-
医院是提供疾病诊疗、护理和康复等医疗服务的重要场所,在增进人类健康福祉和促进医学水平提升中发挥了关键作用. 据中国2020年卫生健康事业发展统计公报显示,全国医院数量近35万个,床位910万张[1]. 大中小型医院日耗水量分别为每床650—800、500—600、350—400 L·d−1 [2],每天产生大量含特殊污染物的医疗废水,其中含有 Cd、Cu、Ni、Hg和Sn等重金属、抗生素、消毒剂和病原微生物等[3],COD和BOD 含量分别为450—2300 mg·L−1和150—603 mg·L−1,高出市政污水2—3倍[4]. 而医疗废水中溶解性有机物(dissolved organic matter, DOM)成分复杂、结构多样、不易降解和矿化[5]. DOM的含量及组成既增加医疗废水的处理难度,也直接影响出水水质,对水生生态环境构成潜在威胁[6]. 此外,DOM多种活性组分如多糖、蛋白质和木质素等对重金属、病毒微生物和抗生素等污染物的迁移转化和生态风险有着重要的调控作用[7-8]. 部分国家医疗废水未经处理直接排放被认为是水环境中有毒有害元素输入的主要来源[9]. 在我国,医疗废水须处理达标后进入市政污水处理厂二次处理,以提高医疗废水的可生物降解性,避免致病微生物、耐抗生素细菌的传播.
长期以来,人类活动产生的生活废水、垃圾渗滤液以及畜禽养殖等废水中的DOM受到关注[10-12]. 而医疗废水中DOM的研究报道多集中于利用荧光光谱(excitation-emission matrix spectroscopy, EEMs)对处理工艺的效果进行监测与评价. Khongnakorn等[13]利用EEMs评价了陶瓷光催化薄膜反应器处理医疗废水的效果,发现医疗废水DOM组分主要为类酪氨酸、类色氨酸、类腐殖酸和类富里酸. Tang等[14]采用臭氧氧化降解医疗废水经生物处理后出水中的药物和毒性,研究表明有机物荧光强度与废水中的药物浓度呈正相关,T1峰(λEx/λEm=275 nm/340 nm)与药物浓度的关系最为密切,可以作为废水中药物去除效果的替代物. Ouardadeng等[15]则利用紫外-可见光谱(UV-visible spectroscopy, UV-vis)和荧光光谱研究电化学氧化法处理医疗废水残留药物,认为254 nm的吸光度和总荧光强度可作为医疗废水残留药物监测的替代参数.
紫外-可见光谱、三维荧光光谱和傅里叶变换红外光谱(fourier transform infrared spectrometer, FTIR)具有使用方便、响应速度快、成本低、灵敏度高和分辨率高等优点[16-17],已成为DOM含量、组分和结构等特性表征的重要手段[18-20]. 平行因子分析(parallel factor analysis, PARAFAC)可有效解析DOM重叠的三维荧光光谱和量化荧光组分[21],本研究基于紫外可见吸收、三维荧光以及红外光谱表征手段与平行因子分析,对医疗废水处理前后DOM组分、含量和结构进行表征,可增进医疗废水DOM光谱特征的认识,对开展医疗废水的光谱监测和水环境保护具有十分重要的现实意义.
