Processing math: 100%

碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷

戴启才, 张瑞良, 殷健, 秦曦, 刘兆斌, 甄广印, 陆雪琴. 碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷[J]. 环境化学, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
引用本文: 戴启才, 张瑞良, 殷健, 秦曦, 刘兆斌, 甄广印, 陆雪琴. 碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷[J]. 环境化学, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
DAI Qicai, ZHANG Ruiliang, YIN Jian, QIN Xi, LIU Zhaobin, ZHEN Guangyin, LU Xueqin. Crosslinking polymerization to recover organic matter and nitrogen/phosphorus from the supernatant of sludge combined alkali-microwave pretreated sludge[J]. Environmental Chemistry, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
Citation: DAI Qicai, ZHANG Ruiliang, YIN Jian, QIN Xi, LIU Zhaobin, ZHEN Guangyin, LU Xueqin. Crosslinking polymerization to recover organic matter and nitrogen/phosphorus from the supernatant of sludge combined alkali-microwave pretreated sludge[J]. Environmental Chemistry, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104

碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷

    通讯作者: Tel:021-54341145 ,E-mail:gyzhen@des.ecnu.edu.cn
  • 基金项目:
    国家自然科学基金青年科学基金(51808226,51908217),上海市“科技创新行动计划”国际合作项目(21230714000),上海高校特聘教授(东方学者)计划项目(TP2017041),上海市扬帆计划项目(19YF1414000)和上海有机固废生物转化工程技术研究中心开放课题(19DZ2254400)资助.

Crosslinking polymerization to recover organic matter and nitrogen/phosphorus from the supernatant of sludge combined alkali-microwave pretreated sludge

    Corresponding author: ZHEN Guangyin, gyzhen@des.ecnu.edu.cn
  • Fund Project: the National Natural Science Foundation Youth Project (51808226,51908217),the Fundamental Research Funds for the Central Universities,Shanghai Science and Technology Innovation Action Plan,“One Belt, One Road”Young Scientists Exchange International Cooperation Project (21230714000),Shanghai University Distinguished Professor (Oriental Scholar) Program (TP2017041),the Shanghai Yangfan Program (19YF1414000) and Open Topic of Shanghai Research Center of Organic Solid Waste Biotransformation Engineering Technology (19DZ2254400).
  • 摘要: 从污泥中回收有机组分是实现污泥的妥善处理和资源再利用的理想途径。本研究系统考察了碱联合微波处理下污泥中有机质及氮磷的释放特征,同时使用甲基三乙酰氧基硅烷(methyltriacetoxysilane,MTAC)以絮凝聚合物的形式回收污泥上清液中的营养物质,并探究其内在机制。结果表明,碱联合微波处理能有效加速污泥的溶解和胞内物质释放,最佳处理条件为NaOH剂量1.12 g·L−1污泥、碱处理时间40 min,微波辐射功率640 W、微波辐射时间 120 s。碱联合微波处理比单独碱处理SCOD溶出浓度提高了97.6%,TN和TP分别增加了51.35%和25.13%。MTAC与上清液中营养物质通过交联、絮凝和团聚作用,有效地分离回收了营养物质,其中蛋白质、多糖、TN和TP回收率分别高达44.72%、58.49%、76.90%和48.71%。本研究证实了碱联合微波处理污泥,以MTAC为交联剂进行化学聚合,是一种污泥高效处置和资源回收的简单的替代策略。
  • 溶解性固体总量(total dissolved inorganic salt,TDS)的质量分数大于1%的含氮废水通常称为高盐含氮废水[1]。目前,高盐含氮废水排放量大且来源广泛,如腌制食品工业[2]、海产品加工[3]、皮革生产[4]等。由于来源不同,高盐含氮废水的性质复杂各异,不仅含有氮、磷等营养元素和中低碳链的有机物,也含有高浓度的SO24、Cl、Ca2+、Mg2+、Na+等无机离子,是一种污染严重且处理难度较大的废水。传统的膜分离法、电解法、离子交换法虽能去除盐度,但对污染物的降解效果甚微。

    MFCs微生物燃料电池(microbial fuel cells,MFC)是一种新型废水处理技术,因能以产电微生物作为催化剂,氧化水中污染物并且实现化学能向电能的转换而备受国内外关注。研究者们对MFCs性能的考察,最初主要集中于低盐条件下的废水处理、营养物质回收或生物传感设备。2002年,TENDER等[5]将阳极嵌入海洋沉积物中,阴极置于上覆海水中,利用沉积微生物的活动在水-沉积物表面形成电压梯度,产生电能,实现了MFC在高盐环境下产电的可能性,为高盐废水的处理提供了新思路。盐度会对MFC的性能产生影响。LIU等[6]研究发现,当离子强度由100 mmol·L−1增加到400 mmol·L−1时,以乙酸钠为碳源的单室MFC的产电性能便得以改善; TREMOULI等[7]考察了盐度对COD去除率的影响,发现当盐度从2.7 g·L−1增加至6.7 g·L−1时,COD的去除率从70%下降至52%;黄志鹏[8]研究了盐度分别对单室MFC中NH+4-N、NO3-N和NO2-N的处理效果影响,发现随着盐度的增加,NH+4-N的去除率逐渐减小,而NO3-N和NO2-N的还原速率呈现先升高后降低的趋势。目前,MFC处理高盐废水的研究大多集中于盐度对电池产电性能以及有机物去除的影响方面,而对高盐条件下同步硝化反硝化除氮的影响还鲜见报道。

    为优化以高盐含氮废水为底物的MFC的性能,并为今后MFC应用于实际废水提供参考,本研究根据实际废水的水质变化情况,设置了5组不同碳氮比(C/N分别为3∶1、4∶1、5∶1、6∶1和7∶1)的高盐模拟废水作为单室MFC的底物,探讨了碳氮比对单室MFC产电性能、COD去除率以及同步硝化反硝化脱氮的影响,同时,通过高通量测序技术对接种泥和电极生物膜进行了检测,并对优势菌种进行了分析,以进一步为高盐含氮废水的处理提供参考。

    单室无膜空气阴极MFC装置如图1所示。反应器由有机玻璃板构成,长×宽×高为60 mm×60 mm×70 mm,腔体有效体积为252 cm3。阳极采用有效面积为36 cm2的正方形碳毡,其尺寸为60 mm×60 mm。阴极采用有效面积为42 cm2的长方形碳能碳布,其尺寸为60 mm×70 mm。 阴阳极均由钛丝引出,并经铜导线与电阻箱连接构成闭合回路。外电阻设置为1 000 Ω,电池运行过程中,采用磁力搅拌器对电极液进行搅拌,并在反应器的上部预留直径为8 mm的圆孔用于电极液的更换。

    图 1  单室空气阴极MFC实验装置
    Figure 1.  Schematic diagram of single-chamber air-cathode MFC

    电极材料在使用前需进行预处理。碳布的处理步骤如下:首先在碳布的疏水侧均匀涂抹20%的聚四氟乙烯乳液,待液体凝固后,置于370 ℃的马弗炉中烘烤15min,以上步骤重复4次;其次,在碳布的亲水侧做催化处理,将20%的Pt/C催化剂、异丙醇、去离子水及Nafion黏接剂按照一定比例混合后均匀涂抹于碳布的有效范围,再在70 ℃烘箱中烘烤2 h。其中,Pt/C催化剂的使用量取决于催化剂的浓度和有效面积,本研究采用催化剂浓度为0.5 mg·cm−2,因此,Pt/C催化剂的使用量为21 mg;异丙醇、Nafion黏接剂以及去离子水的使用量与Pt/C催化剂的使用量有关, 每mg Pt/C催化剂需0.83×10−6 L异丙醇溶液、6.67×10−6 L Nafion黏接剂、3.33×10−6 L去离子水,因此,异丙醇、Nafion黏接剂和去离子水的使用量分别为69.93×10−6、140.07×10−6和17.43×10−6 L。碳毡需采用1 mol·L−1的硫酸、1 mol·L−1的氢氧化钠及无水乙醇依次浸泡12 h,以去除碳毡表面的颗粒污染物和金属离子。

