-
抗菌类药物抗生素的广泛应用,给人类带来了便利,也对环境造成了危害[1]。四环素类抗生素很难被动物吸收,大部分通过排泄残留在养殖废水里[2-3],不仅对水生动植物的生长和繁衍造成不利影响[4-5],还危害到人体健康,破坏人体免疫系统[6]。抗生素废水是一种有机废水,毒性大,难降解[7]。以现有的研究水平很难完全去除水环境中所有抗生素[8-9]。因此,四环素废水的高效处理方法已成为研究热点[10]。高压脉冲放电等离子体技术是一种处理难降解有机物的高级氧化技术,因其处理效率高,无二次污染,而受到广泛关注[11-12]。仇聪颖等[13]采用多针-网式反应器,通过电晕放电等离子体技术循环处理酸性红73(AR73)的模拟废水,放电30 min后AR73降解率可以达到83.20%。Hao等[14]研究了脉冲放电处理水溶液中的四环素,结果表明,初始浓度为50 mg·L−1的四环素降解效率可达到92.3%。然而,单纯的等离子体技术存在能量利用率低,选择性差等问题。催化剂有较好的产物选择性,且可降低反应活化能,达到节能要求[15]。因此,将催化剂与脉冲放电等离子体技术相结合,能有效提高废水降解效率,引起了科研工作者的关注[16-17]。Yan等[18]采用介质阻挡放电(DBD)与纳米氧化锌协同降解双酚A,结果表明,在添加纳米氧化锌50 mg·L−1时降解效果最好,降解效率为85.4%,比单一DBD体系提高了17%。
本课题组已对催化剂与高压脉冲放电等离子体协同处理废水技术进行了相关研究,董冰岩等[19]确定了本次实验最佳的基础参数(放电电压、脉冲频率、气体流量、电极间距、溶液的初始浓度、溶液电导率)。Ag/BiVO4复合型催化剂具有较窄的带隙、无毒和高稳定性等优点,可与放电产生的H2O2、O3作用,产生大量·O2-、·OH等强氧化性活性粒子,促进等离子通道的形成,加强反应速率[20]。为进一步提高TCH的去除效率,本实验通过高压脉冲放电技术协同Ag 改性的BiVO4催化剂对TCH去除率进行研究,并通过XRD、SEM、BET 对所有催化剂进行表征分析[21],为脉冲放电协同催化剂去除TCH提供一定的科学指导意义。
高压针-板脉冲火花放电协同Ag改性的复合型催化材料处理盐酸盐四环素
Treatment of tetracycline hydrochloride by high voltage needle-plate pulsed spark discharge combined with Ag modified composite catalytic materials
-
摘要: 采用高压针-板脉冲火花放电协同负载型光催化剂Ag/BiVO4对盐酸盐四环素(TCH)抗生素模拟废水进行去除实验。通过溶胶-凝胶与掺杂法合成复合型Ag/BiVO4催化剂,用X 射线衍射(XRD)、扫描电子显微镜(SEM)及BET表征技术分析Ag/BiVO4催化剂的基本特性,考察了不同Ag 负载量的催化剂、不同投加量和不同反应体系pH值对TCH去除率的影响。结果显示,在放电电压为24 kV,频率为 60 Hz,气体流量为2.5 L·min−1,电极间距为7 mm,溶液的初始浓度为100 mg·L-1,溶液电导率为200 μs·cm−1,同时添加含量为0.1 g 1%Ag/BiVO4催化剂与脉冲放电等离子体协同去除TCH的效果最好,盐酸四环素的去除率可达到99.8%,矿化率最高为67.8%。高压脉冲放电可以改变催化剂的晶形和结构,并且在掺杂一定量的Ag后BiVO4催化剂表面变得更加密集,颗粒均匀,比表面积增大,活性位点增多,促进了催化反应,进一步加强了对TCH的去除。Abstract: A high-voltage needle-plate pulsed spark discharge synergistically supported photocatalyst Ag/BiVO4 was employed for the removal experiment of tetracycline hydrochloride (TCH) antibiotic simulated wastewater. The composite Ag/BiVO4 catalyst was synthesized by sol-gel and doping method. X-ray diffraction (XRD), scanning electron microscope (SEM) and BET characterization techniques were used to analyze the basic characteristics of Ag/BiVO4 catalyst. The effects of catalysts with different Ag loads, dosage and pH values of reaction systems on TCH removal rate were investigated. When the concentration of TCH was 100 mg·L−1, under the conditions of discharge voltage 24 kV, pulse frequency 60 Hz, aeration 2.5 L·min−1, electrode spacing 7 mm, the discharge plasma with the 1%Ag/BiVO4 catalyst of 0.1 g gave the best degradation effect. The removal rate of tetracycline hydrochloride can reach 99.8%, and highest mineralization rate can be 67.8%. The high voltage pulse discharge can change the crystal shape and structure of catalyst. In addition, after doping a certain amount of Ag, the surface of BiVO4 catalyst becomes denser, the particles are uniform, the specific surface area is enlarged, and the active sites are increased, which promotes the catalytic reaction and further strengthens the removal of TCH.