医疗废水处理前后溶解性有机物的光谱特征分析
Spectral characteristics of dissolved organic matter in medical wastewater before and after treatment
-
摘要: 医院诊疗过程中产生大量富含溶解性有机物(DOM)的医疗废水,DOM会影响医疗废水的处理效率和出水水质. 本研究利用紫外可见吸收、三维荧光以及红外光谱技术分析了14家医疗废水处理前后DOM的光谱特征. 结果表明,医疗废水DOM的荧光组分由类蛋白质(类色氨酸C1和类酪氨酸C4)及类腐殖质(C2和C3)两大类组成,结构性质相似,多为含O—H、N—H、C═O、C—H、C—OH、C—O和C—O—C等官能团的苯酚类、醇类、苯胺类、脂类、芳香类有机物及氯等物质. DOM自生源性较强,腐殖化程度低,腐殖质来源于生物源和非生物源. 处理后DOM结构未出现明显变化,不饱和程度略有降低,苯环C骨架的聚合度和腐殖化程度增加. DOM的去除以类蛋白质为主,总荧光强度由13.29—75.17 R.U.降至0.98—33.73 R.U.. 类腐殖质C2和C3去除效果相对较低,其去除与3440—3350 cm−1、1421—1387 cm−1和703—599 cm−1波段范围含O—H、N—H,C—H和C—OH以及苯环等官能团的有机物有关. 而临床使用的抗菌药物载体AgNPs在医疗废水中不易被降解去除.Abstract: The hospital diagnosis and treatment process produce a large amount of medical wastewater (MW). These kinds of wastewaters are rich in dissolved organic matter (DOM), which can affect the efficiency and effluent quality of MW treatment. In this study, ultraviolet-visible spectroscopy (UV-vis), excitation-emission matrix spectroscopy (EEMs), and Fourier transform infrared spectroscopy (FTIR) were used to analyze the spectral characteristics of DOM in MW before and after treatment from 14 hospitals. The results show that fluorescent components of DOM are composed of protein-like (tryptophan-like C1 and tyrosine-like C4) and humic-like (C2 and C3) with similar structural properties, mostly containing phenols, alcohols, anilines, lipids, aromatic organics, and chlorine with functional groups such as O—H, N—H, C═O, C—H, C—OH, C—O, and C—O—C. The DOM is highly authigenic and has a low degree of humification. Both allochthonous and autochthonous sources are contributed to humic substances. The structure of DOM does not change significantly after treatment, the degree of unsaturation decreases slightly, while the degree of polymerization of benzene ring C skeleton and humification increases. The removal of DOM is mainly protein-like. The total fluorescence intensity decreased from 13.29—75.17 R.U. to 0.98—33.73 R.U.. The removal rate of humic-like substances(C2 and C3) are relatively low and related to the organic matters with functional groups O—H, N—H, C—H and C—OH and benzene rings in the bands 3440—3350 cm−1, 1421—1387 cm−1, and 703—599 cm−1. Respectively, AgNPs, as clinically used antimicrobial drug carriers, are not easily removed by degradation in medical wastewater.
-
表 1 紫外光谱和荧光光谱相关参数及其指示意义
Table 1. The summary and implications of ultraviolet and fluorescence spectra index
类型
Spectral type光谱参数
Spectral parameters参数定义
Parameter definition指示意义
Indicative meaningUV-vis A254 254 nm处的紫外吸光度 表征DOM的不饱和程度[23] E2/E3 250 nm和365 nm处的紫外吸光度之比 反应DOM相对分子质量大小[24] E2/E4 254 nm和436 nm处的紫外吸光度之比 表征DOM的芳香性[25] E4/E6 465 nm和665 nm处的紫外吸光度之比 表征DOM聚合程度[26] EEMs FI Ex=370 nm时,Em在470 nm与520 nm处的荧光强度比值 判断DOM腐殖质来源[27] HIX Ex为250 nm时,Em在435—480 nm以及300—345 nm间荧光峰值面积之比 表示DOM腐殖化程度[28] BIX Ex为310 nm时,Em在380 nm和430 nm处荧光强度的比值 反应DOM的自生源特性[29] 表 2 医疗废水DOM的荧光组分特征
Table 2. Characteristics of fluorescent components of DOM in medical wastewater
组分
ComponentsλEx/λEm /nm 物质
Type参考文献
Reference前后
Before and after前
Before后
AfterC1 278/352 278/354 287/336* 类色氨酸 280/354[51] C2 281,362/463 278,368/461 260,362/458 类腐殖质 260(345)/476[52] C3 <251,320/404 <251,314/413 251,314/415 类腐殖质 < 250(320)/410[53] C4 272/297 272/297 272/311 类酪氨酸 270/302[54] *.出水C1组分 (λEx/λEm=287 nm/ 494 nm和λEx/λEm=413 nm/ 500 nm)为类腐殖质,本表标注 (λEx/λEm = 287 nm/336 nm)为类色氨酸.
*. Component C1 (λEx/λEm = 287 nm/494 nm and λEx/λEm = 413 nm/500 nm) is humic-like in effluent, while (λEx/λEm = 287 nm/336 nm) is tryptophan-like and labeled.表 3 医疗废水处理前后DOM荧光强度变化与红外光谱特征峰变化的相关性
Table 3. Correlations between change of DOM fluorescence intensity and infrared spectrum before and after treatment of medical wastewater
ΔT3440—3350 ΔT1421—1387 ΔT1146—1044 ΔT1649—1630 ΔT866—830 ΔT703—599 ΔC1 0.30 0.40 0.41 0.30 0.44 0.52 ΔC2 0.60* 0.56* 0.53 0.33 0.31 0.63* ΔC3 0.55* 0.59* 0.59* 0.29 0.39 0.64* ΔC4 0.20 0.19 0.24 0.21 0.22 0.35 -
[1] 中华人民共和国国家卫生健康委员会. 2020年我国卫生健康事业发展统计公报[EB/OL][2021-07-13].
