-
大气固态水,包括冰晶和雪颗粒在内,在大气对流层以及高纬度和高海拔地区的寒冷生态系统中广泛存在[1-2]. 冰/雪具有较大的比表面积使其有着很强的吸附能力[3-5]. 冰/雪可以吸附大气污染物,再通过物理或化学相互作用[6-8]改变它们的电子结构特征,进而影响其迁移和转化,最终影响大气污染物的环境归趋[9-12]. 因此,了解大气污染物在冰表面的吸附行为对其环境风险评估具有重要意义.
近年来,大气中甲醇、草酸和甲酰胺等低分子量小分子有机污染物在冰表面的吸附行为已被广泛研究,然而这些小分子化合物的大气寿命较短,持久性较低,与大气中冰表面发生相互作用的机会较小[13-16]. 相对于这些低分子量的有机化合物,分子高持久性强的有机污染物,如芳香类化合物,更有机会被吸附在冰表面进而影响其大气迁移、转化行为. 芳香类化合物作为一类重要的持久性有机污染物,其种类多,来源广,在大气环境中具有较高的浓度水平[17-20]. 芳香类化合物在大气冰表面的吸附转化行为会显著影响其环境归趋和潜在的环境风险. 目前关于芳香类化合物,如苯、苯甲醛、苯胺和硝基苯在冰表面吸附行为的研究已有开展[21-24],结果表明不同的取代基通过改变芳香类化合物与冰表面的作用方式,包括静电相互作用、氢键相互作用类型和强度等,进而影响其在冰表面的吸附量,吸附能和吸附等温线等,最终影响芳香类化合物在冰表面的吸附行为. 因此,为了进一步理解芳香类化合物在冰表面的吸附行为,更多的研究应该关注其他具有不同取代基团的芳香类化合物在冰表面上的吸附行为.
苯酚是一种含羟基(—OH)的有毒芳香类化合物. 苯酚作为重要的化工原料,在石油行业、焦炭冶金工业和生产酚醛树脂等方面应用广泛,而且会在其生产、使用和运输过程中不可避免地排放到环境中[25]. 此外,生物质燃烧以及汽车尾气排放也是大气中苯酚的重要来源[26-27]. 苯酚在城市空气中的平均浓度约为0.13 μg·cm−3[28]. 同时,苯酚已被我国生态环境部列为优先控制污染物,被美国环境保护署列为有害空气污染物. 苯酚进入大气环境后,发生光化学降解是其在大气环境中重要的去除途径. 最近的研究发现苯酚在冰表面比在溶液中具有更快的光降解速率. 一种可能的解释是,当苯酚分子在气-冰界面被吸附时,它们的紫外可见吸收光谱发生了红移,暗示了苯酚在大气冰表面的吸附可能会改变其大气转化行为[29]. 此外,分子动力学模拟温度条件为263 K时单个苯酚分子在冰表面的吸附行为也发现,苯酚在气-水界面的吸附比溶解在水液滴内部热力学更可行. 然而目前对于苯酚在低温条件下冰表面的吸附行为还不清楚.
本文使用巨正则蒙特卡罗模拟(Grand Canonical Monte Carlo (GCMC))来研究苯酚在冰表面的吸附行为[14-15,21-24,30]. 选择可靠的力场是GCMC模拟成功的关键,冰的分子力场使用可以很好地描述固态水理化性质的TIP5P水模型[31-33],苯酚的分子力场使用基于OPLS-AA的优化力场[34-36]. 基于模拟结果,计算和分析了苯酚在冰表面的吸附等温线,并从苯酚在冰表面的吸附方向、氢键相互作用和吸附能等方面探讨了不同吸附阶段的苯酚的吸附特征. 本研究结果对理解苯酚在冰表面的吸附行为以及对其他含—OH的芳香类化合物在冰表面的吸附行为具有重要意义.
分子模拟研究苯酚在大气冰表面的吸附行为
Molecular simulation study on adsorption behavior of phenol on atmospheric ice surface
-
摘要: 苯酚是大气中重要的有毒污染物,然而其在大气冰表面的吸附行为仍不明确. 本研究使用巨正则蒙特卡罗(GCMC)模拟方法,基于TIP5P水力场和优化的苯酚力场,模拟了温度200 K条件下,苯酚在六边形(Ih)冰0001表面的吸附行为. 研究表明,苯酚在冰表面的吸附等温线具有两个平台期,达到第一个平台期后,苯酚单层吸附饱和并进入快速增长期,随后至吸附凝结点,达到第二个平台期. 当苯酚分子吸附量较小时,苯酚独立地吸附在冰表面,吸附行为符合Langmuir吸附类型;随着苯酚分子吸附量增加,冰表面的苯酚分子间产生相互作用,导致偏离了Langmuir吸附等温线. 在不同吸附量情况下,苯酚与冰表面分子形成的氢键类型均是以苯酚—OH上的氢原子与冰表面氧原子之间形成的氢键为主.
