-
纳滤(NF)膜是一种分离尺度介于超滤膜和反渗透膜之间的新型压力驱动分离膜[1-2]。由于其操作压力低、条件温和、分离效率高,已在海水脱盐、药物分离、食品加工以及水处理等领域得到广泛应用[3-4]。然而,随着应用的深入,膜处理的环境越来越复杂(如高温、高压),对膜材料提出了更高的要求[5]。与大多数只能在50 ℃下使用的商业化膜相比,耐高温纳滤膜可用于处理各种热流体,无需严格的温度控制,生产率将大大提高[6]。特别是在高温操作条件下,提高运行温度有助于提高膜通量和减少膜污染,这对能量回收和降低成本具有重要意义[7]。因此,开发具有热稳定性的纳滤膜具有重要意义。
凯夫拉(PPTA)具有优异的机械强度、热稳定性以及化学稳定性,是制备超滤膜的合适材料,可用于某些极端条件,如高温废水处理[8-9]。然而,PPTA具有高结晶度,难溶于大部分常规溶剂,制备条件苛刻,在膜领域的相关研究较少[10-11]。Nakura等[12]与Zschock等[13]以PPTA为成膜聚合物分别制备了PPTA超滤膜,前者研究了PPTA成膜条件,渗透性能;后者研究了膜的耐溶剂性能。然而,所得膜分离精度上仍需要进一步完善。Wang等[10]以PPTA为原料制备了PPTA中空纤维膜,所得膜表现出优异的耐热性和抗污染性能,但力学性能较差。此外,PPTA中空纤维膜仅为超滤膜,对于染料、无机盐等物质的分离性能仍有待进一步提高。因此,为了提高膜的分离精度,有必要对PPTA超滤膜进一步改性。
聚吡咯(PPy)具有良好的亲水性、优异的热稳定性、易于聚合,被广泛应用于改善膜的性能[14-15]。目前,电化学聚合法和化学气相沉积法(CVD)是两种常用的PPy合成方法。相较于电化学聚合法,化学气相沉积法操作简单,控制因素相对较少[16-17]。Shao等[18]以过硫酸铵为氧化剂,在水解聚丙烯腈(PAN-H)超滤膜表面原位聚合PPy分离层以制备复合纳滤膜,所得复合纳滤膜对异丙醇的渗透通量为12.1 L·m−2·h·MPa−1,对孟加拉玫瑰红的截留率为99.0%。Liu等[19]采用化学气相沉积法,制备了PVDF/PPy复合纳滤膜,所得膜抗污染性能明显提高。Ji等[20]采用氧化石墨烯(GO)对聚偏氟乙烯(PVDF)超滤膜进行亲水改性,随后采用化学气相沉积法在其表面原位聚合PPy分离层以制备PVDF/GO/PPy复合纳滤膜。与PVDF超滤膜相比,复合纳滤膜亲水性改善,同时对带负电染料具有较高的截留率(˃98.5%)。虽然复合纳滤膜亲水性好、分离精度高及抗污染性好,然而其分离过程都在常温条件下进行,关于气相沉积PPy制备的复合纳滤膜热稳定性研究,鲜有报道。
本文以PPTA为成膜聚合物,PPTA纤维编织管为增强体,采用干-湿法纺丝技术制备同质增强型PPTA 中空纤维膜。随后,通过化学气相沉积法(CVD)在膜表面原位聚合PPy分离层以进一步修饰膜结构,并对所得复合纳滤膜结构和染料脱盐的分离性能进行了研究,为纳滤膜在更高运行温度下处理染料废水提供一定的理论和实验依据。
-
凯夫拉(PPTA,纤维级),苏州兆达特纤科技有限公司;PPTA中空纤维编织管(纤维级),中化高性能纤维材料有限公司;浓硫酸(H2SO4)、N,N-二甲基乙酰胺(DMAc)、聚乙二醇(PEG,Mw=2000 Da),分析纯,上海泰坦科技股份有限公司;吡咯(Py)、亲水二氧化硅(SiO2)、硫酸钠(Na2SO4)、硫酸镁(MgSO4)、氯化钙(CaCl2)、氯化钠(NaCl)、三氯化铁(FeCl3),分析纯,上海阿拉丁生化科技股份有限公司;刚果红(CR,Mw=696.68 g·mol−1)、亚甲基蓝(MB,Mw=373.90 g·mol−1)、曙红Y(EY,Mw=647.89 g·mol−1),分析纯,国药集团化学试剂有限公司;去离子水(实验室自制)。
-
傅里叶变换红外光谱仪,WDF-530型,北京北分瑞利分析仪器有限公司;场发射扫描电子显微镜,Phenom XL型,上海复纳科学仪器有限公司;原子力显微镜,Bruker Dimension Icon型,布鲁克(北京)科技有限公司;固体表面Zeta电位仪,SurPASS型,奥地利Anton Paar公司;液体Zeta电位仪,ZS90型,英国Malvern公司;水接触角测试仪,SDC-350H型,东莞市晟鼎精密仪器有限公司。
-
采用干-湿法纺丝技术制备同质增强型PPTA中空纤维膜。首先,将PPTA树脂和亲水SiO2无机粒子置于真空烘箱(-0.1 MPa,100 ℃)中干燥12 h以移除水分。然后,将上述干燥后的PPTA树脂和亲水SiO2无机粒子与浓硫酸按照1.5:0.5:88比例加入250 mL三口圆底烧瓶中,并在70 ℃恒温水浴中搅拌至充分溶解,形成透明黄色粘稠状混合物。然后,向体系中加入20 g PEG致孔剂,继续搅拌待其充分溶解,经真空脱泡后形成均相铸膜液。随后,将铸膜液加入料釜中,铸膜液经喷丝头与PPTA中空纤维编织管同时挤出,均匀涂敷于纤维编织管外表面,在导丝辊的牵引下,经空气浴后,浸入到凝固浴中固化成形,制得同质增强型PPTA中空纤维膜。然后,经卷绕辊收集后置于去离子水中浸泡,后保存在去离子水中待用。
-
采用化学气相沉积法(CVD)制备PPy/PPTA中空纤维复合纳滤膜,其制备工艺如图1所示。首先,将PPTA基膜浸入质量分数为50%的FeCl3溶液中30 min,取出并用滤纸将基膜表面残余水分除去。将其放置在充满吡咯(Py)气相单体的真空干燥反应器中,以FeCl3为氧化引发剂,在基膜表面进行原位聚合形成疏松致密的PPy分离层。后将反应的膜放置于80 ℃鼓风干燥箱中进一步反应30 min,以稳定膜结构。最后,用去离子水清洗膜以去除未反应的FeCl3溶液,并在空气中晾干得到PPy/PPTA 中空纤维复合纳滤膜。
-
采用上海复纳科学仪器有限公司的Phenom XL场发射电子扫描显微镜(SEM)观察膜样品的形貌结构。膜样品经冷冻干燥处理后,用导电胶粘贴在铝板上,测试前进行喷金处理。采用德国Bruker Dimension Icon原子力显微镜(AFM)观察膜样品表面的粗糙度。采用北京北分瑞利分析仪器有限公司的WDF-530傅里叶变换红外光谱仪(FTIR)对膜样品表面化学结构进行分析,扫描范围为400—4000 cm−1。采用奥地利Anton Paar 的Sur PASS固体表面Zeta电位仪测试分析样品膜表面的电位,以测定复合纳滤膜的荷电性质,测试pH范围为3—10。采用英国马尔文ZS90液体表面Zeta电位仪测试分析染料溶液的电位,以测定染料溶液的荷电性质。采用东莞市晟鼎精密仪器有限公司的SDC-350H水接触角测试仪测定水滴在样品膜表面的静态接触角。微注射器液滴量为5 μL,每个膜样品随机选5个位置进行测试,取其平均值。
采用实验室自制的错流过滤装置在室温0.6 MPa操作压力下,测定PPy/PPTA中空纤维复合纳滤膜对染料和无机盐的分离性能,其中染料和无机盐的浓度分别为100 mg·L−1和1000 mg·L−1。测试之前,在室温0.6 MPa操作压力下对复合纳滤膜进行预压处理30 min,使膜通量达到稳定状态。每个膜样品在相同条件下平行测定3次,取其平均值。采用紫外可见分光光度计和电导率仪分别测试过滤前后染料和无机盐的浓度。根据公式(1)和公式(2)分别计算出复合纳滤膜的水通量(J)和截留率(R)。
式中,J为渗透通量(L·m−2·h−1),V为渗透液的体积(L);A为膜的有效面积(m2);t为渗透时间(h)。