National Health Commission of the People's Republic of China. Statistical bulletin on China's health development in 2020[EB/OL]. [2021-07-13].[2] 中国工程建设标准化协会. 医院污水处理设计规范: CECS 07—2004[S]. 北京: 中国计划出版社, 2004. China Association for Engineering Construction Standardization. Code for design of hospital sewage treatment: CECS 07—2004[S]. Beijing: China Planning Press, 2004 (in Chinese).
[3] KUMARI A, MAURYA N S, TIWARI B. Hospital wastewater treatment scenario around the globe[M]//Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier, 2020: 549-570. [4] ACHAK M, ALAOUI BAKRI S, CHHITI Y, et al. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies [J]. Science of the Total Environment, 2021, 761: 143192. doi: 10.1016/j.scitotenv.2020.143192 [5] 何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展 [J]. 环境科学学报, 2016, 36(2): 359-372. doi: 10.13671/j.hjkxxb.2015.0117 HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372(in Chinese). doi: 10.13671/j.hjkxxb.2015.0117
[6] 金鑫, 金鹏康, 孔茜, 等. 基于PARAFAC分析的二级出水DOM臭氧化特性研究 [J]. 中国环境科学, 2015, 35(2): 427-433. JIN X, JIN P K, KONG Q, et al. Ozonation characteristics of DOM in secondary effluent based on fluorescence PARAFAC analysis [J]. China Environmental Science, 2015, 35(2): 427-433(in Chinese).
[7] WANG P C, PENG H, LIU J L, et al. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system [J]. Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252 [8] LIANG C, ZHAO H M, DENG M J, et al. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin [J]. Journal of Environmental Sciences, 2015, 27: 115-123. doi: 10.1016/j.jes.2014.08.015 [9] COTTARELLI A, de GIUSTI M, SOLIMINI A G, et al. Microbiological surveillance of endoscopes and implications for current reprocessing procedures adopted by an Italian teaching hospital [J]. Annali Di Igiene:Medicina Preventiva e Di Comunita, 2020, 32(2): 166-177. [10] 仇俊杰, 吕凡, 章骅, 等. 渗滤液溶解性有机物解析及其转化研究前瞻 [J]. 环境化学, 2021, 40(8): 2299-2307. doi: 10.7524/j.issn.0254-6108.2021033104 QIU J J, LÜ F, ZHANG H, et al. Property and transformation of DOM in solid waste leachate [J]. Environmental Chemistry, 2021, 40(8): 2299-2307(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033104
[11] HE H, LUO N, HUANG B, et al. Optical characteristics and cytotoxicity of dissolved organic matter in the effluent and sludge from typical sewage treatment processes [J]. Science of the Total Environment, 2020, 725: 138381. doi: 10.1016/j.scitotenv.2020.138381 [12] HUANG L X, LI M L, NGO H H, et al. Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compound [J]. Journal of Molecular Liquids, 2018, 263: 422-427. doi: 10.1016/j.molliq.2018.05.025 [13] KHONGNAKORN W, PATTANASATTAYAVONG P, TANTHAI K, et al. Performance of photocatalytic ceramic membrane for hospital effluent treatment [J]. Desalination and Water Treatment, 2021, 230: 259-267. doi: 10.5004/dwt.2021.27456 [14] TANG K, SPILIOTOPOULOU A, CHHETRI R K, et al. Removal of pharmaceuticals, toxicity and natural fluorescence through the ozonation of biologically-treated hospital wastewater, with further polishing via a suspended biofilm [J]. Chemical Engineering Journal, 2019, 359: 321-330. doi: 10.1016/j.cej.2018.11.112 [15] OUARDA Y, BOUCHARD F, AZAÏS A, et al. Electrochemical treatment of real hospital wastewaters and monitoring of pharmaceutical