-
纺织工业生产过程中往往会产生大量的印染废水. 其中偶氮染料毒性大、难降解、易致癌,该废水可生化性弱,常规的生物处理很难去除[1]. 基于硫酸根自由基(SO4·−)高级氧化技术(SR-AOP)在光照下协同处理难降解污染物被认为是一种有前景的方法[2]. 硫酸根自由基(SO4·−)(E0=2.5—3.1 V)比传统Fenton法中羟基自由基(E0=1.8—2.7 V)的氧化还原电位要高,pH适用范围广,能够高效的降解水中污染物[3-4]. 过一硫酸盐(PMS)在水体中较为稳定,通常采用加热、光辐射、过渡金属等方法来活化产生SO4·−. 在这些技术中,光催化具有绿色、低耗能等优点[5]. 随着可见光催化剂的发展,PMS光活化的光源也从紫外光扩展到可见光甚至是太阳光.
钼酸铋(Bi2MoO6)是一种典型的铋系光催化剂,作为一种层状Aurivillius氧化物,Bi2MoO6的[Bi2O2]2+和MoO42−呈层状的交替结构,具有较窄的带隙(2.6—2.9 eV)和可见光催化性能,能够在可见光光照下产生电子-空穴对,各种含氧活性物种来降解污染物. 但是由于其比表面积低、光生电子-空穴对易复合,导致Bi2MoO6的应用受到限制[6-7]. 十六烷基三甲基溴化铵(CTAB)是一种能有效控制铋基催化剂生长的阳离子表面活性剂,且CTAB作为卤素源,溴离子(Br−)可以影响氧空位(OVs)结构[8].
本文通过水热法用CTAB辅助合成Bi2MoO6,并对其晶体形貌、结构等进行分析;研究了光照下Bi2MoO6协同PMS在不同体系、不同条件下对水体中AO7的降解效果;通过自由基消除实验,探索了光照/PMS/Bi2MoO6系统中主要的活性物种.
表面活性剂 (十六烷基三甲基溴化铵) 辅助合成Bi2MoO6光催化剂协同PMS降解AO7
Surfactant ( cetyl trimethyl ammonium bromide ) assisted synthesis of Bi2MoO6 photocatalyst and PMS assisted degradation of AO7
-
摘要: 采用CTAB辅助水热法合成钼酸铋(Bi2MoO6,BMO)微球,并将其用于活化过一硫酸盐(PMS),在可见光下降解废水中的偶氮染料金橙Ⅱ(AO7). 利用X 射线衍射 (XRD),傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM),X射线能谱(XPS),透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-vis)对催化剂进行了表征,并通过降解实验测试其催化性能. 结果表明,合成的催化剂具有良好的吸附、催化降解AO7的性能. 在中性条件下,催化剂投加量0.3 g·L−1,AO7浓度0.1 mmol·L-1,PMS浓度1 mmol·L−1,可以在30 min内完全降解AO7. 研究了催化剂含量、pH、共存阴离子等对AO7降解效果的影响. 通过自由基消除实验,探索了0.10CTAB-BMO/光/PMS体系中存在的活性物种(h+、·O2−、1O2、·OH和SO4·−)和可能的降解途径. 通过5次连续去除实验,该体系仍然可以在60min内完全降解AO7.Abstract: Bismuth molybdate (Bi2MoO6, BMO) microspheres were synthesized by CTAB-assisted hydrothermal method. The degradation of azo dye OrangeⅡ (AO7) by the BMO-activated persulfate (PMS) in wastewater under visible light was studied. The catalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray energy spectrum (XPS), transmission electron microscopy (TEM) and UV-visible diffuse reflection spectroscopy (UV-vis), respectively. The catalytic performance of catalysts was tested by degradation experiments. Results show that the catalyst as prepared show a good adsorption and degradation performance for AO7. Under the neutral condition, AO7 could be completely degraded within 30min as the catalyst dosage was 0.3 g·L−1, AO7 concentration was 0.1 mmol·L−1 and PMS concentration was 1 mmol·L−1, respectively. The effects of catalyst content, pH and coexisting anions on the degradation of AO7 were studied. The active species (h+, ·O2−, 1O2, ·OH和SO4·−) and possible degradation pathways of 0.10CTAB-BMO/photo/PMS system were explored by free radical elimination experiments. The AO7 could be degraded completely by this system in 60 mins after 5 consecutive removal experiments.