    在常规的污水处理系统中,相比于进水中氮的含量,进水中有机物浓度的变化幅度更大。因此,本研究依据榨菜废水处理厂厌氧池出水中污染物的浓度变化情况,在碳氮比的设置中,固定氮的浓度,再根据不同碳氮比确定COD值。实验所采用的水样均为模拟废水,氮源由NH4Cl(0.497 g·L−1)提供、碳源由CH3COONa提供,CH3COONa的使用量依据碳氮比确定,当碳氮比分别为3∶1、4∶1、5∶1、6∶1、7∶1时,CH3COONa的使用量依次为0.50、0.67、0.83、1和1.17 g·L−1,其余成分主要包括CaCl2 0.208 g·L−1、KCl 0.1 g·L−1、MgSO4·7H2O 0.1 g·L−1、Na2SO4 0.23 g·L−1、KH2PO4 0.176 g·L−1,模拟废水均用NaCl调至TDS为15 g·L−1。配水在4 ℃的冰箱内保存。配水水质特征如表1所示。

    表 1  配水水质特征
    Table 1.  Quality of the synthetic medium
    碳氮比COD/(mg·L−1)氨氮/(mg·L−1)TN/(mg·L−1)TP/(mg·L−1)盐度/(g·L−1)pH
    3∶1397.50131.53132.3140157.0
    4∶1524.06131.56132.1840157.0
    5∶1652.19131.53132.2840157.0
    6∶1780.31131.56132.2040157.0
    7∶1911.56131.53132.3140157.0
     | Show Table
    DownLoad: CSV

    同时启动5套单室无膜空气阴极MFCs,记为1#、2#、3#、4#和5# MFC,分别以碳氮比为3∶1、4∶1、5∶1、6∶1和7∶1的模拟废水为电极液,实验采用序批式模式运行。在启动阶段,分批次向反应器中接种15 mL取自井口污水厂且经实验室培养的反硝化污泥,并使电极液充满整个反应器腔室,当电池运行电压降至50 mV以下时则视为完成1个产电周期,并及时更换新鲜电极液。若连续3个周期电池均能达到相似电压,则认为MFCs启动成功。再向反应器中接种10 mL取自榨菜废水处理厂且经实验室培养的高盐硝化污泥,待出水水质稳定,采集实验数据。为保持反应器的厌氧状态,电极液在更换前需用氮气吹脱10 min,并且换液孔需用胶带密封。

    电池输出电压(U,mV)通过PISO数据采集器(中国台湾泓格科技公司)进行采集,采集频率为1 min·次−1,并记录于存储设备;开路电压和阴阳极电势采用UT39A数字万用表测得。极化曲线和功率密度曲线通过变电阻法测得。电流、功率密度和库仑效率根据式(1)~式(3)进行计算。

    I=UR (1)
    PV=U2VAnR (2)
    CE=MO2t0IdtFbVAnD (3)

    式中:I为电流,mA;PV为功率密度,mW·m−3CE为库仑效率,%;R为外电路电阻,Ω;VAn为反应器有效体积,m3MO2为以氧为标准的有机物摩尔质量,32 g·mol−1F为法拉第常数,96 485 C·mol−1b为以氧为标准,氧化1 mol有机物需要转移的电子数,取值4 mol;D为在时间0~t内COD的变化,g·mol−1

    水质检测指标和方法包括COD(重铬酸盐法);氨氮(纳氏试剂比色法);硝态氮(氨基磺酸紫外分光光度法);亚硝氮(N-(1-萘基)-乙二胺光度法);总氮(碱性过硫酸钾消解紫外分光光度法)。盐度通过电导率仪(FE-30K,Metter-Toledo)进行检测,pH和溶解氧通过便携式仪器进行检测。

    接种污泥的取样:驯化成功后,取少量接种污泥,在4 ℃环境下以10 000 r·min−1离心15 min,然后将样品保存在−80 ℃冰箱中。电极生物膜的取样:待实验结束,将电极生物膜从单室MFC中取出,用手术刀剪裁成检测所需尺寸后,保存在−80 ℃冰箱中。使用E.Z.N.A.®土壤DNA试剂盒(Omega Bio-tek,Norcross,GA,USA)提取接种污泥和电极生物膜DNA,采用16S rRNA基因测序技术对样本进行检测并对优势菌种进行分析。接种污泥及电极生物膜样品交至上海美吉生物平台(上海,中国),由该公司通过PCR扩增技术进行高通量测序。

    以不同碳氮比的模拟废水为底物的单室MFCs的输出电压如图2所示。由图2可以看出,MFCs经换水后均可以迅速达到峰值电压并维持稳定。碳氮比分别为3∶1、4∶1、5∶1、6∶1和7∶1的单室MFCs的产电周期和峰值电压存在差异,电池的最高输出电压依次为552、576、588、606及610 mV,产电周期长依次为26、36、48、60和71 h。其原因是,碳氮比的提高使电极微生物可利用底物浓度增大,同时也使得反应器厌氧环境相应增强,电极微生物的活性提高,从而促进其对底物的利用。

    图 2  单室MFCs的输出电压
    Figure 2.  Output voltages of the single-chamber MFCs

    当电池连续稳定运行5个周期后,通过变电阻法测定电池的功率密度曲线和极化曲线,结果如图3所示。在5个碳氮比水平下单室MFCs的开路电压和内阻分别为:688 mV和90 Ω、713 mV和87.6 Ω、740 mV和81.6 Ω、749 mV和80.9 Ω、765 mV和78.4 Ω(图3(a)图3(b));相应的最大功率密度依次为5.17、5.71、6.48、6.97和7.33 W·m−3(图3(b))。黄浩斌等[9]开发的单室MFC在盐度为20 g·L−1的条件下的最大输出功率为1.11 W·m−2。系统的极化由阴阳极极化共同决定,5套MFCs系统的阳极电势均随着电流密度的增大,出现逐渐加重的极化现象,而阴极电势呈现平缓的极化现象,这说明阳极电势的改变比阴极电势更能影响单室MFCs的电压。产生以上现象的主要原因是:碳氮比的增加可有效促进溶液中离子的迁移,电极生物膜为了适应电极液底物浓度的变化,传质内阻和活化内阻降低,功率密度增大,从而造成电池性能的提升。

    图 3  单室MFCs的极化曲线和功率密度曲线
    Figure 3.  Power density and polarization curve of the single-chamber MFCs

    图4可以看出,当5组单室MFCs的进水中仅含有NH+4-N并且NH+4-N浓度保持在(131.53±1.7) mg·L−1时,电池稳定运行的周期出水中,均没有NO3-N的积累,1#、3#和4#MFCs中有少量的NO2-N,说明该单室MFC在高盐条件下可以实现同步硝化反硝化脱氮。当碳氮比为4∶1时,TN的去除效果最佳,NH+4-N和TN的去除率高达(96.98±1.8)%和(96.64±1.8)%;当碳氮比为5∶1和6∶1时,NH+4-N和TN的去除率有所下降,但仍在75%以上;而当碳氮比为7∶1时,NH+4-N和TN的去除率仅为(22.21±1.2)%和(22.18±1.3)%。

    图 4  不同形态N浓度和去除率
    Figure 4.  Concentration and removal rate of the different nitrogen forms

    导致以上现象的原因可能是:单室MFCs的接种源以好氧反硝化菌Thauera为主。有研究[10-12]表明,Thauera也能够进行异养硝化;同时,COD的增加并没有抑制NH+4-N对氧气的利用,推测除了传统的自养硝化作用,异养硝化可能是NH+4-N的主要转换途径,而有机物浓度是影响异养硝化效率的重要因素[13],高浓度的有机物有利于异养硝化菌的生长代谢;此外,产电周期过短也可能限制NH+4-N的降解。因此,当碳氮比由3∶1升至4∶1时,底物浓度增加,碳源更加丰富,产电周期延长,脱氮效果显著提高。而当碳氮比为7∶1时,NH+4-N和TN的去除率低于25%,这可能是因为系统中其他异养菌大量富集,加剧了对耗氧有机物(以COD计)的竞争作用,导致系统的脱氮功能受到抑制。

    图5(a)可得,当碳氮比从3∶1升高至4∶1时,COD的去除率从(60.93±2.1)%增加至(86.17±2.4)%,而当碳氮比继续升高至7∶1,COD的去除率分别为(82.18±2.5)%、(82.10±2.1)%、(84.68±1.8)%。这可能是因为:一方面随着碳氮比的增加,单位面积的微生物活性增强[14],降解耗氧有机物(以COD计)并且进行新陈代谢的能力也提高,但当电极微生物与底物结合的酶数量达到饱和状态,即使继续增加碳氮比,COD的去除率也不再提高;另一方面,在同时脱氮除碳的单室MFCs系统中,氮的去除过程也需要消耗有机物,而在不同碳氮比环境下,菌种间对有机物的竞争作用存在差异,从而影响有机物及氮的去除效果。乔龙胜[14]以不同浓度的人工配水为单室MFC的底物时COD的去除率仅为42.64%~55.90%。

