-
自工业革命以来,化石燃料燃烧、化肥施用以及畜牧业发展等使得向大气中排放的活性氮激增,而大约60%的活性氮以干湿沉降的形式返回陆地和水生生态系统,导致全球氮沉降量增加了2.5倍[1]. 过量的氮沉降可引发土壤营养元素淋失[2]、水体富营养化[3]、生物多样性丧失[4]和氮饱和[5]等负面效应,进而影响了陆地和水生生态系统的健康和服务功能[6].
氨(NH3) 是大气中含量最丰富的碱性气体,可与酸性气体(HNO3和H2SO4)快速反应形成铵盐气溶胶,对空气质量和人体健康产生危害[7]. 存在于大气中的NH3和铵盐以干湿沉降的形式重新进入陆地或水生生态系统,是大气氮沉降的重要活性氮组分[8]. 已有研究表明,美国的氮沉降已经由NOy沉降转变为以NHx沉降为主,而NHx在中国的氮沉降中也起着关键作用,如作为全球NH3浓度较高的热点区之一的华北平原,NHx沉降占总氮沉降量的71%—88%[9-10]. 尽管欧盟已针对畜禽养殖和化肥施用实施NH3减排,但全球大部分地区仍未对NH3排放进行有效管控,在2002—2013年间,卫星观测到美国、欧盟和中国的农业区每年大气NH3的浓度分别以2.61%、1.83%和2.27%的速率显著上升[11-12]. 因此,确定和量化NH3的主要来源,从而制定有针对性的减排措施,对于氮污染防控具有重要的科学意义和迫切的现实需求.
NH3的来源复杂多变,已有研究认为,氮肥挥发、牲畜排放、化石燃料燃烧和交通运输排放是大气中NH3的主要来源[13-14]. 卫星和地面观测资料显示,我国NH3的高值区华北平原,除了农业区外,城市大气NH3浓度也相对较高,因而大气中的NH3尤其是城市大气环境中的NH3主要来源是农牧业等农业源还是工业和机动车排放等非农业源存在争议[15-16]. 稳定氮同位素技术为解析痕量气体和颗粒物来源提供了有效工具,不同NH3源排放的NH3具有不同的氮同位素特征[17]. Feng等基于氮稳定同位素方法比较了华北平原典型农业县农村和城市中冬季大气NH3的主要来源,发现农村地区大气NH3的排放源以施肥和畜牧业等农业源为主(56%±3%),而城市地区则主要来自化石燃料、废弃物和生物质燃烧等非农业源(56%±2%)[18]. Pan等通过对大气气溶胶中氨氮的δ15N值研究发现,北京冬季雾霾污染期间气溶胶中NH3有90%来自于化石燃料燃烧排放[16]. Wu等利用MixSIAR同位素混合模型解析了夏季北京城区3个不同高度边界层气溶胶中NH4+的来源,认为农业源对城市气溶胶中NH4+的贡献随着距离地面高度的升高而增加,距离地面8 m处农业源的贡献率为47%,而高海拔区域(距离地面120 m和260 m)农业源的贡献率达到51%—56%[19]. 由于NH3形成气溶胶态NH4+过程中,NH3↔ NH4+之间的平衡反应导致15N在气溶胶中的NH4+中优先富集,而14N在NH3中优先富集,从而使得气溶胶中NH4+的δ15N-NH4+值普遍高于前体气NH3的δ15N-NH3值[20-21]. 因此,为确保NH3溯源准确,在分析过程中应充分考虑NH3从源到汇的氮同位素分馏[22]. 目前,关于大气氮沉降化合物来源的研究主要集中在森林[6]、草地[4]、农田[7, 20]和城市[21, 23],关于水库氮沉降化合物来源的研究相对较少,少量基于稳定同位素溯源的研究主要集中在湿沉降[24-25],针对水源地干沉降中氨氮来源的研究鲜见报道.
丹江口水库是我国重大跨流域调水工程南水北调中线工程的水源地,取水口位于淅川县的陶岔. 根据近3个年度《河南省环境质量年报》提供的数据,丹江口水库取水口水质总体良好,水质符合Ⅱ类标准,但是总氮参与评价则其水质符合Ⅳ类标准,潜在威胁不容忽视[26]. 已有研究表明,大气氮沉降是丹江口水库外源氮输入的重要途径之一,其中氨氮在大气途径的外源氮输入中占主导地位[27]. 本文以南水北调中线工程水源地淅川库区为研究对象,分析了库区大气干沉降中氨氮浓度及同位素的季节和空间变化特征,在此基础上,运用稳定同位素模型(SIAR)解析干沉降中氨氮的主要污染来源,为探索库区水体氮污染控制途径提供理论基础和数据支撑.