residues by using surrogate models [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103332. doi: 10.1016/j.jece.2019.103332 [16] CARSTEA E M, POPA C L, BAKER A, et al. In situ fluorescence measurements of dissolved organic matter: A review [J]. Science of the Total Environment, 2020, 699: 134361. doi: 10.1016/j.scitotenv.2019.134361 [17] SPILIOTOPOULOU A, ANTONIOU M G, ANDERSEN H R. Natural fluorescence emission-an indirect measurement of applied ozone dosages to remove pharmaceuticals in biologically treated wastewater [J]. Environmental Technology, 2021, 42(4): 584-596. doi: 10.1080/09593330.2019.1639827 [18] PHONG D D, HUR J. Non-catalytic and catalytic degradation of effluent dissolved organic matter under UVA-and UVC-irradiation tracked by advanced spectroscopic tools [J]. Water Research, 2016, 105: 199-208. doi: 10.1016/j.watres.2016.08.068 [19] LI X W, DAI X H, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy [J]. Bioresource Technology, 2014, 159: 412-420. doi: 10.1016/j.biortech.2014.02.085 [20] 蔡华玲, 宁寻安, 陈晓晖, 等. 印染外排废水中溶解性有机质的荧光特性 [J]. 环境化学, 2021, 40(5): 1592-1601. doi: 10.7524/j.issn.0254-6108.2020010402 CAI H L, NING X N, CHEN X H, et al. Fluorescence characteristics of dissolved organic matter in textile-dyeing effluents [J]. Environmental Chemistry, 2021, 40(5): 1592-1601(in Chinese). doi: 10.7524/j.issn.0254-6108.2020010402
[21] ZHU Y C, JIN Y, LIU X S, et al. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses [J]. Journal of Hazardous Materials, 2021, 420: 126532. doi: 10.1016/j.jhazmat.2021.126532 [22] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial [J]. Limnology and Oceanography:Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572 [23] 石玉飞, 李胜楠, 耿金菊, 等. 发酵制药废水二级出水中溶解性有机物特性分析 [J]. 环境科学学报, 2021, 41(5): 1901-1909. SHI Y F, LI S N, GENG J J, et al. Characteristics of dissolved organic matter in the secondary effluent from fermentation pharmaceutical wastewater [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1901-1909(in Chinese).
[24] 闫晓寒, 文威, 解莹, 等. 溶解性有机物特性及在国内的污染研究现状 [J]. 环境科学与技术, 2020, 43(6): 169-178. YAN X H, WEN W, XIE Y, et al. Study on the properties of dissolved organic matter and its pollution status in China:a review [J]. Environmental Science &Technology, 2020, 43(6): 169-178(in Chinese).
[25] LI P H, HUR J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186 [26] 王明月, 程丽华, 刘健, 等. 污水处理对黑水/灰水中溶解性有机物紫外光谱及荧光光谱特性的影响 [J]. 环境工程学报, 2019, 13(4): 910-917. doi: 10.12030/j.cjee.201810013 WANG M Y, CHENG L H, LIU J, et al. Effect of wastewater treatment on ultraviolet and fluorescence spectra of dissolved organic matter in black water/gray water [J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 910-917(in Chinese). doi: 10.12030/j.cjee.201810013
[27] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038 [28] ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude [J]. Limnology and Oceanography, 2010, 55(6): 2645-2659. doi: 10.4319/lo.2010.55.6.2645 [29] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002 [30] 方蕾, 赵晓丽, 王珺瑜, 等. 具有不同粒径和相同表面结构纳米银颗粒的制备及表征 [J]. 环境科学研究, 2019, 32(5): 866-874. FANG L, ZHAO X L, WANG J Y, et al. Preparation and characterization of nano-silver with different particle sizes and uniform surface coating [J]. Research of Environmental Sciences, 2019, 32(5): 866-874(in Chinese).