    图 5  不同碳氮比条件下的COD去除率和库仑效率
    Figure 5.  COD removal rate and coulombic efficiency at different carbon-nitrogen ratios

    1#~5#MFCs的库仑效率分别为7.4%、4.8%、5.3%、4.9%、5.7%(图5(b))。LIU等[15]以醋酸盐作为空气阴极单室MFCs的底物时库仑效率高达28.3%,这说明在本研究的反应器中除发电以外的其他过程消耗了大量的耗氧有机物(以COD计)。对以上结果的原因分析如下:首先,5组单室MFCs均没有采用质子交换膜,为氧气的渗入提供了便利,部分有机物被氧气消耗,导致库仑效率降低,LIU等[16]的研究表明,不使用质子交换膜的MFC的氧气通量比使用质子交换膜的MFC高2.7倍;其次,1#MFC表现出比其他MFCs更高的库仑效率,这可能与电极微生物优先利用溶液中的耗氧有机物(以COD计)进行产电有关,2#、3#和4#电池库仑效率降低可能是因为部分耗氧有机物(以COD计)作为碳源被反硝化菌消耗,而5#MFC反应器中可能富集了大量其他异养菌,加剧了对耗氧有机物(以COD计)的竞争,库仑效率降低。

    在MFCs运行的一个完整周期,以4 h为间隔,对电极液水质进行检测,结果如图6所示。由图6可以看出,在不同碳氮比条件下,单室MFCs体系中DO的浓度各不相同,且对耗氧有机物(以COD计)和NH+4-N的降解过程存在差异,但污染物的变化趋势具有一致性,这说明单室MFCs可以实现电极液中有机物的自动分配。表2表3分别表示NH+4-N和耗氧有机物(以COD计)在不同运行阶段的降解速率。结果表明:在周期运行的初始阶段,电极液中底物充足,电极微生物对耗氧有机物(以COD计)的竞争作用较弱,耗氧有机物(以COD计)和NH+4-N均以较大速率降解;而随着运行时间的增加,底物浓度降低,单位面积的微生物活性减弱,降解耗氧有机物(以COD计)并且进行新陈代谢活动的能力也受到影响,导致COD的去除速率降低,同时由于系统中电极微生物对耗氧有机物(以COD计)的竞争作用逐渐加强,NH+4-N的降解速率也减缓;在周期运行的后期,COD值继续降低,一方面,产电微生物活性减弱使传递到阴极的电子数量减少,另一方面,可用于消耗通过碳布扩散进入电池的氧气的耗氧有机物(以COD计)不足,导致氧气在电池中的不断累积。詹亚力等[17]向MFC中更换含有饱和溶解氧和不含溶解氧的醋酸钠溶液,发现高含量的氧气不利于电池电能的输出,因此,氧气浓度的增加反过来又对阳极产电微生物起到一定的抑制作用。1#、2#、3#和4#MFCs在电池运行的后期出现NH+4-N降解速率的小幅提高可能与反应器中溶解氧浓度的增加有关,间接促进了NH+4-N的降解。5#电池的NH+4-N在运行的中后期以0.26 mg·(L·h)−1的速率降解,说明系统的脱氮功能受到严重的抑制作用。5组MFCs的pH始终保持稳定,是因为该实验单室MFCs系统通过同步硝化反硝化过程脱氮,硝化产生的酸度可以中和部分反硝化过程产生的碱度[18]

    图 6  5组单室MFCs在典型周期内的COD、氮浓度及pH的过程变化
    Figure 6.  Process changes of COD, nitrogen concentration and pH of five MFCs with different carbon-nitrogen ratios in a typical cycle
    表 2  5组MFCs的氨氮在不同阶段的去除速率
    Table 2.  Removal rate of ammonia in five MFCs at different stages mg·(L·h)−1
    运行阶段氨氮去除速率
    C/N=3∶1C/N=4∶1C/N=5∶1C/N=6∶1C/N=7∶1
    第1阶段5.48(0~8 h)5.31(0~12 h)4.78(0~8 h)4.14(0~8 h)0.94(0~20 h)
    第2阶段1.83(8~16 h)2.04(12~28 h)1.40(8~28 h)0.96(8~44 h)0.26(20~72 h)
    第3阶段3.18(16~24 h)3.50(28~36 h)2.24(28~48 h)1.78(44~60 h)
     | Show Table
    DownLoad: CSV
    表 3  5组MFCs的COD在不同阶段的去除速率
    Table 3.  Removal rate of COD in five MFCs at different stages mg·(L·h)−1
    运行阶段COD去除速率
    C/N=3∶1C/N=4∶1C/N=5∶1C/N=6∶1C/N=7∶1
    第1阶段18.13(0~8 h)15.63(0~16 h)15.00(0~24 h)18.68(0~28 h)14.73(0~44 h)
    第2阶段7.19(8~24 h)11.88(16~36 h)6.25(24~48 h)5.78(28~60 h)9.34(44~72 h)
     | Show Table
    DownLoad: CSV

    综上所述,单室MFCs体系中耗氧有机物(以COD计)可能参与以下4种反应:被阳极生物膜中的产电菌所利用;被渗入反应器中的氧气直接消耗;作为反硝化过程中的碳源被利用;被其他异养菌利用,即单室MFCs体系中耗氧有机物(以COD计)的去除是多种反应相互作用、相互反馈的结果,变量间的变化规律不呈单向,因此,DO与COD、C/N之间并未呈现明显的变化规律。验证上述推测还需要对电极生物膜进行高通量测序分析。

    1)门水平下微生物群落结构分析。门水平下接种物及电池阴阳极生物膜的主要菌属如图7所示。其中好氧和厌氧接种物由IA和IC表示,5种碳氮比水平对应的阴阳极生物膜由C1/A1、C2/A2、C3/A3、C4/A4和C5/A5表示。可以看出,单室MFCs的阴极碳布上也附着了大量的微生物。厌氧接种物中的优势菌种为Proteobacteria(44.62%)、Bacteroidetes(36.45%)和Firmicutes(11.69%);好氧接种物种的优势菌种为Proteobacteria(51.30%)、Bacteroidetes(18.56%)和Patescibacteria(12.91%)。在1#~5#MFC中,阴极生物膜以ProteobacteriaBacteroidetes为优势菌种,但丰度存在显著差异。其中Proteobacteria的丰度依次为75.66%(C1)、64.64%(C2)、46.25%(C3)、53.17%(C4)和44.24%(C5);Bacteroidetes的丰度分别为11.37%(C1)、23.14%(C2)、43.97%(C3)、41.42%(C4)和30.78%(C5)。C5中Planctomycetes以及Firmicutes的丰度增加,分别为3.53%和3.08%;而阳极生物膜以ProteobacteriaBacteroidetesChloroflexi为优势菌种,Proteobacteria的丰度依次为38.78%(A1)、38.28%(A2)、48.28%(A3)、60.28%(A4)和47.19%(A5);Bacteroidetes的丰度分别为45.68%(A1)、19.38%(A2)、18.33%(A3)、16.20%(A4)和26.71%(A5);Chloroflexi的丰度分别为1.43%(A1)、14.14%(A2)、20.85%(A3)、8.76%(A4)和4.02%(A5)。有研究[19]表明,ProteobacteriaBacteroidetes是高盐废水处理系统中的主要菌种;Firmicutes在一些极端环境中可以生存并且特定的属种能够进行异养硝化[20];而Actinobacteria可以进行反硝化,将NO3NO2还原为N2O气体释放[21],5组阴极生物膜中均检出了Actinobacteria,但丰度较低,依次为2.67%(C1)、1.04%(C2)、0.51%(C3)、0.52%(C4)和1.58%(C5);Chloroflexi门在有氧或无氧条件下均可以优先利用葡萄糖和N-乙酰氨基葡萄糖,但在pH较低的环境下利用率降低[22]。在门水平下,接种泥中的优势菌种在反应器中得以延续。

    图 7  门水平下接种物及生物膜中微生物群落组成
    Figure 7.  Microbial community composition of the inoculum and biofilms at the phylum level

    2)属水平下微生物群落结构分析。属水平下接种物及电池阴阳极生物膜的主要菌属如图8所示。由图8(a)图8(b)可以看出,在属水平下,厌氧接种泥的主要菌属为Thauera(37.63%)、norank_f_ML635J-40_aquatic_group(22.30%)和Lentimicrobium(5.24%);好氧接种泥的主要菌属为Thauera(26.87%)、Luteibacter(20.35%)、norank_o_Saccharimonadales(12.89%)和unclassified_o__Chitinophagales(10.60%),接种泥以Thauera为主。有研究[10-12]表明,Thauera能够在厌氧MFC中实现产电和有机物去除,并在同步硝化反硝化系统中通过异养硝化-好氧反硝化途径脱氮。