丹江口水库淅川库区大气氨氮干沉降特征及源解析
Analysis of characteristics and sources of dry atmospheric ammonia nitrogen deposition in the Xichuan area of Danjiangkou reservoir
-
摘要: 为了解丹江口水库淅川库区大气干沉降中氨氮的沉降特征和主要来源,于2019年9月—2020年8月对库区周边设置的5个大气监测点进行干沉降样品采集,测定并分析了样品中氨氮浓度及其氮同位素,基于贝叶斯混合模型量化了氨氮的主要来源. 结果表明,库区大气干沉降中氨氮月均浓度为0.96 mg·L-1,全年大气干沉降中氨氮沉降通量为11.77 kg·hm-2,δ15N-NH4+值月均值为-9.20‰. 干沉降中氨氮沉降通量、浓度和δ15N-NH4+值的季节差异显著,均表现出夏季最高、春季和秋季次之、冬季最低的变化规律,主要与夏季高温和氮肥施用有关. 运用稳定同位素模型(SIAR)分析发现,库区干沉降中氨氮的主要污染源为农业源,贡献率为60%,其中化肥释放源和畜禽排放源贡献率分别为36%和24%. 夏季农业源贡献率最高,其中64%来源于化肥释放,进一步证实了夏季高温以及氮肥的大量施用是影响库区干沉降中氨氮的主要因素. 研究结果为探索库区水体氮污染控制途径提供理论基础和数据支撑.Abstract: In order to know the characteristics and sources of dry atmospheric ammonia nitrogen deposition in the Xichuan area of Danjiangkou reservoir, the dry deposition samples were collected at the five atmospheric deposition monitoring sites around the reservoir from September 2019 to August 2020.The concentrations and δ15N values of ammonia nitrogen were determined, and the fractional contributions of potential ammonia nitrogen sources were quantitatively calculated using a Bayesian mixing model. The results showed that the monthly averaged concentration of ammonia nitrogen was 0.96 mg·L-1, the annual flux of ammonia nitrogen dry deposition was 11.77 kg·hm-2, and the monthly averaged value of δ15N-NH4+ was -9.20‰ in the dry deposition samples. Significant seasonal differences in the fluxes of ammonia nitrogen dry deposition, concentrations and δ15N values of ammonia nitrogen were found, showing the following order: summer > spring > autumn > winter, which was mainly due to the application of chemical nitrogen fertilizers and high temperature in summer. The fractional contributions of chemical nitrogen fertilizer and livestock wastes were 36% and 24%, respectively, indicating that agricultural release contributed most. In summer, the fractional contribution of agricultural release was the largest, accounting for 64%, which further confirmed that ammonia nitrogen in dry atmospheric deposition primarily was controlled by high temperatures in summer and massive application of chemical nitrogen fertilizers. The results of this study may provide the theoretical and data support in controlling nitrogen pollution into the reservoir.
-
Key words:
- ammonia nitrogen /
- dry deposition /
- nitrogen isotopes /
- source analysis /
- Danjiangkou reservoir.
-
表 1 采样点情况
Table 1. Sampling sites situation
采样点
Sampling site经纬度坐标
Latitude and longitude土地利用类型
Type of land use主要氨氮污染源
Primary pollution sources of ammonium nitrogen陶岔(TC) 32°40'51.86"N,
111°42'43.88" E建设用地、耕地、交通用地 采样点位于渠首取水口,其主要污染源为道路交通污染,存在氮肥污染源 宋岗(SG) 32°45'59.28"N,
111°38'07.80" E湿地、交通用地、耕地、建设用地 采样点位于码头,其主要污染源为交通污染 土门(TM) 32°49'13.92"N,
111°36'24.28" E耕地、湿地、林地 采样点紧邻耕地,其主要污染源为氮肥污染,存在畜禽粪便污染源 黑鸡嘴(HJZ) 32°49'37.80"N,
111°32'18.01" E耕地、林地、湿地 采样点位于景区,其主要污染源为交通污染,存在氮肥污染源 党子口(DZK) 32°42'28.78"N,
111°30'28.75" E耕地、湿地 采样点紧邻园地和耕地,其主要污染源为氮肥污染 表 2 国内部分水库NH4+-N干沉降通量对比
Table 2. Comparison of dry atmospheric ammonia nitrogen deposition fluxes of some reservoirs
表 3 单因素方差分析
Table 3. One-way ANOVA analysis
因素
FactorF P NH4+-N浓度
Ammonia nitrogen
concentrationNH4+-N干沉降通量
Dry atmospheric ammonia
nitrogen deposition fluxesδ15N-NH4+ NH4+-N浓度
Ammonia nitrogen
concentrationNH4+-N干沉降通量
Dry atmospheric ammonia
nitrogen deposition fluxesδ15N-NH4+ 空间 3.671 0.900 1.334 0.012 0.473 0.274 时间 5.152 2.949 4.546 0.004 0.044 0.008 -
[1] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889-892. doi: 10.1126/science.1136674 [2] DUAN L, YU Q, ZHANG Q, et al. Acid deposition in Asia: Emissions, deposition, and ecosystem effects [J]. Atmospheric Environment, 2016, 146: 55-69. doi: 10.1016/j.atmosenv.2016.07.018 [3] BOUWMAN A F, van VUUREN D P, DERWENT R G, et al. A global analysis of acidification and eutrophication of terrestrial ecosystems [J]. Water, Air and Soil Pollution, 2002, 141(1/2/3/4): 349-382. [4] NIU D C, YUAN X B, CEASE A J, et al. The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level [J]. Science of