-
关键词:
- 苯酚 /
- 冰表面 /
- 吸附行为 /
- 巨正则蒙特卡罗模拟.
Abstract: Phenol is an important toxic pollutant in the atmosphere, however, its adsorption behavior on the surface of atmospheric ice is still unclear. Here, we employed Grand Canonical Monte Carlo simulations to characterize the adsorption behavior of phenol on hexagonal ice (Ih) at 200 K using the TIP5P water force field and optimized force field of phenol. The results indicate that the adsorption isotherm of phenol on the ice surface has two plateaus. The first plateau corresponds to a saturated monolayer of phenol molecules at the ice surface. After that, the isotherm exhibits a rapid increase to the condensation point, and then reaches the second plateau. At low coverage of phenol on the ice surface, the adsorbed phenol molecules are isolated from each other, and the adsorption isotherm follows the Langmuir adsorption isotherm. With increasing coverage of absorbed phenol molecules, its adsorption isotherms deviated from Langmuir adsorption isotherm due to the interaction between phenol molecules. The type of hydrogen bond formed by phenol molecules and ice surface is dominated by the hydrogen bond formed by the H—atom on the —OH of phenol and the O—atom on the ice surface under different adsorption amounts.-
Key words:
- phenol /
- ice surface /
- adsorption behavior /
- Grand Canonical Monte Carlo simulation.
-
图 1 (A)自由能计算模拟体系:1个苯酚分子、 含有970 个水分子的液相和1个虚原子;(B)不同力场条件下,苯酚分子穿过气水夹层的自由能分布曲线(PMF)
Figure 1. (A) The simulation system for free energy profile: a phenol molecule, a liquid slab and a dummy atom; (B)Potential of mean force (PMF) for moving phenol with different force field parameters through a water slab
图 2 苯酚两种形式的吸附等温线(A)吸附在冰表面的苯酚分子平均个数
$\left\langle {{N}} \right\rangle $ 与化学势μ的函数;(B)吸附的苯酚分子表面密度与相对压力的函数. 图2(B)的插图显示了低表面密度下与Langmuir吸附等温线拟合的吸附等温线Figure 2. Two forms of phenol adsorption isotherms (A) Average number of phenol molecules adsorbed on the ice surface
$\left\langle {{N}} \right\rangle $ as a function of chemical potential μ; (B) Surface density of adsorbed phenol molecules as a function of relative pressure. The inset of Fig. 2(B) shows the fitting of the adsorption isotherm at low surface density to the Langmuir adsorption isotherm图 4 (A)PhOH Ⅰ—Ⅳ中吸附的苯酚分子中—OH相连的ipso碳原子沿表面X轴位置的密度分布,(B)PhOH Ⅰ—Ⅲ中苯酚分子在冰表面上的吸附方向分布.
Figure 4. (A) The density profiles of the ipso carbon atom linked to—OH of the adsorbed phenol molecules in systems PhOH Ⅰ—Ⅳ along the surface normal axis X and (B) the orientation profiles of the adsorbed phenol molecules at the ice surface in systems PhOH Ⅰ—Ⅲ.