式中,Cf和Cp分别为截留前后溶液的浓度(mg·L−1)。
-
图2为PPTA基膜及PPy/PPTA中空纤维复合纳滤膜表面形貌图。PPTA基膜表面分离层较薄,分离层紧密包裹着PPTA纤维编织管(图2a, b)。这是由于铸膜液浸入水中时发生瞬时液-液相分离[21]。为了进一步提高膜表面电荷和分离精度,经PPy气相沉积后,膜表面形成了与Tan等[22]研究的图灵结构相似,并均匀分布在整个膜表面(图2c)。如图2d所示,这两种结构通常由球形或条状组成,两者单独存在或交联一起。这与Ji和Li等[20,23]之前研究相对均匀的PPy分离层不同,膜表面呈现球形颗粒,这可能支撑层亲疏水有关。
图灵结构的形成需要满足抑制剂的扩散系数必须远大于活化剂的扩散系数,导致“局部活化和横向抑制”, 这是扩散驱动不稳定性的基础[22,24]。本研究以FeCl3为活化剂,Py单体为抑制剂,当含有活化剂的PPTA基膜表面与抑制剂接触时,聚合反应开始。由于Py单体在水中的溶解度很小,聚合反应主要发生在两相界面反应区的有机侧。最初,活化剂在反应区与局部可用的抑制剂反应。随着聚合反应的继续进行,聚合反应扩散至反应区深处(有机相)。最后,在PPTA基膜的孔口区域形成交联PPy分离层。当反应体系满足活化剂和抑制剂扩散系数的适当差异时,导致扩散驱动的不稳定性,并产生球状和条状结构(图3a)。此外,活化剂的弯月面在PPTA基膜的亲水孔中呈凹形(图3b)。因此,在亲水性支撑膜的孔隙深处形成更多的PPy,从而减缓了活化剂扩散速率[25,26]。随着活化剂不断从亲水孔喷入有机相(真空),膜表面逐渐形成了一层PPy分离层,该分离层进一步延缓了活化剂的扩散速率(图3b)。在反应过程中,活化剂被限制在PPTA载体的表面纳米级孔内,其中物理阻碍抑制了活化剂扩散,从而减缓了其扩散速率[26]。
为了证实膜表面形态的变化,使用原子力显微镜(AFM)测量了PPTA基膜和PPy/PPTA中空纤维复合纳滤膜表面粗糙度。如图2e所示,PPTA基膜的表面相对粗糙,PPTA基膜的表面分离层紧密包裹着PPTA中空纤维编织管,导致膜表面不均匀。经PPy气相沉积后,膜表面形成了球形或相互连接条状结构,PPy/PPTA中空纤维复合纳滤膜表面粗糙度略有下降(图2f)。可能是由于这些球形或相条状结构平滑了PPTA中空纤维编织管与表面分离层之间的脊谷与沟壑,这与扫描电镜观察结果一致。因此,结果进一步表明,PPy分离层是在PPTA基膜上形成的。
-
图4为PPTA基膜及PPy/PPTA中空纤维复合纳滤膜的红外光谱图。与PPTA基膜相比,经PPy气相沉积后的PPy/PPTA中空纤维复合纳滤膜,在1531 cm−1和1456 cm−1两处出现了新的吸收峰,这些新的吸收峰主要是由吡咯环的振动造成的[27-28]。此外,PPy/PPTA中空纤维复合纳滤膜表面没有观察到PPTA基膜的吸收峰,表明PPTA基膜表面已被PPy分离层完全覆盖住,由此也证明成功制备了PPy/PPTA中空纤维复合纳滤膜。
-
膜表面亲水性是影响渗透性能及抗污染性能的关键因素。一般来说,膜表面亲水性可以通过接触角表征[29-30]。图5a为PPTA基膜和PPy/PPTA中空纤维复合纳滤膜的接触角。PPTA基膜的接触角为47.9º,亲水性较好。PPy在膜表面聚合后,由于良好的亲水性和较大的表面粗糙度,膜仍然表现出较小的接触角。因此,PPy/PPTA中空纤维复合纳滤膜具有良好的亲水性,有利于提高膜的抗污染能力。
在纳滤过程中,纳滤膜在不同pH值下呈现出不同的表面荷电特征,进而影响膜的性能。图5b为PPy/PPTA中空纤维复合纳滤膜的Zeta电位随pH值的变化曲线,由图可见,PPy/PPTA中空纤维复合纳滤膜的等电点为3.2。当pH<3.2时,复合纳滤膜表面呈正的Zeta电位,当pH>3.2时,复合纳滤膜表面呈负的Zeta电位,这与大多数商用纳滤膜表面在中性pH下呈现负荷电性相一致[31]。与PPTA基膜相比,PPy/PPTA中空纤维复合纳滤膜的Zeta电位明显改善,呈现负的Zeta电位。一般来说,PPy的结构具有弱碱性阴离子交换基团,随着pH值的增加,该基团可能被去质子化,从而导致复合纳滤膜呈现较明显的负Zeta电位[32-33]。
-
如图6a所示,PPy/PPTA中空纤维复合纳滤膜对不同价态的阴离子和阳离子表现出不同的截留特性,其截留率由高到低依次为:
RNa2SO4 (93.59%)>RMgSO4 (91.58%) >RCaCl2 (83.45%) > RNaCl (54.04%),呈现较高的截留率。这与其他文献中报道的带负电的纳滤膜一致[34]。不同的截留率可以用纳滤膜的分离机理来解释,包括Donnan效应和筛分效应[35-36]。根据Donnan效应,带负电的膜表面对二价负离子(SO42−)的排斥力高于一价负离子(Cl−)。相反,结合电中和要求,具有较低化合价的阳离子将促进保留。此外,复合纳滤膜对CaCl2的截留率较高,但对NaCl的截留率较低。这主要是由Na+的水合半径(0.36 nm)小于Ca2+(0.41 nm),且扩散系数较高造成的[30]。因此,所得PPy/PPTA中空纤维复合纳滤膜对荷电物质的截留是Donnan效应和筛分效应两种机制协同作用的结果。如图6b所示,PPy/PPTA中空纤维复合纳滤膜对刚果红(99.95%)和曙红Y(98.82%)呈现较高的截留率,然而,对于亚甲基蓝的截留率较低(85.91%)。PPy/PPTA中空纤维复合纳滤膜对带电染料的分离也可以用Donnan效应和筛分效应来解释[28,37]。刚果红和曙红Y染料分子中都含有带负电荷基团,可能导致这两种染料溶液呈负的Zeta电位。由于Donnan效应和筛分效应的影响,复合纳滤膜对刚果红和曙红Y溶液的排斥力更强,截留效果更好[17]。亚甲基蓝染料分子中含有正基团,可能导致染料溶液呈轻微正的Zeta电位。与刚果红和曙红Y相比,复合纳滤膜对亚甲基蓝的截留率和通量都较低,截留率较低主要是由染料分子量的差异,膜表面电荷的变化对染料截留率的影响有限。而通量较低可能是由于正基团的存在,膜对亚甲基蓝有一定的吸附作用,增加了跨膜的运输阻力,导致相对较低的通量[20]。
此外,还详细研究了染料与无机盐浓度分别对PPy/PPTA中空纤维复合纳滤膜分离刚果红/NaCl混合物的影响,结果如图7所示。如图7a所示,其中NaCl浓度为1000 mg·L−1,随着刚果红浓度从100 mg·L−1增加到1000 mg·L−1,刚果红截留率保持稳定,而水通量略有下降。这是因为膜表面存在浓差极化,染料分子沉积在膜表面形成滤饼层,增加了过滤阻力[38-39]。此外,由于盐离子与带电染料分子耦合,NaCl的截留率略微增加[40]。图7b为NaCl浓度对PPy/PPTA中空纤维复合纳滤膜分离刚果红/NaCl混合物的影响,其中刚果红浓度为100 mg·L−1。随着NaCl浓度从1000 mg·L−1增加到10000 mg·L−1,刚果红截留率保持稳定,而NaCl截留率和水通量下降。这是因为膜驱动力的降低导致水通量的降低,而Na+的静电屏蔽效应的增强降低了NaCl截留率[41]。
-