-
Key words:
- pulse discharge /
- catalyst /
- wastewater /
- degradation /
- environment
-
-
[1] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展 [J]. 环境化学, 2018, 37(7): 1491-1500. doi: 10.7524/j.issn.0254-6108.2017112003 ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China [J]. Environmental Chemistry, 2018, 37(7): 1491-1500(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112003
[2] 陈小桐, 安静, 杨合, 等. 辽宁省畜禽养殖业抗生素排放特征及减排路径分析 [J]. 环境科学学报, 2021, 41(7): 2896-2904. doi: 10.13671/j.hjkxxb.2020.0468 CHEN X T, AN J, YANG H, et al. Analysis of antibiotics emission characteristics and reduction path of livestock and poultry industry in Liaoning Province [J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2896-2904(in Chinese). doi: 10.13671/j.hjkxxb.2020.0468
[3] 朱婉婷, 于晓彩, 田思瑶, 等. CuO/ZnO复合光催化剂降解海水养殖废水中盐酸四环素 [J]. 环境污染与防治, 2020, 42(3): 305-309,316. doi: 10.15985/j.cnki.1001-3865.2020.03.009 ZHU W T, YU X C, TIAN S Y, et al. Photocatalytic degradation of tetracycline hydrochloride in mariculture wastewater by CuO/ZnO composite photocatalyst [J]. Environmental Pollution & Control, 2020, 42(3): 305-309,316(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.03.009
[4] WANG L, CHEN Y, ZHAO Y, et al. Toxicity of two tetracycline antibiotics on Stentor coeruleus and Stylonychia lemnae: Potential use as toxicity indicator [J]. Chemosphere, 2020, 255: 127011. doi: 10.1016/j.chemosphere.2020.127011 [5] 苗淑彦, 韩蓓, 胡俊涛, 等. 饲料中添加不同浓度四环素对乌鳢生长性能、肠道菌群组成和组织形态的影响 [J]. 动物营养学报, 2019, 31(12): 5813-5822. doi: 10.3969/j.issn.1006-267x.2019.12.047 MIAO S Y, HAN B, HU J T, et al. Effects of dietary different concentrations of tetracycline on growth performance, intestinal microbiota composition and morphology of Channa argus [J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5813-5822(in Chinese). doi: 10.3969/j.issn.1006-267x.2019.12.047
[6] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状 [J]. 环境化学, 2016, 35(5): 875-883. doi: 10.7524/j.issn.0254-6108.2016.05.2015113004 QIN L T, TONG L, LIU H, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment [J]. Environmental Chemistry, 2016, 35(5): 875-883(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015113004
[7] 印献栋, 段锋. O3/H2O2氧化预处理高浓度抗生素制药废水研究[J]. 现代化工, 2020, 40(S1): 121-123, 127. YIN X D, DUAN F. Study on oxidation pretreatment of high-concentration wastewater from antibiotics production by ozone/hydrogen peroxide[J]. Modern Chemical Industry, 2020, 40(Sup 1): 121-123, 127(in Chinese).