[31] WANG C Z, WEN J Z, CHEN S J, et al. Biogenic synthesis, characterization and evaluation of silver nanoparticles from Aspergillus niger JX556221 against human colon cancer cell line HT-29 [J]. Journal of Nanoscience and Nanotechnology, 2018, 18(5): 3673-3681. doi: 10.1166/jnn.2018.15364 [32] MORENO-MARTIN G, LEÓN-GONZÁLEZ M E, MADRID Y. Simultaneous determination of the size and concentration of AgNPs in water samples by UV-vis spectrophotometry and chemometrics tools [J]. Talanta, 2018, 188: 393-403. doi: 10.1016/j.talanta.2018.06.009 [33] LI P H, CHEN L, ZHANG W, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis [J]. PLoS One, 2015, 10(6): e0130852. doi: 10.1371/journal.pone.0130852 [34] 向元婧, 黄清辉. 拦河大坝对河流有色溶解有机质赋存特征的影响初探 [J]. 水生态学杂志, 2014, 35(6): 1-6. doi: 10.3969/j.issn.1674-3075.2014.06.001 XIANG Y J, HUANG Q H. Impact of river damming on the characteristics of riverine chromophoric dissolved organic matter [J]. Journal of Hydroecology, 2014, 35(6): 1-6(in Chinese). doi: 10.3969/j.issn.1674-3075.2014.06.001
[35] CHIN Y P, AIKEN G, O'LOUGHLIN E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances [J]. Environmental Science & Technology, 1994, 28(11): 1853-1858. [36] PITASSE-SANTOS P, SUETH-SANTIAGO V, LIMA M. 1, 2, 4- and 1, 3, 4-oxadiazoles as scaffolds in the development of antiparasitic agents [J]. Journal of the Brazilian Chemical Society, 2017, 29(3): 435-456. [37] LUO Y C, FENG L, LIU Y Z, et al. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes [J]. Separation and Purification Technology, 2020, 238: 116405. doi: 10.1016/j.seppur.2019.116405 [38] 李晓东, 曹云者, 丁洁, 等. 长期不同水分调控对污染场地土壤溶解性有机质含量及其结构特征的影响 [J]. 环境科学学报, 2021, 41(8): 3366-3373. LI X D, CAO Y Z, DING J, et al. Effects of long-term different water incubation on the content and structure characteristics of soil dissolved organic matter on contaminated sites [J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3366-3373(in Chinese).
[39] TIWARI B, SELLAMUTHU B, OUARDA Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach [J]. Bioresource Technology, 2017, 224: 1-12. doi: 10.1016/j.biortech.2016.11.042 [40] ZHENG L C, SONG Z F, MENG P P, et al. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China [J]. Environmental Science and Pollution Research International, 2016, 23(8): 7462-7469. doi: 10.1007/s11356-015-5999-9 [41] BU X L, WANG L M, MA W B, et al. Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains [J]. Geoderma, 2010, 159(1/2): 139-146. [42] ZHU W Q, YAO W, DU W H. Heavy metal variation and characterization change of dissolved organic matter (DOM) obtained from composting or vermicomposting pig manure amended with maize straw [J]. Environmental Science and Pollution Research International, 2016, 23(12): 12128-12139. doi: 10.1007/s11356-016-6364-3 [43] 贺润升, 徐荣华, 韦朝海. 焦化废水生物出水溶解性有机物特性光谱表征 [J]. 环境化学, 2015, 34(1): 129-136. doi: 10.7524/j.issn.0254-6108.2015.01.2014042401 HE R S, XU R H, WEI C H. Spectral characterization of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Environmental Chemistry, 2015, 34(1): 129-136(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014042401
[44] RODRÍGUEZ F J, SCHLENGER P, GARCÍA-VALVERDE M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and 1H NMR techniques [J]. Science of the Total Environment, 2016, 541: 623-637. doi: 10.1016/j.scitotenv.2015.09.127 [45] JIA W, ZHAO X H, ZHAO Y Y, et al. Variation in spectral characteristics of dissolved organic matter derived from rape straw of plants grown in Se-amended soil [J]. Journal of Integrative Agriculture, 2020, 19(7): 1876-1884. doi: 10.1016/S2095-3119(19)62867-4 [46] 陈滢伊, 司友涛, 鲍勇, 等. 隔离降雨对亚热带米槠天然林土壤可溶性有机质数量及光谱学特征的影响 [J]. 应用生态学报, 2019, 30(9): 2964-2972. CHEN Y Y, SI Y T, BAO Y, et al. Effects of rainfall reduction on the quantity and spectroscopic characteristics of soil dissolved organic matter in a subtropical natural Castanopsis carlesii forest [J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2964-2972(in Chinese).
[47] 钱锋, 吴婕赟, 于会彬, 等. 多元数理统计法研究太子河本溪城市段水体DOM紫外光谱特征 [J]. 环境科学, 2016, 37(10): 3806-3812. QIAN F, WU J Y, YU H B, et al. UV-visible spectra properties of DOM from taizi river in Benxi City section by multivariable analysis [J]. Environmental Science, 2016, 37(10): 3806-3812(in Chinese).
