-
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类具有代表性的持久性有机污染物(persistent organic pollutants,POPs)[1],主要由化石燃料或生物质的不完全燃烧产生;其来源分为自然源(森林火灾和火山喷发)和人为源(垃圾焚烧、道路扬尘、石油精炼、交通运输等),其中人为源排放是导致PAHs含量剧增的主要原因[2]. 相较于其它有机污染物,PAHs具有种类多、浓度高、分布广、毒性作用显著等特点. 由于具有致癌、致畸、致突变的“三致”毒性[3],USEPA在1979年规定16种PAHs为优先控制污染物[4].
多环芳烃及其衍生物对人体的暴露途径主要包括吸入、摄入和皮肤接触. PAHs污染物作为外源性化学物质在进入人体后,首先被血液吸收,然后通过血液系统进行分布,将PAHs运输到靶器官[5]. 研究证明,多环芳烃可诱发多种疾病,如白内障、肾和肝损伤以及黄疸、肺癌、皮肤癌、膀胱癌等[6]. 近年来,PAHs衍生物也被发现具有致毒致癌效应[7],如含氧多环芳烃(oxygenated-polycyclic aromatic hydrocarbons,OPAHs)引发人体过敏性疾病和细胞凋亡[7]. 目前为止,关于人体PAHs、OPAHs的暴露水平的研究大多集中在外暴露中,依据环境中检测到的污染物浓度水平,运用模型公式和评估参数计算个体的污染物摄入量. 由于这些数据存在时间和空间上的差距,在人体暴露评估中可能存在局限性,不能反映出真实的暴露水平. 相比之下,内暴露通过检测人体体液或组织液的污染物浓度,其暴露水平更具有准确性、真实性. 通过研究人体内多环芳烃类污染物的暴露特征,有助于评估这些物质对人体的身体负担和潜在的毒性作用.
本研究选择天津市45名青年男性为研究对象,进行血浆样本的采集,对血浆中的PAHs、OPAHs的浓度水平及化学组成进行分析,并结合特征比值法和主成分分析方法解析目标物的来源,运用苯并[a]芘毒性当量(BaPeq)和致癌风险模型评估健康风险.
人体血浆中多环芳烃及含氧多环芳烃的暴露特征及健康风险评估
Exposure characteristics and health risk assessment of polycyclic aromatic hydrocarbons and oxygenated derivatives in human plasma
-
摘要: 为探究人体多环芳烃(PAHs)及含氧多环芳烃(OPAHs)的内暴露水平、来源及健康效应,本研究采集了天津市45名青年男性的血浆样本,使用气相色谱-质谱法检测多环芳烃及含氧多环芳烃的暴露浓度,利用特征比值法和主成分分析法对其来源及贡献率进行解析,并利用苯并[a]芘(BaP)毒性当量浓度和致癌风险模型对致癌健康风险进行评估. 结果共检测出7种PAHs和6种OPAHs,检出率分别为17.8%—80.0%和28.9%—66.7%,ΣPAHs和∑OPAHs平均浓度为24.8 ng·mL−1和31.9 ng·mL−1;其中,二苯并(a, h)蒽(DBahA)和10H-9-蒽酮(ATO)的浓度水平最高(14.2 ng·mL−1、27.1 ng·mL−1),组成特征以低-中分子量物质为主. 使用特征比值法和主成分分析法进行污染来源分析,结果表明,石油源和化石燃料的燃烧是人体血浆中PAHs的重要来源. 通过致癌风险分析得出风险值(CR)介于10-4与10−6之间,表明血浆中的多环芳烃类物质存在潜在的致癌风险.Abstract: To investigate the internal exposure level, sources, and health effects of polycyclic aromatic hydrocarbons (PAHs) and oxygenated-polycyclic aromatic hydrocarbons (OPAHs) in human, the plasma samples of 45 young men were collected in Tianjin. The concentrations of PAHs and OPAHs in human plasma were measured using gas chromatograph-mass spectrometer instrument (GC-MS). The sources of the PAHs were analyzed by using diagnostics ratios and the principal component analysis (PCA), and the health risk of PAHs was assessed by BaP equivalent concentrations (BaPeq) and cancer risk (CR). Seven PAHs and six OPAHs were detected in the plasma samples. The detection frequencies of PAHs and OPAHs were in the range of 17.8%—80.0% and 28.9%—66.7%, respectively. The average concentration of ΣPAHs and ∑OPAHs were 24.8 ng·mL−1 and 31.9 ng·mL−1, DBahA, ATO were predominant species(14.2 ng·mL−1, 27.1 ng·mL−1, respectively), and the ring distribution of the PAHs was dominated by low–medium molecular weight components. The results of the diagnostics ratios and PCA suggested that PAHs originated mostly from petroleum source and petroleum combustion. Based on cancer risk analysis, CR values was between 10-4 and 10−6, indicating the potential carcinogenic risk of PAHs and their derivatives in plasma.