-
Key words:
- CTAB /
- bismuth molybdate /
- photocatalytic /
- peroxymonosulfate /
- AO7
-
表 1 各种催化剂的吸附/光催化性能
Table 1. Adsorption / photocatalytic properties of various samples
样品
SampleAO7吸附率/%
AO7 adsorption rateAO7光催化降解率/%
AO7 photocatalytic degradation rate总去除率/%
The total removal ratekapp/min−1 BMO 3.1 7.4 10.5 0.00074 0.05CTAB-BMO 15.3 9.7 25.0 0.00192 0.10CTAB-BMO 38.9 13.6 52.5 0.00497 0.15CTAB-BMO 28.5 8.1 36.6 0.00304 -
[1] NOORIMOTLAGH Z, MIRZAEE S A, MARTINEZ S S, et al. Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: Equilibrium isotherms, kinetics and thermodynamic study [J]. Chemical Engineering Research and Design, 2019, 141: 290-301. doi: 10.1016/j.cherd.2018.11.007 [2] HAN F, KAMBALA V S R, DHARMARAJAN R, et al. Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts [J]. Environmental Technology & Innovation, 2018, 12: 27-42. [3] 毕文龙, 郝茜华, 刘奋武, 等. 硫酸根自由基对活性炭吸附刚果红的影响 [J]. 中国环境科学, 2020, 40(1): 190-197. doi: 10.3969/j.issn.1000-6923.2020.01.021 BI W L, HAO X H, LIU F W, et al. Effect of sulfate radical on adsorption of Congo red by activated carbon [J]. China Environmental Science, 2020, 40(1): 190-197(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.01.021
[4] ZHAO G Q, ZOU J, CHEN X Q, et al. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring [J]. Chemical Engineering Journal, 2021, 421: 127845. doi: 10.1016/j.cej.2020.127845 [5] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B:Environmental, 2012, 125: 331-349. doi: 10.1016/j.apcatb.2012.05.036 [6] ZHENG Y, ZHOU T, ZHAO X, et al. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage [J]. Advanced Materials , 2017, 29(26): 1700396. [7] 张琴, 汪晓凤, 段芳, 等. Bi2MoO6中空微球的制备及其光催化性能 [J]. 无机化学学报, 2015, 31(11): 2152-2158. ZHANG Q, WANG X F, DUAN F, et al. Bi2MoO6 hollow microspheres preparation and photocatalytic properties [J]. Chinese Journal of Inorganic Chemistry, 2015, 31(11): 2152-2158(in Chinese).
[8] WANG S Y, DING X, YANG N, et al. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal [J]. Applied Catalysis B:Environmental, 2020, 265: 118585. doi: 10.1016/j.apcatb.2019.118585 [9] BI J H, CHE J G, WU L, et al. Effects of the solvent on the structure, morphology and photocatalytic properties of Bi2MoO6 in the solvothermal process [J]. Materials Research Bulletin, 2013, 48(6): 2071-2075. doi: 10.1016/j.materresbull.2013.02.033 [10] CHANKHANITTHA T, SOMAUDON V, PHOTIWAT T, et al. Preparation, characterization, and photocatalytic study of solvothermally grown CTAB-capped Bi2WO6 photocatalyst toward photodegradation of Rhodamine B dye [J]. Optical Materials, 2021, 117: 111183. doi: 10.1016/j.optmat.2021.111183 [11] YANG Z X, SHEN M, DAI K, et al. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity [J]. Applied Surface Science, 2018, 430: 505-514. doi: 10.1016/j.apsusc.2017.08.072 [12] 徐梦秋, 柴波, 闫俊涛, 等. Bi2MoO6/Ag3PO4复合光催化剂的制备及其光催化性能 [J]. 硅酸盐学报, 2018, 46(1): 93-100. XU M Q, CHAI B, YAN J T, et al. Preparation of Bi2MoO6/Ag3PO4 composites with enhanced photocatalytic activities [J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 93-100(in Chinese).