    图 8  属水平下接种物及生物膜中微生物群落组成
    Figure 8.  Microbial community composition of the inoculum and biofilms at the genus level

    5组单室MFCs的阴极、阳极生物膜的菌属在属水平下有显著差异,同时为适应高盐水质,与接种污泥相比较微生物群落更为丰富,但Thauera始终为优势菌种,其丰度分别为30.59%和25.79%(C1、A1)、32.75%和34.75%(C2、A2)、25.01%和33.89%(C3、A3)、27.67%和27.30%(C4、A4)以及17.32%和18.06%(C5、A5)。除Thauera外,不同碳氮比条件下的优势菌种各有不同。在属水平下,发现15种与脱氮相关的功能菌,包括ThaueraStappiaAcinetobacterArcobacterParacoccusRheinheimeraSedimenticolaSulfurimonasThioalbus、unclassified_f_Rhodocyclaceae、unclassified_f_RhodobacteraceaeSoehngeniaCaldithrix、unclassified_f_FlavobacteriaceaeFlavobacterium。其中,Stappia[23]Arcobacter[23]Sedimenticola[24]Thioalbus[25]Soehngenia[26]Sulfurimonas[27]为硫型自养反硝化菌,能够将底物中的硫化物氧化为高价硫,同时为硝酸盐的还原提供电子,以实现反硝化过程。有研究表明,Arcobacter[23]氧化硫化物的电子也可以提供给二氧化碳,用于合成有机物。Thauera、unclassified_f_Rhodocyclaceae[28-29]Rheinheimera[30]Acinetobacter[31]Paracoccus[32-33]、unclassified_f_Rhodobacteraceae[34]Flavobacterium[35]经证实具有异养硝化-好氧反硝化脱氮的功能,其中,Rheinheimera可以利用不同的碳源实现好氧反硝化[30]Acinetobacter能够在酸性条件下通过异养硝化-好氧反硝化过程实现了氮的去除[31]。而Caldithrix可利用分子氢或乙酸盐作为电子供体还原硝酸盐,也可以利用厌氧氨氧化过程产生的硝酸盐以实现更高的氮去除率[36]。unclassified_f_Flavobacteriaceae在溶解氧较低的条件下可以有机物为电子供体、硝酸盐或亚硝酸盐作为电子受体进行无氧呼吸代谢,若有机物充足,硝酸盐或亚硝酸盐可被还原为氮气[37]。在阴极生物膜中,具有异养硝化功能的微生物丰度依次为35.72%(C1)、46.90%(C2)、40.17%(C3)、35.63%(C4)和21.38%(C5),反硝化菌的丰度依次为47.17%(C1)、62.41%(C2)、51.28%(C3)、56.09%(C4)和21.38%(C5),其中,好氧反硝化菌的丰度分别为35.72%(C1)、52.60%(C2)、49.59%(C3)、45.08%(C4)和21.38%(C5)。值得注意的是,好氧接种物中自养硝化菌的丰度为3.07%,而该5组单室MFCs中自养硝化菌的丰度均低于<1%,说明硝化菌在与异养菌的竞争中处于劣势而逐渐被淘汰。推测异养硝化可能是该系统中氨氮转换的主要途径,同时,参与反硝化过程的菌属中,好氧反硝化菌所占比例较高,说明该单室MFCs主要通过好氧反硝化途径实现氮的去除。但由图6可见,各单室MFCs体系在周期运行的过程中,氨氮逐渐下降,同时未出现NO3-N和NO2-N的积累,即硝化和反硝化作用是同时进行的,而DO的浓度仅在周期反应的后期有小幅增加,这主要是因为氧气能够通过碳能碳布和阴极生物膜进入电极液中,但在周期反应的前期,实验监测到电极液中的DO为零,即氧气在透过阴极生物膜的时候已被完全消耗,并达成动态平衡。因此,氧气跨膜的过程,为好氧反硝化菌对硝酸盐的利用提供了良好的条件,从而实现了好氧反硝化脱氮。

    在属水平下,还发现7种硫酸盐还原菌,分别为Desulfotignum[38]Desulfomicrobium[24]Dethiosulfatibacter[39]Desulfococcus[40]Desulfuromonas[41]Desulfofustis[42]Sulfurovum[43]。KAMARISIMA等[38]研究发现,当硝酸盐浓度(1 mmol·L−1)低于硫酸盐浓度(5 mmol·L−1)时,Desulfotignum可以将硫酸盐还原成硫化物;Dethiosulfatibacter通常以硫代硫酸盐作为电子受体将其还原为低价态硫[39]Desulfuromonas能够以Fe3+作为电子受体氧化乙醇、丙醇和丁醇[41];在厌氧环境下,Desulfofustis能够利用有机物将硫酸盐还原为H2S[42]Sulfurovum可以氢为电子供体实现硫酸盐的还原,并在硫酸盐浓度较高的环境中富集[43]。在阳极生物膜中,硫酸盐还原菌的丰度为1.0%(A1)、1.0%(A2)、4.33%(A3)、20.77%(A4)和27.15%(A5),SRB的丰度随着电极液中碳氮比的升高逐渐增大,并且SRB菌种也越来越丰富,即在硫酸盐浓度极低的条件下,SRB也可以在该单室MFCs中富集,同时,可以对系统的脱氮效率产生影响。值得注意的是,在C5生物膜中也检测出了硫酸盐还原菌DesulfotignumDesulfomicrobium,丰度高达10.78%和2.39%,说明当电极液碳氮比为7∶1时,单室MFC呈现完全厌氧的状态。

    1)单室MFCs在以不同碳氮比的高盐模拟废水(盐度为15 g·L−1)为阳极液时,可实现污染物去除和同步产电。

    2)当碳氮比由3∶1依次增加至7∶1时,单室MFCs的产电性能逐渐优化,当碳氮比为7∶1时,功率密度最大,为7.33 W·m−3

    3)碳氮比不同的单室MFCs的污染物去除率存在差异。当C/N=4∶1时,耗氧有机物(以COD计)、NH+4-N和TN的去除效果最佳,去除率分别为(86.17±2.4)%、(96.98±1.8)%和(96.64±1.8)%。

    4)碳氮比不同的单室MFCs对污染物的去除过程存在差异。在稳定产电周期内,COD及NH+4-N在不同阶段表现出不同的去除速率,这主要与底物浓度有关。

    5)当接种物以Thauera为主时,单室MFCs可通过异养硝化-好氧反硝化途径实现氮的去除。

  • 图 1  单独碱处理下(a)SCOD、(b)SPN、(c)SPS浓度与反应时间和NaOH投加量的关系

    Figure 1.  The relationship between the concentration of (a)SCOD, (b)SPN, (c)SPS and reaction time and NaOH dosage under the condition of alkali alone

    图 2  最佳碱解条件联合微波处理(a)SCOD、(b)SPN、(c)SPS浓度与时间的微波功率的关系

    Figure 2.  Relationships between the concentration of (a)SCOD, (b)SPN, (c)SPS, and time and power of microwave under optimal alkaline hydrolysis conditions combined with microwave treatment

    图 3  单独碱处理、碱联合微波处理下TN(a)、(b)和TP(c)、(d)的浓度变化

    Figure 3.  The concentration of TN (a), (b) and TP (c), (d) under the condition of alkali alone and alkali combined with microwave treatment

    图 4  S-PS、S-PN、TP和TN的回收效果(MTAC剂量 = 0.189 mol·L−1

    Figure 4.  Recovery effect of SPS, SPN, TP and TN (MTAC dosage = 0.189 mol·L−1

    图 5  不同处理条件下污泥的SEM图像

    Figure 5.  SEM images of sludge under different treatment conditions (a) raw sludge (b) low dose alkali treatment (c) optimal dosage of alkali treatment (d) alkali combined with microwave treatment

    图 6  (a)交联剂MTAC(b)絮凝聚合物(c)聚合后的上清液(d)预处理后污泥上清液的FTIR光谱

    Figure 6.  FT-IR spectra of (a) crosslinking agent MTAC (b) flocculated polymer (c) supernatant after polymerization (d) supernatant of sludge after pretreatment

    图 7  (a)絮凝物的低分辨率XPS光谱;絮凝物的高分辨率O 1s(b)和C 1s(c)XPS光谱。

    Figure 7.  Low resolution XPS spectra of floc (a); high resolution O 1s (b) and C 1s (c) of MTAC-flocs