the Total Environment, 2018, 618: 1529-1538. doi: 10.1016/j.scitotenv.2017.09.318 [5] NIU S L, CLASSEN A T, DUKES J S, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle [J]. Ecology Letters, 2016, 19(6): 697-709. doi: 10.1111/ele.12591 [6] LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China: An overview [J]. Environmental Pollution, 2011, 159(10): 2251-2264. doi: 10.1016/j.envpol.2010.08.002 [7] SHEN J L, LIU X J, ZHANG Y, et al. Atmospheric ammonia and particulate ammonium from agricultural sources in the North China Plain [J]. Atmospheric Environment, 2011, 45(28): 5033-5041. doi: 10.1016/j.atmosenv.2011.02.031 [8] 许稳, 金鑫, 罗少辉, 等. 西宁近郊大气氮干湿沉降研究 [J]. 环境科学, 2017, 38(4): 1279-1288. doi: 10.13227/j.hjkx.201609237 XU W, JIN X, LUO S H, et al. Dry and bulk nitrogen deposition in suburbs of Xining City [J]. Environmental Science, 2017, 38(4): 1279-1288(in Chinese). doi: 10.13227/j.hjkx.201609237
[9] XU W, LUO X S, PAN Y P, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China [J]. Atmospheric Chemistry and Physics, 2015, 15(21): 12345-12360. doi: 10.5194/acp-15-12345-2015 [10] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade [J]. Nature Geoscience, 2019, 12(6): 424-429. doi: 10.1038/s41561-019-0352-4 [11] LIU M X, HUANG X, SONG Y, et al. Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain [J]. Atmospheric Chemistry and Physics, 2018, 18(24): 17933-17943. doi: 10.5194/acp-18-17933-2018 [12] WARNER J X, DICKERSON R R, WEI Z, et al. Increased atmospheric ammonia over the world's major agricultural areas detected from space [J]. Geophysical Research Letters, 2017, 44(6): 2875-2884. doi: 10.1002/2016GL072305 [13] WEN Z, XU W, LI Q, et al. Changes of nitrogen deposition in China from 1980 to 2018 [J]. Environment International, 2020, 144: 106022. doi: 10.1016/j.envint.2020.106022 [14] SONG W, LIU X Y, HU C C, et al. Important contributions of non-fossil fuel nitrogen oxides emissions [J]. Nature Communications, 2021, 12: 243. doi: 10.1038/s41467-020-20356-0 [15] PAN Y P, GU M N, HE Y X, et al. Revisiting the concentration observations and source apportionment of atmospheric ammonia [J]. Advances in Atmospheric Sciences, 2020, 37(9): 933-938. doi: 10.1007/s00376-020-2111-2 [16] PAN Y P, TIAN S L, LIU D W, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium [J]. Environmental Science & Technology, 2016, 50(15): 8049-8056. [17] BHATTARAI N, WANG S X, PAN Y P, et al. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment [J]. Frontiers of Environmental Science & Engineering, 2021, 15(6): 1-11. [18] FENG S J, XU W, CHENG M M, et al. Overlooked nonagricultural and wintertime agricultural NH3 emissions in Quzhou County, North China plain: Evidence from 15N-stable isotopes [J]. Environmental Science & Technology Letters, 2022, 9(2): 127-133. [19] WU L B, REN H, WANG P, et al. Aerosol ammonium in the urban boundary layer in Beijing: Insights from nitrogen isotope ratios and simulations in summer 2015 [J]. Environmental Science & Technology Letters, 2019, 6(7): 389-395. [20] HUANG S N, ELLIOTT E M, FELIX J D, et al. Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning [J]. Environmental Pollution, 2019, 247: 541-549. doi: 10.1016/j.envpol.2019.01.023 [21] PAN Y P, TIAN S L, LIU D W, et al. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere [J]. Environmental Pollution, 2018, 238: 942-947. doi: 10.1016/j.envpol.2018.03.038 [22] 顾梦娜, 潘月鹏, 何月欣, 等. 稳定同位素模型解析大气氨来源的参数敏感性 [J]. 环境科学, 2020, 41(7): 3095-3101. doi: 10.13227/j.hjkx.201911132 GU M N, PAN Y P, HE Y X, et al. Source apportionment of atmospheric ammonia: Sensitivity test based on stable isotope analysis in R language [J]. Environmental Science, 2020, 41(7): 3095-3101(in Chinese). doi: 10.13227/j.hjkx.201911132
[23] 谭静瑶, 王丽涛, 刘振通, 等. 邯郸市NH3污染特征及其在PM2.5形成中的作用 [J]. 环境化学, 2021, 40(7): 2035-2046. TAN J Y, WANG L T, LIU Z T, et al. NH3 pollution and its role in PM2.5 pollution in Handan, China [J]. Environmental Chemistry, 2021, 40(7): 2035-2046(in Chinese).
