano.2011.10 [93] WANG Z, VIJVER M G, PEIJNENBURG W J G M. Multiscale coupling strategy for nano ecotoxicology prediction [J]. Environmental Science & Technology, 2018, 52(14): 7598-7600. [94] KOVALISHYN V, ABRAMENKO N, KOPERNYK I, et al. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform [J]. Food and Chemical Toxicology, 2018, 112: 507-517. doi: 10.1016/j.fct.2017.08.008 [95] ZHANG F, WANG Z, VIJVER M G, et al. Prediction of the joint toxicity of multiple engineered nanoparticles: The integration of classic mixture models and In silico methods [J]. Chemical Research in Toxicology, 2021, 34(2): 176-178. doi: 10.1021/acs.chemrestox.0c00300 [96] XU W H, YANG T, LIU S B, et al. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects [J]. Environment International, 2022, 158: 106980. doi: 10.1016/j.envint.2021.106980 [97] DIBYANSHU K, CHHAYA T, RAYCHOUDHURY T. A review on the fate and transport behavior of engineered nanoparticles: Possibility of becoming an emerging contaminant in the groundwater [J]. International Journal of Environmental Science and Technology, 2022: 1-24. [98] de BENI E, GIURLANI W, FABBRI L, et al. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater [J]. Chemosphere, 2022, 292: 133448. doi: 10.1016/j.chemosphere.2021.133448 [99] PARK C B, JUNG J W, BAEK M, et al. Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna [J]. Journal of Nanoparticle Research, 2019, 21(8): 166. doi: 10.1007/s11051-019-4606-2 [100] BAEK M J, SON J, PARK J, et al. Quantitative prediction of mixture toxicity of AgNO 3 and ZnO nanoparticles on Daphnia magna [J]. Science and Technology of Advanced Materials, 2020, 21(1): 333-345. doi: 10.1080/14686996.2020.1766343 [101] KUMAR R, KHAN M A, HAQ N. Application of carbon nanotubes in heavy metals remediation [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(9): 1000-1035. doi: 10.1080/10643389.2012.741314 [102] 王萌, 刘珊珊, 龙奕, 等. 沉积物中不同浓度多壁碳纳米管对Cd和BDE-47生态毒性的影响 [J]. 环境科学学报, 2015, 35(12): 4150-4158. doi: 10.13671/j.hjkxxb.2015.0570 WANG M, LIU S S, LONG Y, et al. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4150-4158(in Chinese). doi: 10.13671/j.hjkxxb.2015.0570
[103] YANG W W, LI Y, MIAO A J, et al. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart [J]. Ecotoxicology and Environmental Safety, 2012, 85: 44-51. doi: 10.1016/j.ecoenv.2012.08.024 [104] YIN L Y, WANG Z, WANG S G, et al. Effects of graphene oxide and/or Cd2+ on seed germination, seedling growth, and uptake to Cd2+ in solution culture [J]. Water, Air, & Soil Pollution, 2018, 229(5): 151. [105] HUA J, PEIJNENBURG W J G M, VIJVER M G. TiO2 nanoparticles reduce the effects of ZnO nanoparticles and Zn ions on zebrafish embryos (Danio rerio) [J]. NanoImpact, 2016, 2: 45-53. doi: 10.1016/j.impact.2016.06.005 [106] BIGORGNE E, FOUCAUD L, LAPIED E, et al. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida [J]. Environmental Pollution, 2011, 159(10): 2698-2705. doi: 10.1016/j.envpol.2011.05.024 [107] FEDERICI G, SHAW B J, HANDY R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects [J]. Aquatic Toxicology, 2007, 84(4): 415-430. doi: 10.1016/j.aquatox.2007.07.009 [108] VENKATACHALAM P, JAYARAJ M, MANIKANDAN R, et al. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis [J]. Plant Physiology and Biochemistry, 2017, 110: 59-69. doi: 10.1016/j.plaphy.2016.08.022 [109] MOUSSA H, MERLIN C, DEZANET C, et al. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots [J]. Journal of Hazardous Materials, 2016, 304: 532-542. doi: 10.1016/j.jhazmat.2015.11.013 [110] CUI X J, WAN B, GUO L H, et al. Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: Role of P2X7 receptor [J]. Environmental Science & Technology, 2016, 50(22): 12473-12483. [111] WANG L, LIU J H, SONG Z M, et al. Interaction of multi-walled carbon nanotubes and zinc ions enhances cytotoxicity of zinc ions [J]. Science China (Chemistry), 2016, 59(7): 910-917. doi: 10.1007/s11426-016-5591-2 [112] MIKOLAJCZYK A, MALANKOWSKA A, NOWACZYK G, et al. Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pdâ TiO2 nanoparticles [J]. Environmental Science:Nano, 2016, 3(6): 1425-1435. doi: 10.1039/C6EN00232C [113] MIKOLAJCZYK A, GAJEWICZ A, MULKIEWICZ E, et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts [J]. Environmental Science:Nano, 2018, 5(5): 1150-1160. doi: 10.1039/C8EN00085A [114] YUAN B L, WANG P F, SANG L Q, et al. QNAR modeling of cytotoxicity of mixing nano-TiO 2 and heavy metals [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111634. doi: 10.1016/j.ecoenv.2020.111634 [115] GIACOMINI K M, YEE S W, MUSHIRODA T, et al. Genome-wide association studies of drug response and toxicity: An opportunity for genome medicine [J]. Nature Reviews Drug Discovery, 2017, 16(1): 70. doi: 10.1038/nrd.2016.234 [116] WAMUCHO A, UNRINE J M, KIERAN T J, et al. Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles [J]. Environmental Pollution, 2019, 254: 113078. doi: 10.1016/j.envpol.2019.113078 [117] DESAULNIERS D, XIAO G H, LIAN H, et al. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats [J]. International Journal of Toxicology, 2009, 28(4): 294-307. doi: 10.1177/1091581809337918 [118] MARTÍNEZ-PACHECO M, HIDALGO-MIRANDA A, ROMERO-CÓRDOBA S, et al. mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects [J]. Gene, 2014, 533(2): 508-514. doi: 10.1016/j.gene.2013.09.049 [119] MARIA V L, GOMES T, BARREIRA L, et al. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis [J]. Aquatic Toxicology, 2013, 144/145: 284-295. doi: 10.1016/j.aquatox.2013.10.009 [120] WU H F, WANG W X. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis [J]. Aquatic Toxicology, 2010, 100(4): 339-345. doi: 10.1016/j.aquatox.2010.08.005 [121] MARTINS C, DREIJ K, COSTA P M. The state-of-the art of environmental toxicogenomics: Challenges and perspectives of omics approaches directed to toxicant mixtures [J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4718. doi: 10.3390/ijerph16234718