    图 8  (a)絮凝聚合物的SEM图像和(b)EDS光谱

    Figure 8.  (a) SEM image and (b) EDS spectra of flocculated polymer

    图 9  絮凝聚合物的TG-DSC曲线

    Figure 9.  TG-DSC curve of flocculated polymer

    图 10  MTAC存在下预处理后污泥上清液中有机质聚合絮凝机制

    Figure 10.  Flocculation mechanism of organic matter in sludge supernatant after pretreatment in the presence of MTAC

    表 1  污泥的基本理化特性

    Table 1.  Physicochemical characteristics of the sludge

    含水率/%Moisture contentpH总固体/(g·L−1)TS挥发性固体/(g·L−1)VS溶解性化学需氧量/(mg·L−1)SCOD溶解性蛋白质/(mg·L−1)SPN溶解性多糖/(mg·L−1)SPS总磷/(mg·L−1)TP总氮/(mg·L−1)TN
    97.76 ± 0.36.80 ± 0.222.4 ± 0.610.4 ± 0.4181.75 ± 13.184.16 ± 5.326.34 ± 2.870.44 ± 6.12.70 ± 0.1
    含水率/%Moisture contentpH总固体/(g·L−1)TS挥发性固体/(g·L−1)VS溶解性化学需氧量/(mg·L−1)SCOD溶解性蛋白质/(mg·L−1)SPN溶解性多糖/(mg·L−1)SPS总磷/(mg·L−1)TP总氮/(mg·L−1)TN
    97.76 ± 0.36.80 ± 0.222.4 ± 0.610.4 ± 0.4181.75 ± 13.184.16 ± 5.326.34 ± 2.870.44 ± 6.12.70 ± 0.1
    下载: 导出CSV

    表 2  絮凝聚合物的BET表面积和孔径分析结果

    Table 2.  BET surface area and pore size analysis results of flocculated polymer

    BET表面积/(m2·g−1)BET surface area微孔/介孔表面积/( m2·g−1)Micropore/Mesoporous surface area孔体积/(cm3·g−1)Pore volume微孔/介孔体积/(cm3·g−1)Micropore/Mesoporous volume孔径/nmPore diameter
    9.05543.9485/5.10680.0113280.001799/0.00952950.0374
    BET表面积/(m2·g−1)BET surface area微孔/介孔表面积/( m2·g−1)Micropore/Mesoporous surface area孔体积/(cm3·g−1)Pore volume微孔/介孔体积/(cm3·g−1)Micropore/Mesoporous volume孔径/nmPore diameter
    9.05543.9485/5.10680.0113280.001799/0.00952950.0374
    下载: 导出CSV
  • [1] JUNG J M. Single-photon ionisation of liquid methanol and ethanol [J]. Chemical Physics Letters, 2002, 366(1/2): 67-72.
    [2] BALMÉR P. Phosphorus recovery: An overview of potentials and possibilities [J]. Water Science and Technology, 2004, 49(10): 185-190. doi: 10.2166/wst.2004.0640
    [3] LU D, XIAO K K, CHEN Y, et al. Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: From macro to micro [J]. Water Research, 2018, 142: 138-146. doi: 10.1016/j.watres.2018.05.044
    [4] PERENDECI N A, CIGGIN A S, KÖKDEMIR ÜNŞAR E K, et al. Optimization of alkaline hydrothermal pretreatment of biological sludge for enhanced methane generation under anaerobic conditions [J]. Waste Management (New York, N, Y. ), 2020, 107: 9-19. doi: 10.1016/j.wasman.2020.03.033
    [5] ZHANG Y X, ZHANG P Y, ZHANG G M, et al. Sewage sludge disintegration by combined treatment of alkaline+high pressure homogenization [J]. Bioresource Technology, 2012, 123: 514-519. doi: 10.1016/j.biortech.2012.07.078
    [6] MUDHOO A, SHARMA S K. Microwave irradiation technology in waste sludge and wastewater treatment research [J]. Critical Reviews in Environmental Science and Technology, 2011, 41(11): 999-1066. doi: 10.1080/10643380903392767
    [7] TAO W D, FATTAH K P, HUCHZERMEIER M P. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances [J]. Journal of Environmental Management, 2016, 169: 46-57.
    [8] 王雅珍, 张雪泽, 狄语韬. 近年硅烷偶联剂在聚合物改性中的研究进展及应用 [J]. 化工新型材料, 2018, 46(11): 5-7,12.

    WANG Y Z, ZHANG X Z, DI Y T. Research progress and application of silane coupling agent in polymer modification [J]. New Chemical Materials, 2018, 46(11): 5-7,12(in Chinese).

    [9] ZHOU T, HUANG S, NIU D J, et al. Efficient separation of water-soluble humic acid using (3-aminopropyl)triethoxysilane (APTES) for carbon resource recovery from wastewater [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5981-5989.
    [10] 刘丹凤. 合成甲基三乙酰氧基硅烷的研究 [J]. 化学工程师, 2002, 16(6): 63-64. doi: 10.3969/j.issn.1002-1124.2002.06.030

    LIU D F. Study on synthesis of methyltriacetaloxidesilane [J]. Chemical Engineer, 2002, 16(6): 63-64(in Chinese). doi: 10.3969/j.issn.1002-1124.2002.06.030

    [11] GRABITZ E, REICH M, OLSSON O, et al. Using structure biodegradability relationships for environmentally benign design of organosilicons-An experimental comparison of organosilicons and their carbon analogues [J]. Sustainable Chemistry and Pharmacy, 2020, 18: 100331. doi: 10.1016/j.scp.2020.100331
    [12] GILCREAS F W. Standard methods for the examination of water and waste water [J]. Sensors (Basel, Switzerland), 1966, 56(3): 387-388.
    [13] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
    [14] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
    [15] LI H, JIN Y Y, MAHAR R, et al. Effects and model of alkaline waste activated sludge treatment [J]. Bioresource Technology, 2008, 99(11): 5140-5144. doi: 10.1016/j.biortech.2007.09.019
    [16] NEYENS E, BAEYENS J, CREEMERS C. Alkaline thermal sludge hydrolysis [J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 295-314.
    [17] XIAO B Y, LIU C, LIU J X, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge [J]. Bioresource Technology, 2015, 196: 109-115. doi: 10.1016/j.biortech.2015.07.056
    [18] APPELS L, HOUTMEYERS S, DEGRÈVE J, et al. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion [J]. Bioresource Technology, 2013, 128: 598-603. doi: 10.1016/j.biortech.2012.11.007
    [19] ESKICIOGLU C, TERZIAN N, KENNEDY K J, et al. Athermal microwave effects for enhancing digestibility of waste activated sludge [J]. Water Research, 2007, 41(11): 2457-2466. doi: 10.1016/j.watres.2007.03.008
    [20] DOĞAN I, SANIN F D. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method [J]. Water Research, 2009, 43(8): 2139-2148. doi: 10.1016/j.watres.2009.02.023
    [21] HONG S M, PARK J K, LEE Y O. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids [J]. Water Research, 2004, 38(6): 1615-1625. doi: 10.1016/j.watres.2003.12.011
    [22] van B M A. Kinetic aspects of the Maillard reaction: A critical review [J]. Die Nahrung, 2001, 45(3): 150-159. doi: 10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9
    [23] FANG W, ZHANG P Y, ZHANG G M, et al. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization [J]. Bioresource Technology, 2014, 168: 167-172. doi: 10.1016/j.biortech.2014.03.050
    [24] ZHANG C, TAN X J, YANG X, et al. Acid treatment enhances phosphorus release and recovery from waste activated sludge: Performances and related mechanisms [J]. Science of the Total Environment, 2021, 763: 142947. doi: 10.1016/j.scitotenv.2020.142947
    [25] BI W, LI Y Y, HU Y Y. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate [J]. Bioresource Technology, 2014, 166: 1-8. doi: 10.1016/j.biortech.2014.04.092
    [26] YAN Y X, QIN L, GAO J L, et al. Protein extraction and sludge dewatering performance of ultrasound-assisted enzymatic hydrolysis of excess sludge [J]. Environmental Science and Pollution Research International, 2020, 27(15): 18317-18328. doi: 10.1007/s11356-020-08208-2
    [27] GAO J L, WANG Y C, YAN Y X, et al. Extraction of protein from excess sludge by thermal pretreatment assisted enzymatic hydrolysis [J]. {IOP} Conference Series:Earth and Environmental Science, 2019, 344(1): 012084. doi: 10.1088/1755-1315/344/1/012084
    [28] 肖本益, 刘俊新. 污水处理系统剩余污泥碱处理融胞效果研究 [J]. 环境科学, 2006, 27(2): 319-323. doi: 10.3321/j.issn:0250-3301.2006.02.024