[24] WANG H B, SHI G M, TIAN M, et al. Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China [J]. Environmental Pollution, 2018, 233: 520-528. doi: 10.1016/j.envpol.2017.10.085 [25] 郭晓明, 金超, 孟红旗, 等. 丹江口水库淅川库区大气氮湿沉降特征 [J]. 生态学报, 2021, 41(10): 3901-3909. GUO X M, JIN C, MENG H Q, et al. Atmospheric wet deposition characteristics of nitrogen in the Xichuan area of Danjiangkou reservoir [J]. Acta Ecologica Sinica, 2021, 41(10): 3901-3909(in Chinese).
[26] 河南省生态环境厅. 河南省生态环境质量年报[EB/OL]. [2021-12-29]. [27] 罗玲. 丹江口水库淅川库区氮沉降特征研究[D]. 焦作: 河南理工大学, 2019. LUO L. Study on the atmospheric nitrogen deposition in Xichuan area of Danjiangkou reservoir[D]. Jiaozuo: Henan Polytechnic University, 2019(in Chinese).
[28] 陈晓舒. 淅川库区农业氨氮释放及其对氮沉降贡献研究[D]. 焦作: 河南理工大学, 2022. CHEN X S. Study on the release of ammonia nitrogen in agriculture and its contribution to nitrogen deposition in Xichuan reservoir area[D]. Jiaozuo: Henan Polytechnic University, 2022 (in Chinese).
[29] 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration, Determination Methods for Examination of Water and Wastewater. Water and waste water monitoring and analysis method [M]. (4th edition)Beijing: China Environment Science Press, 2002(in Chinese).
[30] LIU D W, FANG Y T, TU Y, et al. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance [J]. Analytical Chemistry, 2014, 86(8): 3787-3792. doi: 10.1021/ac403756u [31] CHANG Y H, ZOU Z, DENG C R, et al. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai [J]. Atmospheric Chemistry and Physics, 2016, 16(5): 3577-3594. doi: 10.5194/acp-16-3577-2016 [32] UREY H C. The thermodynamic properties of isotopic substances [J]. Journal of the Chemical Society, 1947: 1947Apr;562-1947Apr;581. [33] HEATON T H E, SPIRO B, ROBERTSON S M C. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition [J]. Oecologia, 1997, 109(4): 600-607. doi: 10.1007/s004420050122 [34] WILLIAMS J J, LYNCH J A, SAROS J E, et al. Critical loads of atmospheric N deposition for phytoplankton nutrient limitation shifts in western US mountain lakes [J]. Ecosphere, 2017, 8(10): e01955. doi: 10.1002/ecs2.1955 [35] XU W, ZHAO Y H, LIU X J, et al. Atmospheric nitrogen deposition in the Yangtze River Basin: Spatial pattern and source attribution [J]. Environmental Pollution, 2018, 232: 546-555. doi: 10.1016/j.envpol.2017.09.086 [36] 赵宪伟, 李橙, 杨晶, 等. 岗南水库上游流域大气氮干湿沉降研究 [J]. 南水北调与水利科技, 2018, 16(5): 115-121. doi: 10.13476/j.cnki.nsbdqk.2018.0132 ZHAO X W, LI C, YANG J, et al. Dry and wet deposition of nitrogen in the upstream basin of Gangnan Reservoir [J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(5): 115-121(in Chinese). doi: 10.13476/j.cnki.nsbdqk.2018.0132
[37] 陈海涛, 王晓燕, 黄静宇, 等. 密云水库周边小流域大气氮磷沉降特征研究[J]. 环境科学研究, 2021,35(6): 1419-1431. CHEN H T, WANG X Y, HUANG J Y, et al. Dry and wet atmospheric deposition of nitrogen and phosphorus in small catchment around Miyun Reservoir [J]. Research of Environmental Sciences, 2021, 35(6): 1419-1431(in Chinese).