在复合纳滤膜运行过程中,运行温度会对复合纳滤膜分离性能产生一定影响。图8a为运行温度对PPy/PPTA中空纤维复合纳滤膜分离性能影响。由图8a可见,当运行温度从25 ℃升高至90 ℃时,PPy/PPTA中空纤维复合纳滤膜的水通量明显增加,刚果红的截留率几乎保持稳定,而NaCl截留率轻微下降。NaCl截留率轻微下降主要是由温度升高使溶液中的聚合物柔性增加造成的,从而导致NaCl的渗透性发生轻微变化[4]。在实验温度范围内,膜的水通量随温度升高而增大,这是由于水在氢键作用下以缔合体形式存在,这种缔合体的大小取决于温度,提高料液温度,可使水的缔合体尺寸变小,使得水的缔合体更容易在压力作用下透过膜,导致透过通量上升[42]。同时,膜的水通量与温度的关系可由阿伦尼乌斯(Arrhenius)方程解释[43-45],这主要是由溶液粘度的降低、溶剂扩散系数及聚合物链活性增大造成的[7]。因此,通过适当提高运行温度,可以较明显提高PPy/PPTA中空纤维复合纳滤膜水通量并减少膜污染。
为进一步研究PPy/PPTA中空纤维复合纳滤膜的长期热稳定性,选择刚果红/NaCl水溶液体系作为过滤介质,在80 ℃运行温度下连续运行360 min,测定PPy/PPTA中空纤维复合纳滤膜的分离性能,结果如图8b。由图8b可见,刚果红和NaCl的截留率在连续运行360 min内几乎保持稳定而水通量略有下降。水通量略有下降可能是由于染料分子在膜表面沉积导致轻微膜污染所致,表明PPy/PPTA中空纤维复合纳滤膜具有良好的结构稳定性和抗污染性能。这主要是由PPTA基膜优异的热稳定性和高机械性能引起的。随着运行温度的升高,PPTA基膜能够抵抗孔隙膨胀[46]。此外,PPTA基膜的亲水性改善了PPTA基膜与表面功能层的结合,有利于PPy/PPTA中空纤维复合纳滤膜的热稳定性[47]。
-
以同质增强型PPTA中空纤维膜为基膜,采用化学气相沉积法在基膜表面原位聚合PPy分离层,成功制备出具有类图灵结构的PPy/PPTA中空纤维复合纳滤膜。在室温0.6 MPa下,PPy/PPTA中空纤维复合纳滤膜对各种无机盐的截留率依次为RNa2SO4 (93.59%) > RMgSO4 (91.58%) > RCaCl2 (83.45%) > RNaCl (54.04%),表现出较高的脱盐性能,同时对带负电染料表现出较高的截留率(˃98.82%)。此外,PPy/PPTA中空纤维复合纳滤膜具有优异的热稳定性,膜通量在运行温度从25 ℃升高到90 ℃时较明显的增加,而截留率几乎保持稳定。综上所述,制备的PPy/PPTA中空纤维复合纳滤膜在处理高温染料废水中显示出巨大潜力。
聚吡咯/凯夫拉中空纤维复合纳滤膜的制备及其染料脱盐性能
Fabrication of polypyrrole/kevlar hollow fiber composite nanofiltration membrane for dye desalination
-
摘要: 以同质增强型凯夫拉(PPTA)中空纤维膜为基膜,吡咯(Py)和三氯化铁(FeCl3)分别为反应单体和活化剂,采用化学气相沉积法制备了结构稳定、可控的聚吡咯(PPy)/PPTA中空纤维复合纳滤膜。采用FTIR、SEM、AFM、接触角测定仪以及固体表面Zeta电位仪对基膜和PPy/PPTA中空纤维复合纳滤膜的微观形貌、化学组成、亲水性、表面荷电性进行了表征。结果表明,经PPy气相沉积后,PPy/PPTA中空纤维复合纳滤膜表面形成具有图灵结构特征的分离层,并均匀覆盖膜表面。在0.6 MPa室温下,PPy/PPTA中空纤维复合纳滤膜具有较高的的脱盐性能,其顺序为
RNa2SO4 (93.59%) >RMgSO4 (91.58%) >RCaCl2 (83.45%) > RNaCl (54.04%),同时对带负电染料表现出较高的截留率(˃98.82%)。当运行温度从25 ℃升高到90 ℃时,PPy/PPTA中空纤维复合纳滤膜的水通量较明显增加,而截留率几乎保持稳定,表现出优异的热稳定性,为纳滤膜在更高运行温度下处理染料废水提供指导。Abstract: A stable and controllable polypyrrole (PPy)/kevlar (PPTA) hollow fiber composite nanofiltration (NF) membrane with homogeneous reinforced PPTA hollow fiber membrane as the substrate was successfully prepared by chemical vapor deposition method. Pyrrole (Py) and ferric chloride (FeCl3) were used as reaction monomers and activators, respectively. The micro-morphology, chemical composition, hydrophilicity and surface charge of the pristine PPTA membrane and PPy/PPTA hollow fiber composite NF membrane was characterized by FTIR, SEM, AFM, contact angle analyzer, and solid surface Zeta potentiometer. The results showed that the surface of PPy/PPTA hollow fiber composite NF membrane formed a separation layer with Turing structure characteristics after PPy vapor deposition, and it evenly covered the membrane surface. At 25 ℃, 0.6 MPa, the as-prepared PPy/PPTA hollow fiber composite NF membrane exhibited not only a superior rejection (˃98.82%) for negatively charged dyes, but also an excellent salt rejection in the order as:RNa2SO4 (93.59%) >RMgSO4 (91.58%) >RCaCl2 (83.45%) > RNaCl (54.04%). When the operating temperature increased from 25 °C to 90 °C, the water flux of PPy/PPTA hollow fiber composite NF membrane increased significantly, while the rejection remained almost stable, showing excellent thermal stability. It provided guidance for NF membrane to treat dye wastewater at higher temperature. -