图 5 体系PhOH Ⅰ—Ⅲ中(A)苯酚与冰表面之间的相互作用能(
$ {U}_{\mathrm{b}}^{\mathrm{i}\mathrm{c}\mathrm{e}} $ ), (B)苯酚分子之间相互作用能($ {U}_{\mathrm{b}}^{\mathrm{P}\mathrm{h}\mathrm{O}\mathrm{H}} $ ), (C)苯酚分子与冰表面的总结合能($ {U}_{\mathrm{b}} $ )Figure 5. (A) Distribution of the interaction energy with the ice surface (
$ {U}_{\mathrm{b}}^{\mathrm{i}\mathrm{c}\mathrm{e}} $ ) for the adsorption of phenol, (B) the phenol interaction energy with other adsorbed molecules ($ {U}_{\mathrm{b}}^{\mathrm{P}\mathrm{h}\mathrm{O}\mathrm{H}} $ ), (C) distribution of total binding energy ($ {U}_{\mathrm{b}} $ ) of adsorbed molecule on the ice surface at PhOH Ⅰ—Ⅲ systems, respectively图 6 (A)苯酚的—OH在冰表面形成3种氢键类型,分别命名为“Type1”,“Type2”和“Type3”. (B)苯酚的—OH与冰表面形成3种氢键类型的概率分布
Figure 6. (A) Three types of hydrogen bond formed between—OH of phenol and the ice surface, which are named “Type1”, “Type2” and “Type3”, respectively. (B) Profiles of probability of three types of hydrogen bond formed between —OH of phenol and the ice surface
表 1 OPLS-AA 力场中苯酚的L-J势能参数和优化后苯酚的原子电荷
Table 1. Lennard-Jones (L-J) Parameters for Phenol Adopted from the OPLS-AA Force Field and Modified Atomic Charges of phenol
苯酚
Phenol原子名称
Atomσ/nm ε/(kcal·mol−1) q/e Cipso 0.355 0.070 0.481 Cortho 0.355 0.070 −0.368 Cmeta 0.355 0.070 −0.100 Cpara 0.355 0.070 −0.237 Hortho 0.242 0.030 0.202 Hmeta 0.242 0.030 0.163 Hpara 0.242 0.030 0.163 OOH 0.312 0.170 −0.635 HOH 0.000 0.000 0.434 表 2 基于OPLS-AA力场,优化力场下的苯酚偶极矩、密度、蒸发焓和热容计算值与实验值
Table 2. Calculated dipole moment(Debye), density(g·cm−3), evaporation enthalpy(kJ· mol−1) and heat capacity(cal·mol−1·K−1)of phenol with OPLS-AA force field, modified force field and experimental values for phenol
表 3 苯酚吸附等温线计算数据
Table 3. Calculated data of the phenol adsorption isotherm
化学势
/(kJ·mol−1)
μ吸附个数
N相对压力
Prel表面密度
/(μmol·m−2)
Γ化学势
/(kJ·mol−1)
μ吸附个数
N相对压力
Prel表面密度
/(μmol·m−2)
Γ−72.88 1.27 1.01 10−4$ \times $ 0.08 −63.24 87.11 3.34 10−2$ \times $ 5.18 −72.55 1.36 1.23 10−4$ \times $ 0.08 −63.07 87.28 3.69 10−2$ \times $ 5.19 −72.22 3.58 1.51 10−4$ \times $ 0.21 −62.57 88.38 4.98 10−2$ \times $ 5.25 −71.89 4.45 1.84 10−4$ \times $ 0.26 −62.24 87.84 6.08 10−2$ \times $ 5.22 −71.55 3.83 2.25 10−4$ \times $ 0.23 −61.58 88.51 9.07 10−2$ \times $ 5.26 −71.22 3.61 2.75 10−4$ \times $ 0.21 −61.08 88.62 0.12 5.27 −70.89 5.19 3.35 10−4$ \times $ 0.31 −60.75 88.04 0.15 5.23 −70.56 4.38 4.10 10−4$ \times $ 0.26 −60.41 93.56 0.18 5.56 −70.22 5.72 5.00 10−4$ \times $ 0.34 −60.08 92.99 0.22 5.53 −69.89a 10.87 6.11 10−4$ \times $ 0.65 −59.91 92.26 0.25 5.48 −69.23 27.54 9.12 10−4$ \times $ 1.64 −59.42 93.54 0.33 5.56 −68.56 42.60 1.36 10−4$ \times $ 2.53 −59.25 93.58 0.37 5.56 −67.90b 65.79 2.03 10−4$ \times $ 3.91 −58.75 95.64 0.50 5.69 −67.56 78.38 2.48 10−4$ \times $ 4.66 −58.58 97.70 0.55 5.81 −67.23 79.76 3.03 10−3$ \times $ 4.74 −58.25 101.59 0.67 6.04 −66.57 77.93 4.52 10−3$ \times $ 4.63 −58.08 120.24 0.74 7.15 −66.23 77.84 5.52 10−3$ \times $ 4.63 −57.92 128.29 0.82 7.63 −65.90 83.05 6.74 10−3$ \times $ 4.94 −57.75 151.14 0.90 8.98 −65.57 82.20 8.23 10−3$ \times $ 4.89 −57.59c 154.95 1.00 9.21 −65.23 84.56 1.01 10−2$ \times $ 5.03 −57.42 331.68 −64.90 86.78 1.23 10−2$ \times $ 5.16 −57.25d 332.83 −64.57 87.73 1.50 10−2$ \times $ 5.22 −57.09 332.02 −63.90 87.17 2.24 10−2$ \times $ 5.18 −56.92 330.20 注:a、b、c、d分别对应 PhOH ⅠI、PhOH ⅡII、PhOH Ⅲ 和 PhOH Ⅳ. -