[38] 王焕晓, 庞树江, 王晓燕, 等. 小流域大气氮干湿沉降特征 [J]. 环境科学, 2018, 39(12): 5365-5374. doi: 10.13227/j.hjkx.201801222 WANG H X, PANG S J, WANG X Y, et al. Dry and wet deposition of atmospheric nitrogen in small catchments [J]. Environmental Science, 2018, 39(12): 5365-5374(in Chinese). doi: 10.13227/j.hjkx.201801222
[39] 张六一. 三峡库区大气氮沉降特征、通量及其对水体氮素的贡献[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2019. ZHANG L Y. Atmospheric nitrogen deposition in the Three Gorges reservoir area: Characteristics, fluxes, and contributions to the aquatic environment[D]. Chongqing: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 2019(in Chinese).
[40] 田光明, 蔡祖聪, 曹金留, 等. 镇江丘陵区稻田化肥氮的氨挥发及其影响因素 [J]. 土壤学报, 2001, 38(3): 324-332. doi: 10.3321/j.issn:0564-3929.2001.03.012 TIAN G M, CAI Z C, CAO J L, et al. Ammonia volatilization from paddy field and its affecting factors in Zhenjiang hilly region [J]. Acta Pedologica Sinica, 2001, 38(3): 324-332(in Chinese). doi: 10.3321/j.issn:0564-3929.2001.03.012
[41] WANG S S, NAN J L, SHI C Z, et al. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China [J]. Scientific Reports, 2015, 5: 15842. doi: 10.1038/srep15842 [42] VIATTE C, WANG T Z, van DAMME M, et al. Atmospheric ammonia variability and link with particulate matter formation: A case study over the Paris area [J]. Atmospheric Chemistry and Physics, 2020, 20(1): 577-596. doi: 10.5194/acp-20-577-2020 [43] KUNDU S, KAWAMURA K, LEE M. Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: Implications for atmospheric processing and source changes of aerosols [J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D20): D20305. doi: 10.1029/2009JD013323 [44] PARK Y M, PARK K S, KIM H, et al. Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea: Impact of China's winter heating [J]. Environmental Pollution, 2018, 233: 735-744. doi: 10.1016/j.envpol.2017.10.072 [45] TI C P, GAO B, LUO Y X, et al. Isotopic characterization of NHx-N in deposition and major emission sources [J]. Biogeochemistry, 2018, 138(1): 85-102. doi: 10.1007/s10533-018-0432-3 [46] KAWASHIMA H, KURAHASHI T. Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources [J]. Atmospheric Environment, 2011, 45(35): 6309-6316. doi: 10.1016/j.atmosenv.2011.08.057 [47] CHANG Y H, DENG C R, DORE A J, et al. Human excreta as a stable and important source of atmospheric ammonia in the megacity of Shanghai [J]. Plos One, 2015, 10(12): e0144661. doi: 10.1371/journal.pone.0144661 [48] FELIX J D, ELLIOTT E M. Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures [J]. Atmospheric Environment, 2014, 92: 359-366. doi: 10.1016/j.atmosenv.2014.04.005 [49] 马儒龙, 王章玮, 张晓山. 城市绿化林中大气氨浓度垂直分布观测 [J]. 环境化学, 2021, 40(7): 2028-2034. doi: 10.7524/j.issn.0254-6108.2020032803 MA R L, WANG Z W, ZHANG X S. Observation on the vertical distribution of atmospheric ammonia in urban green vegetation canopy [J]. Environmental Chemistry, 2021, 40(7): 2028-2034(in Chinese). doi: 10.7524/j.issn.0254-6108.2020032803
[50] 尹兴, 张丽娟, 刘学军, 等. 河北平原城市近郊农田大气氮沉降特征 [J]. 中国农业科学, 2017, 50(4): 698-710. doi: 10.3864/j.issn.0578-1752.2017.04.010 YIN X, ZHANG L J, LIU X J, et al. Nitrogen deposition in suburban croplands of Hebei plain [J]. Scientia Agricultura Sinica, 2017, 50(4): 698-710(in Chinese). doi: 10.3864/j.issn.0578-1752.2017.04.010