[48] 李建华, 张亚, 吴欣安, 等. 腐殖质及其模型化合物的H2O2光化学生成研究 [J]. 中国环境科学, 2020, 40(12): 5337-5342. doi: 10.3969/j.issn.1000-6923.2020.12.028 LI J H, ZHANG Y, WU X N, et al. Hydrogen peroxide photoproduction by humic substances and their model compounds [J]. China Environmental Science, 2020, 40(12): 5337-5342(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.12.028
[49] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry, 2003, 82(3/4): 239-254. [50] KORAK J A, ROSARIO-ORTIZ F L, SCOTT SUMMERS R. Evaluation of optical surrogates for the characterization of DOM removal by coagulation [J]. Environmental Science:Water Research & Technology, 2015, 1(4): 493-506. [51] ZHANG L, SUN Q X, PENG Y Z, et al. Components and structural characteristics of dissolved organic matter in the overlying water of the Beiyun River [J]. Energy, 2021, 221: 119921. doi: 10.1016/j.energy.2021.119921 [52] OSBURN C L, BOYD T J, MONTGOMERY M T, et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters [J]. Frontiers in Marine Science, 2016, 2: 127. [53] SHARMA P, LAOR Y, RAVIV M, et al. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil [J]. Geoderma, 2017, 286: 73-82. doi: 10.1016/j.geoderma.2016.10.014 [54] CHEN M L, JUNG J, LEE Y K, et al. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean [J]. Science of the Total Environment, 2018, 639: 624-632. doi: 10.1016/j.scitotenv.2018.05.205 [55] 王佳琴, 李卫华, 申慧彦, 等. 污水厂进出水中DOM的三维荧光和FTIR光谱解析 [J]. 环境科学与技术, 2018, 41(1): 71-76. doi: 10.19672/j.cnki.1003-6504.2018.01.013 WANG J Q, LI W H, SHEN H Y, et al. Analysis of dissolved organic matter of the sewage influent and effluents from wastewater treatment plant using EEM fluorescence and FTIR spectroscopy [J]. Environmental Science & Technology, 2018, 41(1): 71-76(in Chinese). doi: 10.19672/j.cnki.1003-6504.2018.01.013
[56] WANG Z C, GAO M C, XIN Y J, et al. Effect of C/N ratio on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor treating saline wastewater [J]. Environmental Technology, 2014, 35(22): 2821-2828. doi: 10.1080/09593330.2014.924563 [57] 曾晓岚, 韩乐, 丁文川, 等. RO处理早期垃圾渗滤液中DOM的荧光光谱分析 [J]. 光谱学与光谱分析, 2011, 31(10): 2767-2770. doi: 10.3964/j.issn.1000-0593(2011)10-2767-04 ZENG X L, HAN L, DING W C, et al. Fluorescence of early stage leachates DOM using RO membrane as tertiary treatment [J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2767-2770(in Chinese). doi: 10.3964/j.issn.1000-0593(2011)10-2767-04
[58] LOU Y Y, YE Z L, CHEN S H, et al. Influences of dissolved organic matters on tetracyclines transport in the process of struvite recovery from swine wastewater [J]. Water Research, 2018, 134: 311-326. doi: 10.1016/j.watres.2018.02.010 [59] 张欢, 崔康平, 张强, 等. 派河水体中DOM的光谱分析及其来源解析 [J]. 环境科学研究, 2019, 32(2): 227-234. doi: 10.13198/j.issn.1001-6929.2018.08.04 ZHANG H, CUI K P, ZHANG Q, et al. Spectral analysis and source analysis of dissolved organic matter in Pai River [J]. Research of Environmental Sciences, 2019, 32(2): 227-234(in Chinese). doi: 10.13198/j.issn.1001-6929.2018.08.04
[60] 聂明华, 刘慧慧, 熊小英, 等. 南昌市湖泊水体中不同粒径胶体的三维荧光光谱特征研究 [J]. 环境科学学报, 2018, 38(5): 1929-1938. NIE M H, LIU H H, XIONG X Y, et al. Fluorescence characterization of fractionated colloids in the lakes of Nanchang City [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1929-1938(in Chinese).
[61] WICKLAND K P, NEFF J C, AIKEN G R. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability [J]. Ecosystems, 2007, 10(8): 1323-1340. doi: 10.1007/s10021-007-9101-4