[13] GUO J, SHEN C H, SUN J, et al. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 p-n heterostructure composites for the degradation of norfloxacin under visible light irradiation [J]. Separation and Purification Technology, 2021, 259: 118109. doi: 10.1016/j.seppur.2020.118109 [14] 王丹军, 申会东, 郭莉, 等. BiOBr/Bi2MoO6异质结的构筑及对甲基橙的吸附/光催化性能的协同作用机制 [J]. 环境科学学报, 2017, 37(5): 1751-1762. WANG D J, SHEN H D, GUO L, et al. The fabrication of BiOBr/Bi2MoO6 heterojunction with enhanced adsorption performance for methyl-orange via synergistic adsorption/photocatalysis effect [J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1751-1762(in Chinese).
[15] HAN F M, YE X, CHEN Q, et al. The oxidative degradation of diclofenac using the activation of peroxymonosulfate by BiFeO3 microspheres—Kinetics, role of visible light and decay pathways [J]. Separation and Purification Technology, 2020, 232: 115967. doi: 10.1016/j.seppur.2019.115967 [16] XU M J, LI J, YAN Y, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles [J]. Chemical Engineering Journal, 2019, 369: 403-413. doi: 10.1016/j.cej.2019.03.075 [17] MAHMOODI N M, ARAMI M, LIMAEE N Y, et al. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania [J]. Journal of Hazardous Materials, 2007, 145(1/2): 65-71. [18] 王柯晴, 徐劼, 陈家斌, 等. 氧基氯化铁非均相活化过一硫酸盐降解金橙Ⅱ [J]. 中国环境科学, 2020, 40(8): 3385-3393. doi: 10.3969/j.issn.1000-6923.2020.08.016 WANG K Q, XU J, CHEN J B, et al. Degradation of AO7 by PMS activated by FeOCl [J]. China Environmental Science, 2020, 40(8): 3385-3393(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.016
[19] JI Y F, DONG C X, KONG D Y, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms [J]. Journal of Hazardous Materials, 2015, 285: 491-500. doi: 10.1016/j.jhazmat.2014.12.026 [20] LIANG C J, WANG Z S, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃ [J]. Science of the Total Environment, 2006, 370(2/3): 271-277. [21] ZHU L, ZHENG L, XIE H, et al. Design and properties of FeAl/Al2O3/TiO2 composite tritium-resistant coating prepared through pack cementation and Sol-gel method [J]. Materials Today Communications, 2021, 26: 101848. doi: 10.1016/j.mtcomm.2020.101848 [22] SHEIKHMOHAMMADI A, ASGARI E, NOURMORADI H, et al. Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105844. doi: 10.1016/j.jece.2021.105844 [23] ZHANG X, CHEN S H, LIAN X Y, et al. Efficient activation of peroxydisulfate by g-C3N4/Bi2MoO6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes [J]. Journal of Colloid and Interface Science, 2022, 607: 684-697. doi: 10.1016/j.jcis.2021.08.198 [24] JI Y F, KONG D Y, LU J H, et al. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products [J]. Journal of Hazardous Materials, 2016, 313: 229-237. doi: 10.1016/j.jhazmat.2016.04.033 [25] GHORAI K, BHATTACHARJEE M, MANDAL D, et al. Facile synthesis of CuCr2O4/BiOBr nanocomposite and its photocatalytic activity towards RhB and tetracycline hydrochloride degradation under household visible LED light irradiation [J]. Journal of Alloys and Compounds, 2021, 867: 157947. doi: 10.1016/j.jallcom.2020.157947