-
表 1 目标组分的检测离子
Table 1. The monitoring ions of target components
目标组分
Target component定量离子
Quantifier ion (m/z)定性离子
Qualifier ion (m/z)芴 Fluorene(Flo) 166 165.00—164.00 菲 Phenanthrene(Phe) 178 176.00—152.00 蒽 Anthracene(Ant) 178 176.00—179.00 荧蒽 Fluoranthene(Flu) 202 200.00—203.00 芘 Pyrene(Pyr) 202 200.00—201.00 二苯并(a,h)蒽 Dibenz[a,h]anthracene(DBahA) 278 276.00—279.00 苯并(g,h,i)芘 Benzo[ghi]perylene(BghiP) 276 274.00—138.00 氧芴 Dibenzofuran(Dibf) 168 139.00—169.00 10H-9-蒽酮 10H-9-Anthracenone(ATQ) 208 152.00—180.00 菲-9-醛 Phenanthrene-9-carboxaldehyde(Phe-9-Ald) 178 206.00—176.00 苯并蒽酮 7H-Benz[de]anthracen-7-one(BZO) 230 202.00—200.00 5,12-四并苯醌 5,12-Naphthacenedione(NCQ) 258 202.00—230.00 苯并[a]蒽-7,12-二酮 Benz(a)anthracene-7,12-dione(7,12-BaAO) 258 202.00—230.00 菲-D10 Phenanthrene-D10(Phe-D10) 188 184.00—160.00 䓛-D12 Chrysene-D12(Chr-D12) 240 236.00—241.00 表 2 PAH和OPAHs在血浆中的分布情况
Table 2. Concentrations of PAH and OPAHs in plasma
分类
Species物质名称
Compound检出率/%
Detection rate平均浓度/(ng·mL−1)
Average concentration范围/(ng·mL−1)
Range标准偏差/(ng·mL−1)
Standard deviationPAHs Phe 80.0 10.8 N.d.—51.7 10.4 DBahA 66.7 14.2 N.d.—36.1 4.8 BghiP 17.8 1.4 N.d.—3.4 1.2 Flo 33.3 5.4 N.d.—15.6 3.6 Ant 26.7 2.3 N.d.—4.4 1.0 Flu 31.1 4.4 N.d.—14.1 3.4 Pyr 33.3 8.1 N.d.—25.2 6.0 ∑PAHs 100 24.8 10.1—111.2 17.4 OPAHs Dibf 28.9 8.9 N.d.—21.7 6.6 ATO 44.4 27.1 N.d.—56.0 7.5 Phe-9-Ald 66.7 6.7 N.d.—7.0 0.2 BZO 66.7 4.3 N.d.—5.3 0.5 NCQ 66.7 6.3 N.d.—9.2 1.4 7,12-BaAO 66.7 8.7 N.d.—13.5 1.7 ∑OPAHs 95.6 31.9 N.d.—85.5 21.6 表 3 各类成因对应污染源中PAHs的特征比值
Table 3. Various causes correspond to the diagnostics ratios of PAHs in pollution sources
特征比值
Diagnostics ratios石油类来源
Petroleum source化石燃料的不完全燃烧类来源
Incomplete combustion of fossil fuels本研究
This study荧蒽/芘 Flu/Pyr 0—1 >1 0.55 菲/蒽 Phe/Ant >10 0—10 5.8 荧蒽/(荧蒽+芘) Flu/(Flu+Pyr) 0—0.4 0.4—0.5a,>0.5b 0.33 蒽/(蒽+菲) Ant/ (Phe+Ant) <0.1 >0.1 0.15 注:a. 主要在石油类产品的不完全燃烧过程中形成Mainly formed in the incomplete combustion process of petroleum products;b. 主要在木材、煤炭和草类的不完全燃烧过程中形成Mainly formed in the incomplete combustion process of wood, coal and grass 表 4 主成分分析因子载荷矩阵
Table 4. Factor loading matrix of principal component analysis
变量
Variables主因子1
Factor 1主因子2
Factor 2Flo −0.929 0.301 Phe −0.881 0.390 Ant −0.897 0.265 Flu −0.862 0.329 Pyr −0.899 0.317 DBahA 0.845 0.275 BghiP 0.262 0.379 Dibf −0.790 0.154 ATO 0.601 0.443 Phe-9-Ald 0.939 0.241 BZO 0.923 0.254 NCQ 0.894 0.258 7,12-BaAO 0.908 0.290 解释方差变量% 70.2 9.5 累计方差贡献率% 70.2 79.7 表 5 Pyr的每日总摄入量(TEDI,μg·kg−1·d−1 bw)
Table 5. Total estimated daily intake of Pyr in plasma (TEDI, μg·kg−1·d−1 bw)
目标物
Compounds百分位数
Percentiles平均值
Average范围
Range25% 50% 75% Pyr 0.487 0.777 1.156 0.935 0.296—2.928 -