钴白合金是铜钴矿深加工过程中的副产物,由于钴的存在,使得该合金具有良好的硬度及耐热性[1]。钴白合金的成分基本为钴、铜、铁,其他元素的含量极低[2]。我国可利用的钴矿石资源较少,大部分钴矿石依赖进口[3]。世界上最主要的钴资源是刚果(金)和赞比亚的铜钴矿,一般含钴品位为0.1%~0.5%,高品味的可达到2%~3%。但是,其副产物钴白合金中钴的含量可达10%左右;此外,在钴白合金中,还含有大量的铜、铁等元素,使其具有较高的回收价值[1-5]。
目前,钴白合金的回收处理工艺主要有火法、湿法和微生物浸出等[6]。火法处理的常规工艺为造渣熔炼-浸出工艺[7]。该工艺先通过向钴白合金中掺入碳酸钙等配料,之后再在高温下焙烧,以实现钴、铜与其他杂质金属的分离,最终通过硫酸酸浸得到钴和铜的浸出液。但是,火法处理的能耗较高,操作也相对复杂,而且对有价金属的回收不彻底[8-9]。湿法处理主要有常压氧化酸浸法[10]、加压氧化酸浸法[11]、机械活化-酸浸法[12]、电化学溶解法[13]。相比于火法处理,湿法处理能耗低,但是对于处理设备的要求较高,同时也会产生一定的环境污染。有研究结果表明,使用微生物浸出钴白合金可实现钴、铜的高效回收[14]。胡国宏等[15]使用A.f菌(氧化亚铁硫杆菌)进行钴白合金的浸出,钴和铜的浸出率分别可以达到了99.5%和99.0%,而且浸出率高、成本低。
本研究通过消解分析钴白合金中各种金属的含量,初步估计其资源化利用的价值;并通过梯度实验探究接触浸出和非接触浸出的最佳固液比,以选出最佳工艺的最佳处理条件;最终,通过接触浸出和非接触浸出实验结果的对比分析,探究这2种方法对钴白合金中钴和铜的浸出机理。
1. 材料及方法
1.1 供试材料与试剂
供试钴白合金来源于河南某有色冶炼厂。盐酸(HCl)、硝酸(HNO3)、高氯酸 (HClO4)、氢氟酸(HF)、硫磺(S)、黄铁矿(FeS2)、硫酸铵((NH4)2SO4)、磷酸二氢钾 (KH2PO4)、无水氯化钙 (CaCl2)、七水合硫酸镁(MgSO4·7H2O)、醋酸(HOAc)、盐酸羟胺(NH2OH·HCl)、双氧水(H2O2)、醋酸铵(NH4OAc)均为分析纯。
1.2 实验仪器与检测用途
电感耦合等离子发射光谱仪(OPTIMA 8300,珀金埃尔默股份有限公司)用于测定溶液中金属元素的浓度;X射线衍射仪(VG MK II,英国VG公司)用于分析固体样品的晶体结构;扫描电子显微镜SEM(Quanta FEG 250,美国FEI公司)用于观察固体样品的微观形貌;电热恒温鼓风干燥箱(DHP-9032,上海一恒科学仪器有限公司);pH计(DELTA320,梅特勒-托利多仪器有限公司);恒温水浴振荡器(THZ-82,金坛市荣华仪器制造有限公司)用于培养混合菌液。
1.3 钴白合金的理化性质分析
将钴白合金置于电热恒温鼓风干燥箱中105 ℃烘干至恒重,粉碎研磨,过100目筛筛分后备用。钴白合金的金属含量测定采用三酸消解法[1, 16],目标金属的赋存形态采用BCR连续萃取法[17-19]。
1.4 实验所用菌液的培养
取若干容积为250 mL的锥形瓶,先分别加入85 mL无机盐培养基[20-23](2.0 g·L−1 (NH4)2SO4、1.0 g·L−1 KH2PO4、0.25 g·L−1 CaCl2、0.5 g·L−1 MgSO4·7H2O)、0.8 g硫磺、0.8 g黄铁矿;之后,接入At、Af、Lf菌液[24-25]各5 mL;透气膜封口后,置于恒温水浴振荡器中,在35 ℃条件下,以135 r·min−1振荡,培养至体系pH下降至0.8,便可用于生物淋滤实验。
1.5 钴白合金的非接触淋滤实验
将培养稳定的菌液高速离心后,使菌体和生物酸分离。向pH为0.8的生物酸中直接加入钴白合金样品,并置于恒温水浴振荡器中,在35 ℃、135 r·min−1的条件下反应24 h,此为非接触淋滤实验[26-28]。该浸出过程无细菌参与。设定淋滤的固液比(g∶mL)为1∶100、2∶100、3∶100、4∶100、5∶100、6∶100,每个梯度做3个平行实验。反应结束后,测定上清液中目标金属浓度。
按照上述最优淋滤效果对应的固液比,做非接触循环富集实验。浸出完成后,通过抽滤实现固液分离;向上清液中加入之前分离出的菌体,密封;之后,于恒温水浴震荡器中,培养条为35 ℃、135 r·min−1,培养至体系pH下降至0.8;再进行非接触淋滤实验。如此循环淋滤10次,之后测定每次淋滤后上清液中的目标金属浓度。
1.6 钴白合金的接触淋滤实验
向pH已达到0.8的菌液中直接加入钴白合金,置于恒温水浴震荡器中,在35 ℃、135 r·min−1条件下培养,隔天取样测钴、铜的浸出浓度,此为接触淋滤[26-28]。在该过程中,生物酸和细菌同时参与浸出。设定淋滤的固液比(g∶mL)为1∶100、2∶100、3∶100、4∶100。每个梯度做3个平行实验。在反应的第1、3、5、7、9 d取上清液测定目标金属浓度。
2. 结果与讨论
2.1 钴白合金中的金属种类及其形态分析
钴白合金样品中的金属种类及含量如表1中所示。其中,钴百合金中含铜量为10.81%、钴为13.66%、铁为20.53%,即有一定的回收价值。但该样品中铁含量过高,在浸出过程中会产生铁钒沉淀,会影响铜、钴的浸出效果。因此,为设计出更加合理的浸出工艺参数,使用BCR连续萃取技术处理钴白合金,以分析其中钴、铜、铁的金属赋存形态[18],所得结果如图1所示。如图1所示,钴白合金中的钴、铜、铁均不存在硫化物及有机结合态。其中,钴的存在形态为酸溶态(46.27%)和氧化物结合态(53.73%);铜的存在形态为酸溶态(7.86%)、氧化物结合态(78.84%)、残渣态(13.3%);铁的存在形态全部为酸溶态。通过BCR实验结果可知,在生物淋滤过程中,样品中的钴通过生物酸中氢离子的作用,基本上可以被完全浸出;铜的浸出除了生物酸的作用外,还需要一定的氧化反应,并可通过菌体的接触实现残渣态铜的浸出。
表 1 钴白合金中的金属元素种类及含量Table 1. Types and contents of metal elements in cobalt white alloy% Cu Co Fe Ni Mn Zn As 10.81 13.60 20.53 0.37 0.37 0.08 0.01 2.2 钴白合金的晶体成分及微观形貌分析
钴白合金样品的XRD谱图如图2所示。从图中可以看出,钴白合金在43°和45°有2个非常明显的峰值。通过与标准图谱卡片PDF#50-0795和PDF#85-1326[29]对比可知,钴白合金中所含的晶体成分主要为钴铁的合金态Co7Fe3和单质铜Cu。
通过SEM能够直接观察钴白合金的形貌特征、颗粒尺寸,由图3可知,钴白合金的形状均为不规则的球体和长方体,粒度较小,分布均匀[30]。
2.3 非接触浸出钴白合金及循环富集
采用At、Af、Lf这3种菌株的混合培养体系,在35 ℃下连续培养,菌体数量在培养至11 d时增长至3.42×108 个·mL−1,菌液的pH从2.0降至0.8(图4)。这是因为,At菌将能源底物中的硫磺转化成了硫酸和供自身生长所需的能量[31]。直接向该菌液中加入钴白合金为接触浸出,该过程具有生物酸和菌体的共同作用;将菌液中的菌体通过高速离心去除,留下pH为0.8的生物酸浸出钴白合金为非接触浸出,该过程无菌体作用。
从图5中可以看出,随着培养时间的延长,菌液中的Fe3+质量浓度不断升高,Fe2+质量浓度极少。这是因为,Af、Lf氧化分解黄铁矿获取能量生长的过程中,伴随着氧化生成了Fe3+;同时,黄铁矿中分解出的硫被At菌转化成硫酸而进入体系中[32-34]。