    XIAO B Y, LIU J X. Study on treatment of excess sludge under alkaline condition [J]. Environmental Science, 2006, 27(2): 319-323(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.02.024

    [29] ZHANG R L, LU X Q, TAN Y J, et al. Disordered mesoporous carbon activated peroxydisulfate pretreatment facilitates disintegration of extracellular polymeric substances and anaerobic bioconversion of waste activated sludge [J]. Bioresource Technology, 2021, 339: 125547. doi: 10.1016/j.biortech.2021.125547
    [30] 刘博文, 金若菲, 兰兵兵, 等. 热碱-EDTA耦合法强化污泥破解及效果分析 [J]. 环境工程学报, 2020, 14(1): 217-223. doi: 10.12030/j.cjee.201902110

    LIU B W, JIN R F, LAN B B, et al. Strengthening sludge disintegration by thermal alkali-EDTA coupling method and its effect analysis [J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 217-223(in Chinese). doi: 10.12030/j.cjee.201902110

    [31] SOROCEANU A, STIUBIANU G T. Siloxane matrix molecular weight influences the properties of nanocomposites based on metal complexes and dielectric elastomer [J]. Materials (Basel, Switzerland), 2021, 14(12): 3352. doi: 10.3390/ma14123352
    [32] SCHMITT J, FLEMMING H C. FTIR-spectroscopy in microbial and material analysis [J]. International Biodeterioration & Biodegradation, 1998, 41(1): 1-11.
    [33] SCHUSTER K C, MERTENS F, GAPES J R. FTIR spectroscopy applied to bacterial cells as a novel method for monitoring complex biotechnological processes [J]. Vibrational Spectroscopy, 1999, 19(2): 467-477. doi: 10.1016/S0924-2031(98)00058-7
    [34] GLASSFORD S E, BYRNE B, KAZARIAN S G. Recent applications of ATR FTIR spectroscopy and imaging to proteins [J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2013, 1834(12): 2849-2858. doi: 10.1016/j.bbapap.2013.07.015
    [35] CASTILLO G A, WILSON L, EFIMENKO K, et al. Amidation of polyesters is slow in nonaqueous solvents: Efficient amidation of poly(ethylene terephthalate) with 3-aminopropyltriethoxysilane in water for generating multifunctional surfaces [J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35641-35649.
    [36] BELE A, CAZACU M, STIUBIANU G, et al. Polydimethylsiloxane–Barium titanate composites: Preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior [J]. Composites Part B:Engineering, 2015, 68: 237-245. doi: 10.1016/j.compositesb.2014.08.050
  • 加载中
图( 10) 表( 2)
计量
  • 文章访问数:  3549
  • HTML全文浏览数:  3549
  • PDF下载数:  53
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2022-10-10
  • 刊出日期:  2023-04-27
戴启才, 张瑞良, 殷健, 秦曦, 刘兆斌, 甄广印, 陆雪琴. 碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷[J]. 环境化学, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
引用本文: 戴启才, 张瑞良, 殷健, 秦曦, 刘兆斌, 甄广印, 陆雪琴. 碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷[J]. 环境化学, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
DAI Qicai, ZHANG Ruiliang, YIN Jian, QIN Xi, LIU Zhaobin, ZHEN Guangyin, LU Xueqin. Crosslinking polymerization to recover organic matter and nitrogen/phosphorus from the supernatant of sludge combined alkali-microwave pretreated sludge[J]. Environmental Chemistry, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104
Citation: DAI Qicai, ZHANG Ruiliang, YIN Jian, QIN Xi, LIU Zhaobin, ZHEN Guangyin, LU Xueqin. Crosslinking polymerization to recover organic matter and nitrogen/phosphorus from the supernatant of sludge combined alkali-microwave pretreated sludge[J]. Environmental Chemistry, 2023, 42(4): 1249-1259. doi: 10.7524/j.issn.0254-6108.2021111104

碱联合微波预处理污泥及交联聚合回收上清液中有机质和氮磷

    通讯作者: Tel:021-54341145 ,E-mail:gyzhen@des.ecnu.edu.cn
  • 1. 华东师范大学生态与环境科学学院,上海市城市化生态过程与生态恢复重点实验室,上海,200241
  • 2. 上海有机固废生物转化工程技术研究中心,上海,200241
  • 3. 上海污染控制与生态安全研究院,上海,200092
  • 4. 自然资源部大都市区国土空间生态修复工程技术创新中心,上海,200062
  • 5. 崇明生态研究院,上海,200062
基金项目:
国家自然科学基金青年科学基金(51808226,51908217),上海市“科技创新行动计划”国际合作项目(21230714000),上海高校特聘教授(东方学者)计划项目(TP2017041),上海市扬帆计划项目(19YF1414000)和上海有机固废生物转化工程技术研究中心开放课题(19DZ2254400)资助.

摘要: 从污泥中回收有机组分是实现污泥的妥善处理和资源再利用的理想途径。本研究系统考察了碱联合微波处理下污泥中有机质及氮磷的释放特征,同时使用甲基三乙酰氧基硅烷(methyltriacetoxysilane,MTAC)以絮凝聚合物的形式回收污泥上清液中的营养物质,并探究其内在机制。结果表明,碱联合微波处理能有效加速污泥的溶解和胞内物质释放,最佳处理条件为NaOH剂量1.12 g·L−1污泥、碱处理时间40 min,微波辐射功率640 W、微波辐射时间 120 s。碱联合微波处理比单独碱处理SCOD溶出浓度提高了97.6%,TN和TP分别增加了51.35%和25.13%。MTAC与上清液中营养物质通过交联、絮凝和团聚作用,有效地分离回收了营养物质,其中蛋白质、多糖、TN和TP回收率分别高达44.72%、58.49%、76.90%和48.71%。本研究证实了碱联合微波处理污泥,以MTAC为交联剂进行化学聚合,是一种污泥高效处置和资源回收的简单的替代策略。

English Abstract

  • 近年来我国经济的飞速发展,城市生活污水污泥产量连年攀升,随之而来的是污泥处理的压力。一方面,剩余污泥含有重金属、有机污染物和病原微生物等有毒有害物质,如果处理不当,会给环境造成严重污染。另一方面,污泥是一种拥有巨大潜力的生物资源,其有机质含量在50%左右,含有丰富的蛋白质、多糖、腐殖酸和核酸[1]。在传统污水二级生化处理中,进水中近90%的磷和部分的氮最终会转移至污泥中,因此剩余污泥含有丰富的有机质和氮磷养分,若不加以合理利用是一种资源浪费。

    污泥固相中营养物质的有效释放是实现污泥有机质和氮磷回收的重要前提。污泥的破解方法有各种物理化学法,如热水解、超声、高压均质法等。碱处理作为一种常用的化学预处理方法,具有操作方便、设备简单、效率高等优点。首选NaOH作为处理试剂,其比Ca(OH)2有更高的增溶效率[2]。碱法常常与其他工艺(如超声[3]、热处理[4]和高压均质法[5]等)联合处理,联合处理对污泥具有更高效的破解能力。微波法在污泥处理中的潜力已得到广泛认可[6],微波产生的热效应和非热效应能高效破解污泥,所以碱联合微波组合工艺拥有巨大潜力。

    为了回收利用污泥上清液中丰富的营养物质,可通过磷酸铵镁沉淀法回收氮和磷,其产物鸟粪石可作缓释肥料。但实际应用中受各种因素(例如高离子强度、高碱度和Ca2+干扰)限制[7],且磷酸铵镁沉淀法只能回收PO43--P和NH4+-N等形式的无机盐,上清液中丰富的有机质仍无法利用。硅烷交联剂是一种两性表面活性剂,一个分子中同时拥有烷氧基和有机官能团,烷氧基水解产生的硅烷醇基团能以共价键的形式与无机材料结合,有机官能团与聚合物作用,可显著提高无机/聚合物表面附着力[8]。因此,硅烷交联剂有望解决污泥上清液中有机质无法高值利用的问题。硅烷交联剂成本低、环境友好,被广泛应用于复合材料、纳米材料等表面改性。近年来学者们将其应用于环境领域,Zhou等使用(3-氨基丙基)三乙氧基硅烷有效分离水溶性腐殖酸[9]。甲基三乙酰氧基硅烷(MTAC),常温下为无色透明液体,低温下为白色结晶体,结构式为CH3—Si—(COOCH33,其酰氧基相较于其他基团(如甲氧基、乙氧基)更为活泼,分解速度也更快[10]。并且根据美国环境保护署的数据资料显示,MTAC的半数致死浓度(LD50)为2060 mg·kg−1,属于低毒化合物。MTAC与水就能交联,生成具有良好生物相容性的聚硅氧烷和易生物降解的乙酸,且污泥上清液中氮元素的嵌入能够加速聚硅氧烷的水解,从而提高其生物降解性[11]。因此,MTAC的交联聚合反应是一种从污泥上清液中回收有机质和氮磷的有效途径。