[8] 汪春霞. 医药废水处理技术研究进展 [J]. 四川化工, 2018, 21(5): 28-30. doi: 10.3969/j.issn.1672-4887.2018.05.008 WANG C X. Research progress in pharmaceutical wastewater treatment technology [J]. Sichuan Chemical Industry, 2018, 21(5): 28-30(in Chinese). doi: 10.3969/j.issn.1672-4887.2018.05.008
[9] 张婷, 郎朗. 环境水体中抗生素残留及处理方法现状分析 [J]. 黑龙江科技信息, 2017(9): 84-85. ZHANG T, LANG L. Analysis of antibiotic residues and treatment methods in environmental water [J]. Heilongjiang Science and Technology Information, 2017(9): 84-85(in Chinese).
[10] 林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展 [J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401 LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes [J]. Environmental Chemistry, 2021, 40(5): 1305-1318(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
[11] 朱鋆珊, 郭丽, 李平. 高级氧化技术在四环素废水处理中的应用进展 [J]. 化工科技, 2019, 27(4): 65-68. doi: 10.3969/j.issn.1008-0511.2019.04.013 ZHU Y S, GUO L, LI P. Application progress of advanced oxidation technology in tetracycline wastewater treatment [J]. Science & Technology in Chemical Industry, 2019, 27(4): 65-68(in Chinese). doi: 10.3969/j.issn.1008-0511.2019.04.013
[12] 屈广周, 李杰, 梁东丽, 等. 低温等离子体技术处理难降解有机废水的研究进展 [J]. 化工进展, 2012, 31(3): 662-670. doi: 10.16085/j.issn.1000-6613.2012.03.039 QU G Z, LI J, LIANG D L, et al. Research progress in organic wastewater treatment by low-temperature plasma discharge technology [J]. Chemical Industry and Engineering Progress, 2012, 31(3): 662-670(in Chinese). doi: 10.16085/j.issn.1000-6613.2012.03.039
[13] 仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究 [J]. 强激光与粒子束, 2020, 32(2): 56-62. doi: 10.11884/HPLPB202032.190390 QIU C Y, GUAN X T, LIU Z, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma [J]. High Power Laser and Particle Beams, 2020, 32(2): 56-62(in Chinese). doi: 10.11884/HPLPB202032.190390
[14] HAO C J, YAN Z Y, LIU K F, et al. Degradation of pharmaceutical contaminant tetracycline in aqueous solution by coaxial-type DBD plasma reactor [J]. IEEE Transactions on Plasma Science, 2020, 48(2): 471-481. doi: 10.1109/TPS.2020.2964612 [15] 鲁美娟, 汪怀建, 黄荣, 等. 催化剂对等离子体协同催化降解挥发性有机物影响的研究进展 [J]. 环境污染与防治, 2018, 40(1): 88-94. doi: 10.15985/j.cnki.1001-3865.2018.01.019 LU M J, WANG H J, HUANG R, et al. Research of effect of catalyst on the VOCs degradation using plasma-assisted catalysis technology [J]. Environmental Pollution & Control, 2018, 40(1): 88-94(in Chinese). doi: 10.15985/j.cnki.1001-3865.2018.01.019
[16] 马瑾, 王新海. 金属掺杂改性纳米二氧化钛对废水中有机物催化降解的研究进展 [J]. 能源化工, 2020, 41(4): 7-13. doi: 10.3969/j.issn.1006-7906.2020.04.003 MA J, WANG X H. Research progress of metal-doped modified titanium dioxide nanoparticles for catalytic degradation of organic compounds in waste water [J]. Energy Chemical Industry, 2020, 41(4): 7-13(in Chinese). doi: 10.3969/j.issn.1006-7906.2020.04.003