经非接触浸出1 d后,测得不同固液比下目标金属铜和钴的浸出率如图6所示。随着固液比的升高,钴和铜的浸出率均逐渐下降。从非接触浸出钴白合金的实验中可以看出,最优固液比为1%,在pH为0.8的生物酸下,钴白合金中的酸溶态和氧化物结合态的钴能够100%浸出,其浸出液质量浓度为1 356.14 mg·L−1;而铜的浸出率为77.42%,浸出液质量浓度为837.19 mg·L−1。
将1%固液比下的浸出渣多次水洗后,分析浸出渣中铜、钴、铁的赋存形态。由图7可以看出,浸出渣中未检测出钴;残留的铜中含有48.84%的氧化物结合态和51.15%的残渣态;铁被浸出后,又生成了铁钒沉淀进入了残渣态。因此,在浸出过程中,可先将样品中的钴优先浸出到溶液中;将铜留存在渣相中,富集后再次浸出,以实现钴白合金浸出过程中的铜、钴分离。
固液比1%下非接触循环第1次到第10次溶液中,铜和钴的质量浓度如图8所示。由图8可知,在循环的过程中,溶液中铜和钴的质量浓度基本呈倍数上升;而且,在实验过程中可以观察到,溶液的颜色有着明显的加深。循环到第10次时,溶液中钴的质量浓度可达12 877.25 mg·L−1,铜的质量浓度可达7 358.67 mg·L−1。
2.4 接触浸出钴白合金
不同固液比下,接触浸出钴白合金中钴和铜的浸出率如图9所示。从不同固液比的接触浸出实验中可以看出,钴白合金中钴的浸出效果要明显优于铜的浸出效果。在接触浸出1 d,随着固液比的升高,铜和钴的浸出率逐渐下降。但浸出7 d,在固液比3%下的接触浸出过程中,钴白合金中的钴和铜依然能够完全浸出。
在非接触浸出实验中,在固液比1%下,仅生物酸作用,浸出反应1 d,钴100%浸出,铜浸出77.42%。这一结果与接触浸出实验中,在生物酸和细菌的双重作用下,浸出反应1 d的浸出效果基本一直。由于钴白合金的加入,抑制了菌体的生长,菌体数量降至2.41×108个·mL−1。但随着浸出时间的延长,菌体逐渐适应了周围的浸出环境,菌体逐渐生长,在浸出5 d时生长到了3.26×108个·mL−1,基本与接触浸出前的菌数一致(图10(b)),从而代谢出了新的生物酸(图10(a))。从图11接触浸出过程中Fe3+的浓度变化可以看出,随着浸出时间的延长,在固液比1%下,浸出3 d,Fe3+的质量浓度降到最低403.67 mg·L−1,铜达到100%浸出。3 d后,Fe3+的浓度逐渐上升。这是因为,铜的浸出需要Fe3+的参与;同时,在Af和Lf的作用下,将生成的Fe2+氧化生成Fe3+[35]。因此,提高接触浸出的固液比,并在足够的额浸出时间下,当铜的浸出所消耗Fe3+的速度与细菌氧化Fe2+成Fe3+的速度一致时,即浸出完全。
2.5 钴白合金中铜、钴的浸出机理
通过对比接触浸出和非接触浸出钴白合金的结果,并结合钴白合金中的金属赋存形态以及钴白合金淋滤前后的XRD图谱变化,可以推测出钴白合金中铜和钴的浸出机理。图12为钴白合金淋滤前后的XRD对比图,可见,淋滤前钴白合金XRD衍射图谱中有较为明显的吸收峰;淋滤后钴白合金XRD衍射图谱中几乎没有吸收峰,这表明钴铁合金和单质铜的结构被破坏[14]。此外,经生物淋滤处理后的钴白合金的硬度有着明显的下降,表面也更加疏松,均表明其结构发生了改变。
在接触浸出1 d后,对不同固液比下的浸出渣中的钴、铜做金属赋存形态(图13)进行了对比分析。由图13(a)可知,随着固液比的升高,钴的浸出率逐渐降低,浸出渣中残余的钴也越来越多。经与原样中钴的对比可以看出,酸溶态的钴被优先浸出到溶液中,而浸出渣中残留的钴均为氧化物结合态。随着浸出时间的延长,体系内的细菌逐渐适应了周围的生存环境,持续代谢出新的生物酸,从而将浸出渣中的钴浸出到溶液中[36]。
同样,由图13(b)可知,随着固液比的升高,铜的浸出率也在逐渐降低。与原样对比,酸溶态的铜也被率先浸出到溶液中,浸出渣中剩余的铜为氧化物结合态和残渣态,该形态的浸出需要Fe3+的参与,最终生成Cu2+和Fe2+进入溶液中[37]。而随着浸出时间的延长,溶液中的Fe2+被细菌又逐渐氧化成Fe3+,Fe3+继续与固相中的铜发生反应,直至Fe3+的生成速率大于其反应的消耗速率时,整个铜的浸出反应达到完全。
3. 结论
1)钴白合金中所含有价金属主要为铜、钴和铁,而且含量均很高(均在10%以上),资源化利用潜力巨大。铜和钴大部分以酸溶态和氧化物结合态存在,适宜于生物淋滤处理。
2)非接触浸出钴白合金的最适固液比为1%,此时钴可100%浸出,铜浸出率为77.42%。非接触循环富集进行10次,最终浸出液中钴的质量浓度可达12 877.25 mg·L−1、铜的质量浓度可达7 358.67 mg·L−1。
3)钴白合金在接触浸出中,随着浸出时间的延长,铜和钴最终均能完全浸出。从浸出渣中钴和铜的赋存形态可以看出,钴浸出仅需生物酸的作用,铜的浸出除了需生物酸作用,还需Fe3+的参与。在菌体的直接作用下,浸出体系内部形成了Fe3+的生成和消耗的循环,以供给铜浸出。
-
图 2 SEM形貌图
Figure 2. SEM images of (a) pristine PPTA membrane,(b) Cross-section of pristine PPTA membrane,(c) PPy/PPTA hollow fiber composite NF membrane,and (d) enlarged outer surface of PPy/PPTA hollow fiber composite NF membrane,and AFM images of the outer surface of (e) pristine PPTA membranes and (f) PPy/PPTA hollow fiber composite NF membrane
图 3 (a)化学气相沉积法形成“类图灵”结构的示意图;(b)PPTA基膜孔结构和化学气相沉积过程形成PPy分离层的概念模型[26]
Figure 3. (a) Schematic diagram of “Turing-like” structure formed by chemical vapor deposition method; (b) Conceptual model illustrating the role of pristine PPTA membrane pore structure and PPy separation layer formed by chemical vapor deposition method[26]
-
[1] 林亚凯, 汪林, 唐元晖, 等. 中空纤维纳滤膜制备方法的研究进展 [J]. 膜科学与技术, 2020, 40(3): 128-135. doi: 10.16159/j.cnki.issn1007-8924.2020.03.017 LIN Y K, WANG L, TANG Y H, et al. Research progress in preparation of hollow fiber nanofiltration membranes [J]. Membrane Science and Technology, 2020, 40(3): 128-135(in Chinese). doi: 10.16159/j.cnki.issn1007-8924.2020.03.017