    本研究采用碱联合微波组合工艺预处理污泥,投加MTAC回收上清液中有机质和氮磷,研究了碱联合微波处理对污泥中有机质及氮磷的释出的影响并优化反应条件,探究了MTAC交联聚合回收污泥上清液营养物质的可行性,利用扫描电镜-能谱(SEM-EDS)、傅里叶红外光谱图(FTIR)、X射线光电子能谱分析(XPS)和热重差示扫描量热法(TG-DSC)对絮凝聚合物进行形态和化学构造分析,旨在探究交联聚合法分离回收有机质和氮磷的机制。

    • 试验所用污泥取自上海某城镇污水处理厂污泥浓缩池,该厂采用A2O活性污泥处理工艺,污泥取回后过筛去除直径大于4 mm的杂质,保存在4 ℃冰箱备用。具体理化性质如表1

    • 本试验分别投加梯度剂量(0.32、0.48、0.64、0.80、0.96、1.12、1.28 g·L−1)的NaOH于250 mL污泥中,用磁力搅拌器(150 r·min−1)保证反应充分进行,间隔固定时(10、20、30、40 min),取样分析以确定NaOH的最佳剂量。污泥经碱处理最佳条件后,用不同功率(160、320、480、640、800 W)微波照射,间隔固定时间(30、60、90、120 s),取样分析以确定碱联合微波处理最佳条件。污泥经碱联合微波最佳条件处理后,在3000 r·min−1下离心10 min得到污泥上清液,投加梯度剂量(0.038、0.076、0.134、0.189 mol·L−1)的硅烷交联剂-甲基三乙酰氧基硅烷(MTAC)待反应完全,离心得到聚合后的上清液,真空干燥得到的絮凝沉淀物用于后续分析。

    • 污泥的TS、VS 和上清液中的SCOD、TN和TP根据美国APHA标准方法测定[12];用雷磁pH计(PHS-25,中国)测定pH;SPS采用苯酚-硫酸法测定[13];SPN采用福林酚试剂法测定[14]。絮凝聚合物采用扫描电镜-能谱(SEM-EDS)观察其微观形貌及元素组成;傅里叶红外光谱仪(FT-IR)表征其表面官能团;X射线光电子能谱仪(XPS)评估聚合物表面组成和化合价状态;比表面积和孔径分布由BET确定。

    • 在碱预处理过程中,细胞结构被破坏,污泥细胞中的有机物释放至液相中,致使溶解性有机质增加。蛋白质和碳水化合物是SCOD的主要成分,可检测SCOD、SPN和SPS的浓度评价有机物质的溶出效果。如图1所示,相同NaOH投加量下污泥中SCOD、SPN和SPS的浓度随时间递增而变高。NaOH剂量为1.12 g·L−1,污泥碱解30 min时,SCOD为2878.44 mg·L−1,相比原始污泥276.95 mg·L−1增加了9.39倍;当碱解40 min后SCOD为3206.72 mg·L−1,比原污泥增加了10.58倍。因为碱处理条件下,有机物的溶出分为两个阶段:前30 min快速增溶阶段和之后的缓慢阶段[15]

      NaOH剂量也是影响有机物溶出的重要因素,如图1所示,SCOD、SPN和SPS的浓度皆随着NaOH剂量增加而增加。碱解40 min后,当NaOH剂量为1.12 g·L−1时污泥的SCOD、SPN和SPS的浓度最高,分别为3206.72、1248.86、365.34 mg·L−1;当NaOH剂量超过1.12 g·L−1时,SCOD、SPN和SPS的浓度均有所下降。这是因为污泥中绝大多数有机物位于细胞内,碱处理时羟基自由基以多种方式与细胞壁发生反应,如与细胞壁中脂质的皂化反应,从而破坏微生物结构[16],释放出絮体内和细胞内的有机物质。而低剂量的NaOH仅能破坏污泥细胞外层的絮体结构,无法破坏内层的细胞结构,故而有机物的溶出效果不佳。最佳剂量为1.12 g·L−1时,此时pH约为11,细胞难以维持平衡渗透压发生破裂,细胞壁、细胞膜和细胞核等被大幅损伤[17],细胞内物质大量释出。当NaOH剂量进一步提高时,较弱和较敏感的细胞被选择性优先破坏后,污泥不再进一步发生分解[17],此外,极端的碱性环境会改变蛋白质空间结构使其失去自然结构同时引起RNA水解和脂质皂化[15]。基于上述结果,NaOH最佳剂量为1.12 g·L−1,碱解时间确定为40 min以确保有机质充分溶出。

      为了进一步增加污泥中有机质及氮磷的释出,在上述最佳碱处理条件(NaOH剂量1.12 g·L−1,40 min)基础上再对污泥进行微波辐射,比较了不同微波辐射功率和辐射时间的影响。如图2所示,观察到随着微波功率和反应时间的增加,SCOD、SPN和SPS的浓度都逐渐增加,最高达到了6335.56、1949.76、743.08 mg·L−1 (微波功率640 W,辐射时间120 s),比单独碱处理后的浓度分别增加了97.57%、55.88%、103.39%。SCOD和SPS较SPN增溶更明显,与Lise等的结果一致[18]。在微波照射下,污泥中细胞膜等大分子极化侧链中偶极子取向快速的变化导致氢键等维持大分子结构的次级键断裂产生的非热效应[19],使得污泥絮体进一步被破坏。同时污泥中存在的偶极分子(如水、蛋白质和脂质等)相互作用,由此产生的分子旋转导致摩擦产生热效应[20], 温度的升高不仅使得有机物的溶解度增加,也使得污泥细胞破裂更彻底,从而释放出更多胞内物质。当微波功率进一步提高时,SCOD、SPN和SPS浓度均出现了不同程度的降低,因为更高的辐射能量能够分解大分子有机物为小分子[21],但也会使得一些易挥发有机质挥发,同时也会改变有机物的性质例如降低了蛋白质在水中的溶解度。较高的温度环境下,含游离氨基的化合物和羰基化合物发生缩聚反应,生成类黑精、吡嗪化合物等不溶于水且难生物降解的物质[22],降低了蛋白质和糖在水中的溶解度,这也是SPN和SPS浓度下降的原因。同时考虑到更高功率的微波辐射和反应时间会产生更高的能耗,因此在碱处理基础上,微波选择功率640 W,辐射时间120 s时, SCOD、SPS和SPN较原污泥分别增溶了29.16、10.48、21.16倍,最大限度释放出了污泥中有机质。

    • 污泥经单独碱处理和联合处理后,总氮的释放如图3(a)和(b)所示,低剂量的NaOH仅释放出了絮体结构中的,未能破解细胞,故TN溶出效果不显著,随着NaOH剂量的增加,细胞内的含氮物质如氨基酸、蛋白质等释放出来。当NaOH剂量继续提高,高pH值环境使得部分氨氮转化为氨气从污泥中逸出[23],故TN浓度略有下降。相比于碱处理,微波照射对TN的溶出的效果不显著。低功率,短时间的微波辐射对氮溶出效果提升有限,高功率较长时间的辐射最高能够提升51.35%,较原污泥增加了5.15倍,是因为热效应导致蛋白质和氨基酸等有机物氨化。

      污泥中主要含磷化合物为聚磷酸盐且不稳定。如图3(c)和(d)所示,与TN释放规律类似,低碱投加量仅释放出絮体的胞外磷,高剂量的NaOH破解了细胞后,胞内的多聚磷分解为焦磷酸盐和磷酸盐[24],同时由磷脂双分子层组成的细胞膜破裂也导致磷脂释放。一些结合态的磷在碱性条件下也更易释放到液相中。碱联合微波辐射对磷的释放效果比单独碱处理最高提升了25.13%,较原污泥增加了6.54倍。功率和反应时间的进一步增加使温度升高,污泥系统的重金属不断释放,并且与释出的磷形成沉淀导致TP浓度有所降低。