[17] 汪超, 王铁成, 屈广周, 等. 脉冲电晕放电等离子体耦合土壤颗粒去除废水中盐酸四环素 [J]. 高电压技术, 2018, 44(9): 3076-3082. doi: 10.13336/j.1003-6520.hve.20171101001 WANG C, WANG T C, QU G Z, et al. Removal of tetracycline HCl in wastewater by pulsed Corona discharge plasma coupled with soil particles [J]. High Voltage Engineering, 2018, 44(9): 3076-3082(in Chinese). doi: 10.13336/j.1003-6520.hve.20171101001
[18] YAN X, YI C W, WANG Y H, et al. Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism [J]. Separation and Purification Technology, 2020, 231: 115897. doi: 10.1016/j.seppur.2019.115897 [19] 董冰岩, 李琼, 王慧, 等. 高压脉冲放电降解选矿废水中残余黄药的研究 [J]. 现代化工, 2019, 39(9): 87-91. doi: 10.16606/j.cnki.issn0253-4320.2019.09.019 DONG B Y, LI Q, WANG H, et al. Study on degradation of residual xanthate in mineral separation wastewater by high voltage pulse discharge [J]. Modern Chemical Industry, 2019, 39(9): 87-91(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2019.09.019
[20] DONG Q, YANG F L, LIANG F, et al. Silver particle on BiVO4 nanosheet plasmonic photocatalyst with enhanced photocatalytic oxidation activity of sulfadiazine [J]. Journal of Molecular Liquids, 2021, 331: 115751. doi: 10.1016/j.molliq.2021.115751 [21] PANDIYARAJ K N, VASU D, GHOBEIRA R, et al. Dye wastewater degradation by the synergetic effect of an atmospheric pressure plasma treatment and the photocatalytic activity of plasma-functionalized Cu-TiO2 nanoparticles [J]. Journal of Hazardous Materials, 2021, 405: 124264. doi: 10.1016/j.jhazmat.2020.124264 [22] WANG M, HAN J, LV C M, et al. Ag, B, and Eu tri-modified BiVO4 photocatalysts with enhanced photocatalytic performance under visible-light irradiation [J]. Journal of Alloys and Compounds, 2018, 753: 465-474. doi: 10.1016/j.jallcom.2018.04.068 [23] SHAFIQ I, HUSSAIN M, SHEHZAD N, et al. The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue [J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103265. doi: 10.1016/j.jece.2019.103265 [24] 王晓亮, 王振华, 何瑾馨. Ag掺杂BiVO4光催化剂的制备及其性能 [J]. 印染, 2013, 39(19): 5-8,24. WANG X L, WANG Z H, HE J X. Preparation and photocatalytic activity of Ag doped BiVO4 photocatalyst [J]. Dyeing & Finishing, 2013, 39(19): 5-8,24(in Chinese).
[25] 贾恒. 铋基可见光催化剂的制备及降解四环素废水的研究[D]. 邯郸: 河北工程大学, 2020. JIA H. Preparation of Bi based-photocatalyst and photocatalytic degradation of tetracycline wastewater under visible light illumination[D]. Handan: Hebei University of Engineering, 2020(in Chinese).
[26] ZHAO W, TU X Y, WANG X M, et al. Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance [J]. Chemical Engineering Journal, 2019, 361: 1173-1181. doi: 10.1016/j.cej.2018.12.120 [27] KONSTANTINOU I K, ALBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review [J]. Applied Catalysis B:Environmental, 2004, 49(1): 1-14. doi: 10.1016/j.apcatb.2003.11.010 [28] 陈宇溪, 罗力莎, 时峥, 等. Ag掺杂型TiO2粉末光催化降解四环素类抗生素废水 [J]. 科技创新与应用, 2018(13): 30-32. CHEN Y X, LUO L S, SHI Z, et al. Photocatalytic degradation of tetracycline antibiotic wastewater by Ag-doped TiO2 powder [J]. Technology Innovation and Application, 2018(13): 30-32(in Chinese).