[2] CAO X L, YAN Y N, ZHOU F Y, et al. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater [J]. Journal of Membrane Science, 2020, 595: 117476. doi: 10.1016/j.memsci.2019.117476 [3] WU C R, ZHANG S H, YANG D L, et al. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane [J]. Journal of Membrane Science, 2009, 326(2): 429-434. doi: 10.1016/j.memsci.2008.10.033 [4] HAN R L. Formation and characterization of (melamine-TMC) based thin film composite NF membranes for improved thermal and chlorine resistances [J]. Journal of Membrane Science, 2013, 425/426: 176-181. doi: 10.1016/j.memsci.2012.08.017 [5] PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies [J]. Energy & Environmental Science, 2011, 4(6): 1946. [6] HAN R L, ZHANG S H, HU L J, et al. Preparation and characterization of thermally stable poly(piperazine amide)/PPBES composite nanofiltration membrane [J]. Journal of Membrane Science, 2011, 370(1/2): 91-96. [7] HU L J, ZHANG S H, HAN R L, et al. Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes [J]. Applied Surface Science, 2012, 258(22): 9047-9053. doi: 10.1016/j.apsusc.2012.05.153 [8] 王纯. 对位芳香族聚酰胺多孔膜制备及性能研究[D]. 天津: 天津工业大学, 2016: 8-86. WANG C. Preparation and properties of para aromatic polyamide porous membrane. Tianjin: Tianjin Polytechnic University, 2016: 8-86 (in Chinese)
[9] 赖星, 王纯, 肖长发, 等. 芳香族聚酰胺分离膜制备方法及应用进展 [J]. 纺织学报, 2021, 42(10): 172-179. doi: 10.13475/j.fzxb.20201203808 LAI X, WANG C, XIAO C F, et al. Progress in preparation and application of aromatic polyamide separation membrane [J]. Journal of Textile Research, 2021, 42(10): 172-179(in Chinese). doi: 10.13475/j.fzxb.20201203808
[10] WANG C, XIAO C F, CHEN M X, et al. Unique performance of poly(p-phenylene terephthamide) hollow fiber membranes [J]. Journal of Materials Science, 2016, 51(3): 1522-1531. doi: 10.1007/s10853-015-9473-3 [11] WANG C, XIAO C F, HUANG Q L, et al. A study on structure and properties of poly(p-phenylene terephthamide) hybrid porous membranes [J]. Journal of Membrane Science, 2015, 474: 132-139. doi: 10.1016/j.memsci.2014.09.055 [12] NAKURA K, KAMIZAWA C, MATSUDA M, et al. Preparation of ultrafiltration membranes using poly(p-phenyleneterephthalamide) as a membrane material [J]. membrane, 1992, 17(2): 78-84. doi: 10.5360/membrane.17.78 [13] ZSCHOCKE P, STRATHMANN H. Solvent resistant membranes from poly-(p-phenylene-terephthalamide) [J]. Desalination, 1980, 34(1/2): 69-75. [14] GAO F F, DU X, HAO X G, et al. An electrochemically-switched BPEI-CQD/PPy/PSS membrane for selective separation of dilute copper ions from wastewater [J]. Chemical Engineering Journal, 2017, 328: 293-303. doi: 10.1016/j.cej.2017.06.177 [15] LAWAL A T, WALLACE G G. Vapour phase polymerisation of conducting and non-conducting polymers: A review [J]. Talanta, 2014, 119: 133-143. doi: 10.1016/j.talanta.2013.10.023 [16] ZHANG X H, WANG S S, LU S, et al. Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells [J]. Journal of Power Sources, 2014, 246: 491-498. doi: 10.1016/j.jpowsour.2013.07.098 [17] GUO Z Y, YUAN X S, GENG H Z, et al. High conductive PPy–CNT surface-modified PES membrane with anti-fouling property [J]. Applied Nanoscience, 2018, 8(6): 1597-1606. doi: 10.1007/s13204-018-0826-5 [18] SHAO L, CHENG X Q, WANG Z X, et al. Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide [J]. Journal of Membrane Science, 2014, 452: 82-89. doi: 10.1016/j.memsci.2013.10.021 [19] LIU J D, TIAN C, XIONG J X, et al. Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation [J]. Journal of Colloid and Interface Science, 2017, 494: 124-129. doi: 10.1016/j.jcis.2017.01.078 [20] JI D W, XIAO C F, ZHAO J, et al. Green preparation of polyvinylidene fluoride loose nanofiltration hollow fiber membranes with multilayer structure for treating textile wastewater [J]. Science of the Total Environment, 2021, 754: 141848. doi: 10.1016/j.scitotenv.2020.141848 [21] ALSALHY Q F. Hollow fiber ultrafiltration membranes prepared from blends of poly (vinyl chloride) and polystyrene [J]. Desalination, 2012, 294: 44-52. doi: 10.1016/j.desal.2012.03.008 [22] TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale Turing structures for water purification [J]. Science, 2018, 360(6388): 518-521. doi: 10.1126/science.aar6308 [23] LI X F, VANDEZANDE P, VANKELECOM I F J. Polypyrrole modified solvent resistant nanofiltration membranes [J]. Journal of Membrane Science, 2008, 320(1/2): 143-150. [24] TURING A M. The chemical basis of morphogenesis [J]. Bulletin of Mathematical Biology, 1990, 52(1/2): 153-197. [25] GHOSH A K, HOEK E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336(1/2): 140-148. [26] LAI X, WANG C, WANG L M, et al. A novel PPTA/PPy composite organic solvent nanofiltration (OSN) membrane prepared by chemical vapor deposition for organic dye wastewater treatment [J]. Journal of Water Process Engineering, 2022, 45: 102533. doi: 10.1016/j.jwpe.2021.102533 [27] LI H B, SHI W Y, ZHANG Y F, et al. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate [J]. Applied Surface Science, 2015, 346: 134-146. doi: 10.1016/j.apsusc.2015.04.027 [28] SHI Q, NI L, ZHANG Y F, et al. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane [J]. Journal of Materials Chemistry A, 2017, 5(26): 13610-13624. doi: 10.1039/C7TA02552A [29] MI Y F, WANG N, QI Q, et al. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination [J]. Separation and Purification Technology, 2020, 248: 117079. doi: 10.1016/j.seppur.2020.117079 [30] JI D W, XIAO C F, AN S L, et al. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater [J]. Chemical Engineering Journal, 2019, 363: 33-42. doi: 10.1016/j.cej.2019.01.111 [31] WANG T, HE X P, LI Y, et al. Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions [J]. Chemical Engineering Journal, 2018, 351: 1013-1026. doi: 10.1016/j.cej.2018.06.165 [32] LIU L F, ZHAO F, LIU J D, et al. Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR [J]. Journal of Membrane Science, 2013, 437: 99-107. doi: 10.1016/j.memsci.2013.02.045 [33] SALEHI E, MADAENI S S. Influence of conductive surface on adsorption behavior of ultrafiltration membrane [J]. Applied Surface Science, 2010, 256(10): 3010-3017. doi: 10.1016/j.apsusc.2009.11.065 [34] LIU H Q, CHEN Y B, ZHANG K, et al. Poly(vinylidene fluoride) hollow fiber membrane for high-efficiency separation of dyes-salts [J]. Journal of Membrane Science, 2019, 578: 43-52. doi: 10.1016/j.memsci.2019.02.029 [35] YE C C, ZHAO F Y, WU J K, et al. Sulfated polyelectrolyte complex nanoparticles structured nanoflitration membrane for dye desalination [J]. Chemical Engineering Journal, 2017, 307: 526-536. doi: 10.1016/j.cej.2016.08.122 [36] 崔月, 许云秋, 姚之侃, 等. 正电型PVC/PEI复合纳滤膜的制备及其盐/染料分离性能 [J]. 功能材料, 2014, 45(24): 24050-24054. doi: 10.3969/j.issn.1001-9731.2014.24.010 CUI Y, XU Y Q, YAO Z K, et al. Fabrication anddye-salt separation of positively charged PVC/PEI composite nanofiltration membranes [J]. Journal of Functional Materials, 2014, 45(24): 24050-24054(in Chinese). doi: 10.3969/j.issn.1001-9731.2014.24.010
[37] 冀大伟. 熔融纺丝-热拉伸法PVDF中空纤维膜结构设计与性能优化[D]. 天津: 天津工业大学, 2021: 43-99. JI D W. tructure design and performance optimization of PVDF hollow fiber membrane by melt spinning-hot drawing method. Tianjin: Tianjin Polytechnic University, 2021: 43-99. (in Chinese)
[38] WANG L, WANG N X, ZHANG G J, et al. Covalent crosslinked assembly of tubular ceramic-based multilayer nanofiltration membranes for dye desalination [J]. AIChE Journal, 2013, 59(10): 3834-3842. doi: 10.1002/aic.14093 [39] YU S C, ZHENG Y P, ZHOU Q, et al. Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration [J]. Desalination, 2012, 298: 49-58. doi: 10.1016/j.desal.2012.04.027 [40] ALVENTOSA-DELARA E, BARREDO-DAMAS S, ZURIAGA-AGUSTÍ E, et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt [J]. Separation and Purification Technology, 2014, 129: 96-105. doi: 10.1016/j.seppur.2014.04.001 [41] ZHONG P S, WIDJOJO N, CHUNG T S, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater [J]. Journal of Membrane Science, 2012, 417/418: 52-60. doi: 10.1016/j.memsci.2012.06.013 [42] 张钦库, 朱建领, 刘康怀. 膜分离技术处理百草枯生产废水实验研究 [J]. 膜科学与技术, 2014, 34(4): 94-99. doi: 10.3969/j.issn.1007-8924.2014.04.018 ZHANG Q K, ZHU J L, LIU K H. Paraquat wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes [J]. Membrane Science and Technology, 2014, 34(4): 94-99(in Chinese). doi: 10.3969/j.issn.1007-8924.2014.04.018
[43] FREGER V, ARNOT T C, HOWELL J A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration [J]. Journal of Membrane Science, 2000, 178(1/2): 185-193. [44] TSURU T, SUDOU T, KAWAHARA S I, et al. Permeation of liquids through inorganic nanofiltration membranes [J]. Journal of Colloid and Interface Science, 2000, 228(2): 292-296. doi: 10.1006/jcis.2000.6955 [45] 杨兴涛. 纳滤处理电镀废水实验研究[D]. 天津: 天津大学, 2006: 49-55. YANG X T. Experimental study on treatment of electroplating wastewater by nanofiltration[D]. Tianjin: Tianjin University, 2006: 49-55 (in Chinese).
[46] BA C Y, ECONOMY J. Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane [J]. Journal of Membrane Science, 2010, 363(1/2): 140-148. [47] SONG Y J, LIU F A, SUN B H. Preparation, characterization, and application of thin film composite nanofiltration membranes [J]. Journal of Applied Polymer Science, 2005, 95(5): 1251-1261. doi: 10.1002/app.21338 -