[1] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [2] BIENIEK G. Aromatic and polycyclic hydrocarbons in air and their urinary metabolites in coke plant workers [J]. American Journal of Industrial Medicine, 1998, 34(5): 445-454. doi: 10.1002/(SICI)1097-0274(199811)34:5<445::AID-AJIM5>3.0.CO;2-P [3] RENGARAJAN T, RAJENDRAN P, NANDAKUMAR N, et al. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer [J]. Asian Pacific Journal of Tropical Biomedicine, 2015, 5(3): 182-189. doi: 10.1016/S2221-1691(15)30003-4 [4] GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Journal of Hazardous Materials, 2009, 172(2/3): 532-549. [5] RADMACHER P, MYERS S, LOONEY S, et al. A pilot study of polycyclic aromatic hydrocarbons (PAH) in maternal and cord blood plasma [J]. Journal of Investigative Medicine, 2008, 56(1): 476-477. [6] PICKERING R W. A toxicological review of polycyclic aromatic hydrocarbons [J]. Journal of Toxicology:Cutaneous and Ocular Toxicology, 1999, 18(2): 101-135. doi: 10.3109/15569529909037562 [7] MUSA BANDOWE B A, SOBOCKA J, WILCKE W. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution [J]. Environmental Pollution, 2011, 159(2): 539-549. doi: 10.1016/j.envpol.2010.10.011 [8] YANG Z Y, GUO C S, LI Q, et al. Human health risks estimations from polycyclic aromatic hydrocarbons in serum and their hydroxylated metabolites in paired urine samples [J]. Environmental Pollution, 2021, 290: 117975. doi: 10.1016/j.envpol.2021.117975 [9] KOUKOULAKIS K G, KANELLOPOULOS P G, CHRYSOCHOU E, et al. Leukemia and PAHs levels in human blood serum: Preliminary results from an adult cohort in Greece [J]. Atmospheric Pollution Research, 2020, 11(9): 1552-1565. doi: 10.1016/j.apr.2020.06.018 [10] SINGH V K, PATEL D K, RAM S, et al. Blood levels of polycyclic aromatic hydrocarbons in children of Lucknow, India [J]. Archives of Environmental Contamination and Toxicology, 2008, 54(2): 348-354. doi: 10.1007/s00244-007-9015-3 [11] YIN S S, TANG M L, CHEN F F, et al. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum [J]. Environmental Pollution, 2017, 220: 1429-1437. doi: 10.1016/j.envpol.2016.10.090 [12] BANDOWE B A M, SHUKUROV N, LEIMER S, et al. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: Spatial distribution, relationship with trace metals and risk assessment [J]. Environmental Geochemistry and Health, 2021, 43(11): 4847-4861. doi: 10.1007/s10653-021-00974-3 [13] WANG W T, JARIYASOPIT N, SCHRLAU J, et al. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic games [J]. Environmental Science & Technology, 2011, 45(16): 6887-6895. [14] FORSBERG N D, WILSON G R, ANDERSON K A. Determination of parent and substituted polycyclic aromatic hydrocarbons in high-fat salmon using a modified QuEChERS extraction, dispersive SPE and GC-MS [J]. Journal of Agricultural and Food Chemistry, 2011, 59(15): 8108-8116. doi: 10.1021/jf201745a [15] GEIER M C, CHLEBOWSKI A C, TRUONG L, et al. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons [J]. Archives of Toxicology, 2018, 92(2): 571-586. doi: 10.1007/s00204-017-2068-9 [16] ØVREVIK J. Oxidative potential versus biological effects: A review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter [J]. International Journal of Molecular Sciences, 2019, 20(19): 4772. doi: 10.3390/ijms20194772 [17] WHITEHEAD T, METAYER C, GUNIER R B, et al. Determinants of polycyclic aromatic hydrocarbon levels in house dust"> [J]. Journal of Exposure Science & Environmental Epidemiology, 2011, 21(2): 123-132. [18] FANG G C, CHANG K F, LU C, et al. Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung [J]. Chemosphere, 2004, 55(6): 787-796. doi: 10.1016/j.chemosphere.2003.12.012 [19] 陈锋, 孟凡生, 王业耀, 等. 基于主成分分析-多元线性回归的松花江水体中多环芳烃源解析 [J]. 中国环境监测, 2016, 32(4): 49-53. doi: 10.19316/j.issn.1002-6002.2016.04.09 CHEN F, MENG F S, WANG Y Y, et al. The research of polycyclic aromatic hydrocarbons in the river based on the principal component-multivariate linear regression analysis [J]. Environmental Monitoring in China, 2016, 32(4): 49-53(in Chinese). doi: 10.19316/j.issn.1002-6002.2016.04.09
[20] 何大双, 黄海平, 侯读杰, 等. 加拿大阿萨巴斯卡地区Mildred泥炭柱多环芳烃分布特征及来源解析 [J]. 湿地科学, 2019, 17(1): 25-35. doi: 10.13248/j.cnki.wetlandsci.2019.01.004 HE D S, HUANG H P, HOU D J, et al. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons in mildred peat core from the athabasca region, Canada [J]. Wetland Science, 2019, 17(1): 25-35(in Chinese). doi: 10.13248/j.cnki.wetlandsci.2019.01.004
[21] 党天剑, 陆光华, 薛晨旺, 等. 西藏色季拉山公路沿线PAHs分布、来源及风险 [J]. 中国环境科学, 2019, 39(3): 1109-1116. doi: 10.3969/j.issn.1000-6923.2019.03.026 DANG T J, LU G H, XUE C W, et al. Distribution, sources and risk of polycyclic aromatic hydrocarbons along the highway in Shergyla Mountain in Tibet [J]. China Environmental Science, 2019, 39(3): 1109-1116(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.03.026
[22] HADDAD S, WITHEY J, LAPARÉ S, et al. Physiologically-based pharmacokinetic modeling of Pyrene in the rat [J]. Environmental Toxicology and Pharmacology, 1998, 5(4): 245-255. doi: 10.1016/S1382-6689(98)00008-8 [23] VIAU C, DIAKITÉ A, RUZGYTÉ A, et al. Is 1-hydroxypyrene a reliable bioindicator of measured dietary polycyclic aromatic hydrocarbon under normal conditions? [J]. Journal of Chromatography B, 2002, 778(1/2): 165-177. [24] LEI B L, ZHANG K Q, AN J, et al. Human health risk assessment of multiple contaminants due to consumption of animal-based foods available in the markets of Shanghai, China [J]. Environmental Science and Pollution Research International, 2015, 22(6): 4434-4446. doi: 10.1007/s11356-014-3683-0 [25] WANG W, HUANG M J, KANG Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment [J]. Science of the Total Environment, 2011, 409(21): 4519-4527. doi: 10.1016/j.scitotenv.2011.07.030