[1] BARTELS-RAUSCH T. Chemistry: Ten things we need to know about ice and snow [J]. Nature, 2013, 494(7435): 27-29. doi: 10.1038/494027a [2] BARTELS-RAUSCH T, JACOBI H W, KAHAN T F, et al. Relationship between snow microstructure and physical and chemical processes [J]. Atmospheric Chemistry and Physics, 2012, 12: 30409-30541. [3] HUTHWELKER T, AMMANN M, PETER T. The uptake of acidic gases on ice [J]. Chemical Reviews, 2006, 106(4): 1375-1444. doi: 10.1021/cr020506v [4] ABBATT J P D. Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction [J]. Chemical Reviews, 2003, 103(12): 4783-4800. doi: 10.1021/cr0206418 [5] DOMINÉ F, CABANES A, LEGAGNEUX L. Structure, microphysics, and surface area of the Arctic snowpack near Alert during the ALERT 2000 campaign [J]. Atmospheric Environment, 2002, 36(15/16): 2753-2765. [6] BARTELS-RAUSCH T, JACOBI H W, KAHAN T F, et al. A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1587-1633. doi: 10.5194/acp-14-1587-2014 [7] KAHAN T F, ZHAO R, DONALDSON D J. Hydroxyl radical reactivity at the air-ice interface [J]. Atmospheric Chemistry and Physics, 2010, 10(2): 843-854. doi: 10.5194/acp-10-843-2010 [8] DOMINÉ F, SHEPSON P B. Air-snow interactions and atmospheric chemistry [J]. Science, 2002, 297(5586): 1506-1510. doi: 10.1126/science.1074610 [9] DALY G L, WANIA F. Simulating the influence of snow on the fate of organic compounds [J]. Environmental Science & Technology, 2004, 38(15): 4176-4186. [10] MCNEILL V F, GRANNAS A M, ABBATT J P D, et al. Organics in environmental ices: Sources, chemistry, and impacts [J]. Atmospheric Chemistry and Physics, 2012, 12(20): 9653-9678. doi: 10.5194/acp-12-9653-2012 [11] ARELLANO L, FERNÁNDEZ P, TATOSOVA J, et al. Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia) [J]. Environmental Science & Technology, 2011, 45(21): 9268-9275. [12] GERBER R B, VARNER M E, HAMMERICH A D, et al. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces [J]. Accounts of Chemical Research, 2015, 48(2): 399-406. doi: 10.1021/ar500431g [13] JEDLOVSZKY P, PÁRTAY L, HOANG P N M, et al. Determination of the adsorption isotherm of methanol on the surface of ice. an experimental and grand canonical Monte Carlo simulation study [J]. Journal of the American Chemical Society, 2006, 128(47): 15300-15309. doi: 10.1021/ja065553+ [14] DARVAS M, PICAUD S, JEDLOVSZKY P. Molecular dynamics simulation of the adsorption of oxalic acid on an ice surface [J]. ChemPhysChem, 2010, 11(18): 3971-3979. doi: 10.1002/cphc.201000513 [15] KISS B, PICAUD S, SZŐRI M, et al. Adsorption of formamide at the surface of amorphous and crystalline ices under interstellar and tropospheric conditions. A grand canonical Monte Carlo simulation study [J]. The Journal of Physical Chemistry. A, 2019, 123(13): 2935-2948. doi: 10.1021/acs.jpca.9b00850 [16] DARVAS M, LASNE J, LAFFON C, et al. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2012, 28(9): 4198-4207. doi: 10.1021/la204472k [17] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [18] GUO H, SO K L, SIMPSON I J, et al. C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment [J]. Atmospheric Environment, 2007, 41(7): 1456-1472. doi: 10.1016/j.atmosenv.2006.10.011 [19] MASSOLO L, REHWAGEN M, PORTA A, et al. Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas [J]. Environmental Toxicology, 2010, 25(4): 339-349. [20] CAZIER F, GENEVRAY P, DEWAELE D, et al. Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: Organic compounds [J]. Journal of Environmental Sciences, 2016, 44: 45-56. doi: 10.1016/j.jes.2016.01.014 [21] MÉSZÁR Z E, HANTAL G, PICAUD S, et al. Adsorption of aromatic hydrocarbon molecules at the surface of ice, as seen by grand canonical Monte Carlo simulation [J]. The Journal of Physical Chemistry C, 2013, 117(13): 6719-6729. doi: 10.1021/jp401532x [22] PETITJEAN M, HANTAL G, CHAUVIN C, et al. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation [J]. Langmuir, 2010, 26(12): 9596-9606. doi: 10.1021/la100169h [23] FU Z H, HE N, ZHOU P T, et al. Grand canonical Monte Carlo simulation on adsorption of aniline on the ice surface [J]. Journal of Molecular Liquids, 2019, 290: 111221. doi: 10.1016/j.molliq.2019.111221 [24] FU Z H, HE N, ZHOU P T, et al. Adsorption of nitrobenzene on the surface of ice: A grand canonical Monte Carlo simulation study [J]. The Journal of Physical Chemistry C, 2017, 121(29): 15746-15755. doi: 10.1021/acs.jpcc.7b03531 [25] XU C, WANG L M. Atmospheric oxidation mechanism of phenol initiated by OH radical [J]. The Journal of Physical Chemistry. A, 2013, 117(11): 2358-2364. doi: 10.1021/jp308856b [26] NOLTE C G, SCHAUER J J, CASS G R, et al. Highly polar organic compounds present in wood smoke and in the ambient atmosphere [J]. Environmental Science & Technology, 2001, 35(10): 1912-1919. [27] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 5. C1−C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental Science & Technology, 2002, 36(6): 1169-1180. [28] BRODZINSKY R, SINGH H B. Volatile organic chemicals in the atmosphere: An assessment of available data[M]. US Environmental Protection Agency, Environmental Sciences Research Laboratory, 1983. [29] BONONI F C, CHEN Z K, ROCCA D, et al. Bathochromic shift in the UV-visible absorption spectra of phenols at ice surfaces: Insights from first-principles calculations [J]. The Journal of Physical Chemistry. A, 2020, 124(44): 9288-9298. doi: 10.1021/acs.jpca.0c07038 [30] SUMI I, FÁBIÁN B, PICAUD S, et al. Adsorption of fluorinated methane derivatives at the surface of ice under tropospheric conditions, as seen from grand canonical Monte Carlo simulations [J]. The Journal of Physical Chemistry C, 2016, 120(31): 17386-17399. doi: 10.1021/acs.jpcc.6b04300 [31] RICK S W. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums [J]. The Journal of Chemical Physics, 2004, 120(13): 6085-6093. doi: 10.1063/1.1652434 [32] ABASCAL J L F, VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005 [J]. The Journal of Chemical Physics, 2005, 123(23): 234505. doi: 10.1063/1.2121687 [33] MAHONEY M W, JORGENSEN W L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions [J]. The Journal of Chemical Physics, 2000, 112(20): 8910-8922. doi: 10.1063/1.481505 [34] CALEMAN C, van MAAREN P J, HONG M Y, et al. Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant [J]. Journal of Chemical Theory and Computation, 2012, 8(1): 61-74. doi: 10.1021/ct200731v [35] JORGENSEN W L, LAIRD E R, NGUYEN T B, et al. Monte Carlo simulations of pure liquid substituted benzenes with OPLS potential functions [J]. Journal of Computational Chemistry, 1993, 14(2): 206-215. doi: 10.1002/jcc.540140208 [36] PRICE M L P, OSTROVSKY D, JORGENSEN W L. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field [J]. Journal of Computational Chemistry, 2001, 22(13): 1340-1352. doi: 10.1002/jcc.1092 [37] VÁCHA R, JUNGWIRTH P, CHEN J, et al. Adsorption of polycyclic aromatic hydrocarbons at the air-water interface: Molecular dynamics simulations and experimental atmospheric observations [J]. Physical Chemistry Chemical Physics:PCCP, 2006, 8(38): 4461-4467. doi: 10.1039/B610253K [38] VÁCHA R, SLAVÍČEK P, MUCHA M, et al. Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2 [J]. The Journal of Physical Chemistry A, 2004, 108(52): 11573-11579. doi: 10.1021/jp046268k [39] HESS B, KUTZNER C, van der SPOEL D, et al. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. doi: 10.1021/ct700301q [40] HIRSCH T K, OJAMÄE L. Quantum-chemical and force-field investigations of ice ih: Computation of proton-ordered structures and prediction of their lattice energies [J]. The Journal of Physical Chemistry B, 2004, 108(40): 15856-15864. doi: 10.1021/jp048434u [41] BOCKSTEDTE M, MICHL A, KOLB M, et al. Incomplete bilayer termination of the ice (0001) surface [J]. The Journal of Physical Chemistry C, 2016, 120(2): 1097-1109. doi: 10.1021/acs.jpcc.5b10836 [42] NETZ R R, HORINEK D. Progress in modeling of ion effects at the vapor/water interface [J]. Annual Review of Physical Chemistry, 2012, 63: 401-418. doi: 10.1146/annurev-physchem-032511-143813 [43] BUCH V, SIGURD B, PAUL DEVLIN J, et al. Solid water clusters in the size range of tens-thousands of H2O: A combined computational/spectroscopic outlook [J]. International Reviews in Physical Chemistry, 2004, 23(3): 375-433. doi: 10.1080/01442350412331316124 [44] HONTI B, SZŐRI M, JEDLOVSZKY P. Description of the interfacial behavior of benzonitrile at icy surfaces by grand canonical Monte Carlo simulations [J]. The Journal of Physical Chemistry. A, 2022, 126(7): 1221-1232. doi: 10.1021/acs.jpca.1c10749 [45] SÁNCHEZ M A, KLING T, ISHIYAMA T, et al. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): 227-232. doi: 10.1073/pnas.1612893114 [46] KLING T, KLING F, DONADIO D. Structure and dynamics of the quasi-liquid layer at the surface of ice from molecular simulations [J]. The Journal of Physical Chemistry C, 2018, 122(43): 24780-24787. doi: 10.1021/acs.jpcc.8b07724 [47] PICAUD S, JEDLOVSZKY P. Molecular-scale simulations of organic compounds on ice: Application to atmospheric and interstellar sciences [J]. Molecular Simulation, 2019, 45(4/5): 403-416. [48] MEZEI M. MMC: Monte Carlo program for simulation of molecular assemblies [EB/OL]. [2020-07-10] [49] MEZEI M. A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids [J]. Molecular Physics, 1980, 40(4): 901-906. doi: 10.1080/00268978000101971 [50] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 [CP]. Wallingford, CT: Gaussian, Inc, 2009. [51] SANDER R. Compilation of Henry's law constants (version 4.0) for water as solvent [J]. Atmospheric Chemistry and Physics, 2015, 15(8): 4399-4981. doi: 10.5194/acp-15-4399-2015 [52] O'NIEL M J. The merck index: An encyclopedia of chemicals, drugs, and bilogicals, (13th ed)[M]. Whitehouse station, NJ: Merck and Co. , Inc. , 2001. [53] CHICKOS J S, HOSSEINI S, HESSE D G. Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times [J]. Thermochimica Acta, 1995, 249: 41-62. doi: 10.1016/0040-6031(95)90670-3 [54] KUDCHADKER S A, KUDCHADKER A P, WILHOIT R C, et al. Ideal gas thermodynamic properties of phenol and cresols [J]. Journal of Physical and Chemical Reference Data, 1978, 7(2): 417-423. doi: 10.1063/1.555573 [55] PAGLIAI M, CARDINI G, RIGHINI R, et al. Hydrogen bond dynamics in liquid methanol [J]. The Journal of Chemical Physics, 2003, 119(13): 6655-6662. doi: 10.1063/1.1605093 [56] da SILVA J A, MOREIRA F G, dos SANTOS V M L, et al. Hydrogen bond networks in water and methanol with varying interaction strengths [J]. Physical Chemistry Chemical Physics:PCCP, 2011, 13(2): 593-603. doi: 10.1039/C0CP01204A [57] ZHANG N, RUAN X H, SONG Y C, et al. Molecular dynamics simulation of the hydration structure and hydrogen bonding behavior of phenol in aqueous solution [J]. Journal of Molecular Liquids, 2016, 221: 942-948. doi: 10.1016/j.molliq.2016.06.048