    • 污泥经碱和微波联合预处理后分离出上清液,此时的上清液中含有从污泥中释出的大量有机质,通过投加交联剂MTAC,与上清液中有机质交联聚合生成絮凝聚合物从而达到分离回收的效果。具体回收效果如图4所示,TN的回收率高达76.90%,SPS、SPN、TP也分别分离回收了44.72%、58.49%、48.71%。Wei等[25]用磷酸铵镁沉淀法实现了46.88%磷酸盐回收和16.54%的氨氮回收,本研究的氮磷回收率更高。相较于传统的超声辅助酶解法[26]和热预处理酶解辅助法[27]单纯的提取回收蛋白质,本研究的交联聚合回收法不仅能够提取回收蛋白质等有机氮,还能通过交联和吸附作用将污泥上清液中NH4+-N和NOx-N等无机氮固定下来,高TN回收率也说明了这一点。氮磷高效回收的同时还实现了有机质的分离回收,弥补了鸟粪石沉淀法和层状双氢氧化物合成法只能单纯的回收氮磷或碳源的缺点,而且本研究的方法操作更加简便、快捷和高效。综上所述,MTAC能够有效交联聚合回收污泥上清液中的有机质及氮磷。

    • SEM表征可以直观地观察到预处理前后污泥絮体的微观形态变化,原泥、碱处理及其联合微波处理后的污泥表面形态如图5所示,原污泥中可以看到完整饱满的微生物细胞,表面被胞外聚合物所包裹。经过低剂量(0.48 g·L−1、40 min)的碱处理后,污泥表面塌陷,不再光滑,但仍能观察到完整的微生物细胞,这也直观证明了低剂量NaOH仅能破坏污泥絮体外部结构,对细胞的破坏作用十分有限。污泥经最佳碱处理条件(1.12 g·L−1、40 min)处理后,污泥絮体被破碎,观察到明显的空洞和破碎细胞,表明污泥细胞出现大量破损,释放出胞内物质,与肖本益等[28]观察到的结果一致。碱联合微波处理后,污泥中的微生物细胞彻底破碎,已观察不到细胞结构,说明碱和微波协同作用能进一步破解污泥细胞结构,污泥细胞的破裂导致大量有机物的溶出。这些有机质在微波热效应导致的高温环境下又重新结合在污泥表面,使其比原污泥表面更加粗糙和不规则[29-30]

    • 图6显示了预处理后污泥上清液、聚合反应后的上清液、絮凝聚合物和交联剂MTAC的FTIR光谱图。向预处理后污泥上清液中加入交联剂MTAC后,对比图6(a)和(b)可发现,MTAC中C=O (1734.1 cm−1)、—O—CO—CH3(1370.2 cm−1)、Si—O—COCH3(1102.6 cm−1)几处关键的官能团特征峰消失,这是MTAC水解导致的。随着絮凝物的形成,在1065、1019.7 、903.9 cm−1处出现了新的峰,表明形成了Si—O—Si和Si—O—C骨架基团[9]。MTAC中3031.7 、2985.9 、2945.2 cm−1处的特征峰是由Si—CH3中C—H振动产生的[31]。交联剂与污泥上清液反应后,絮凝聚合物中对应的Si—CH3特征峰出现明显的红移现象(2965.6 、2924.3 、2854.2 cm−1),且峰的强度较MTAC有所下降。上述结果证明了MTAC加入后污泥上清液与其发生了水解缩合作用。

      图6(c)和(d)中位于3200.0—3600.0 cm−1的宽峰对应交联剂加入前后上清液中的—OH基团。预处理后污泥上清液中1698.5 cm−1和1636.6 cm−1两处特征峰,分别对应于蛋白质中酰胺Ⅰ带的伯酰胺和叔酰胺基团的振动[32],而1273.7 cm−1处特征峰归因于P=O的振动[33]。聚合后的上清液中伯酰胺和P=O基团特征峰消失,同时在生成的聚合絮凝物中出现了1636.6 cm−1和1532.7 cm−1两处峰分别来自叔酰胺基团和酰胺Ⅱ带中C—N 拉伸伴随着 N—H 面内弯曲产生的振动[34]。上述种种变化表明了预处理后污泥的上清液中的一些含磷物质和含氮物质如蛋白质等参与MTAC的水解自缩合过程发生了共组装反应。

      为进一步分析MTAC与污泥上清液的絮凝机理,对生成的絮凝聚合物进行XPS表征。如图7(a)所示,絮凝物的主要特征元素为O 1s、C 1s、N 1s、P 2p和Si 2p,元素含量测定结果表明N、P元素的占比分别为2.85%和0.95%。交联剂MTAC为不含N、P的硅氧类物质,故絮凝物中含有的N、P元素均来源于污泥上清液,这也间接证明了污泥上清液中的蛋白质和磷酸盐等含氮磷化合物被MTAC有效固定回收。

      图7(b)和(c)显示了絮凝聚合物的C 1s和O 1s高分辨率光谱,其中C 1s的光谱根据分峰,能表明絮凝物中不同形态C元素的相对丰度等信息。由图7(b)可知,C分别和0、1和2个氧原子结合形成不同形态。其中最低的结合能为284.8 eV,表明以C—C形式存在;最高的结合能为289.2 eV,是以O=C—O形式存在。中间结合能为286.1 eV和287.8 eV,分别对应C—O和酰胺键O=C—N两种C的形态。由图7(c)可知,絮凝聚合物的O1s具有3个主要的峰。其中,533.0 eV处对应酰胺键O=C—N,这与FT-IR结果一致,531.5 eV对应于C=O中的氧形态[35],而在530.0 eV则主要为水分子中或者吸附的—OH基团。

    • 图8(a)为絮凝聚合物SEM图像,观察到聚合物表面存在凹陷空洞,主要为微孔和介孔(表2) ,并吸附了细小的有机胶体。球状聚合物相互连接呈现出紧凑结构,因为MTAC加入到预处理污泥的上清液后,通过水解、缩合共组装等过程,形成笼形低聚硅氧烷聚合物(Cage-like arranged oligomeric silanes,CLAOs)[36],其可作为溶解性有机质的吸附架桥物。图8(b)清晰展示了絮凝聚合物主要由C、O、Si、N和P等元素组成,与XPS元素比的结果吻合。再次证实MTAC对有机质和氮磷类化合物的吸附固定作用。

    • 图9所示,TG-DSC曲线表明絮凝聚合物出现了3个明显的失重温度区域,其热分解过程可分为3个阶段:水分蒸发、有机分挥发和无机分热解。絮凝聚合物的TG-DSC曲线,其中,在<135℃的区间失重3.63%,为样品中的水分蒸发去除的过程,对应于DSC曲线上有一微弱吸热峰。在135—495℃区间缓慢失重过程中重量损失了8.34%,是因为絮凝聚合物中从上清液中交联聚合回收的有机质在此温度区间挥发热解,对应于DSC曲线上450℃处明显的放热峰。还观察到495—800℃之间的重量快速损失,损失重量最大,达到了10.23%,这归结于絮凝聚合物中硅氧烷的分解和固定碳的燃烧,而DSC曲线上550℃处的强放热峰也证明了这一点。此外,絮凝聚合物在800℃的残留率为77.50%,这说明交联生成的絮凝聚合物具有较强的热稳定性。

    • 通过分析絮凝聚合物的特性,推测了MTAC交联聚合预处理污泥上清液中有机质的分子机制。如图10所示,首先,MTAC在污泥上清液中水解形成硅烷醇和乙酸,随后污泥上清液中的酰胺基、腐殖酸、富里酸与硅烷醇缩合,并共组装成低聚硅氧烷聚合物骨架[9, 35]。大量尺寸较小的絮凝聚合物形成后,互相积聚交联生成尺寸更大的絮凝聚合物;最后,由此形成的絮凝聚合物进一步团聚,产生吸附架桥作用,吸附预处理后污泥上清液中如正磷酸盐、焦磷酸盐、蛋白质残链、氨氮和腐殖质等物质,然后在重力下固液分离,最终实现上清液中营养物质的聚合回收。

    • (1) 碱联合微波法能高效破解污泥,最佳联合条件下(NaOH剂量1.12 g·L−1污泥、碱处理时间40 min,微波辐射功率640 W、微波辐射时间 120 s) ,SCOD、SPS、SPN、TP和TN比原始污泥增溶了29.16、10.48、21.16、5.15、6.54倍。

      (2) 甲基三乙酰氧基硅烷能有效地交联聚合污泥上清液中氮磷及有机质,SPS、SPN、TP和TN的分离回收率分别达到了44.72%、58.49%、48.71%和76.90%。

      (3) 絮凝聚合物含有丰富的有机组分和氮磷营养元素,表面孔径丰富且性质稳定,具有充当缓释碳源、肥料和作土壤改良剂的潜力。

    参考文献 (36)

返回顶部

目录

/

返回文章
返回