-
全氟和多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类人工合成的化合物,具有优良的表面活性、化学稳定性和疏油疏水等特性。全氟辛酸(perfluorooctanoic acid,PFOA)和全氟辛磺酸(perfluorooctane sulfonate,PFOS)作为典型的PFASs,已广泛应用于消费品生产和工业生产过程中[1-2]。由于具有环境持久性、生物累积性和潜在的生物毒性,PFOS和PFOA及其盐类先后被列入《关于持久性有机污染物的斯德哥尔摩公约》的受限制名单[3]。随着PFOA和PFOS在各行业的消减与淘汰,大量工业替代品被开发并投入使用[4],例如,氯代多氟醚基磺酸(chlorinated polyfluorinated ether sulfonates,Cl-PFESAs)[5]、多氟调聚磺酸/羧酸(fluorotelomer sulfonic/carboxylic acids,FTSs/FTCAs)[6]、六氟环氧丙烷多聚酸(hexafluoropropylene oxide dimer/trimer acid,HFPO-DA/TA)[7]和全氟壬烯氧基苯磺酸钠(sodium p-perfluorous nonenoxybenzene sulfonate,OBS)[8]等。然而,这些新型PFASs在分子结构和化学性质上与PFOA和PFOS相似,大量使用可能导致同样的环境问题和健康风险。目前已在水体、沉积物和土壤等环境介质中检测到上述新型PFASs [9-12]。
昆虫作为环境污染物指示性物种,利用其监测这些典型和新型PFASs已经受到越来越多的关注。例如,水生昆虫(如蜻蜓幼虫)被用于监测加拿大和坦桑尼亚河流中PFASs的污染水平[13-14],而蜻蜓成虫也用于监测南非地区典型PFASs的时空分布[15]。Koch 等[16-17]研究证明羽化的水生昆虫(如蚊、蜻蜓等)作为重要载体将PFASs从水生生态系统传输到陆地生态系统。Lan等[18]在蝗虫体内检测到多种新型PFASs(如6:2 FTS、6:2 和8:2 Cl-PFESAs),认为蝗虫可作为评估农田生态系统中PFASs的暴露风险的指示性生物。也有研究发现蜱虫可作为“哨兵”监测陆生生态系统中PFASs的污染特征[19]。然而,对于昆虫体内PFASs的检测方法并不一致。Velesia等[15]采用先碱消解后离子对萃取再通过Oasis HLB和Oasis MCX固相萃取小柱(SPE)进行净化的方法处理昆虫样品。Koch 等[20]采用氢氧化钠/甲醇(NaOH/MeOH)超声萃取和Oasis WAX 柱净化的方法。而De Solla等[13]使用一种分散固相萃取吸附剂(dSPE,Envi-Carb)对昆虫样品进行净化。另外,Lan等[18]将PFASs分为中长链(C≥4)和超短链(C2—C3),中长链PFASs采用离子对萃取和GCB-Carbon柱净化的方法,超短链 PFASs则是采用NaOH/MeOH超声萃取和poly-sery PWAX柱净化的方法。
相比于上述使用的SPE净化方法,QuEChERS样品净化方法具有成本低、操作便捷、目标物损失少和回收率高等优点。目前已广泛运用于生物组织(鱼肉、肝脏等)[21-23]和食品(牛奶、鸡蛋等)[24-26]中PFASs的快速检测,但还未见采用QuEChERS前处理方法检测昆虫体内PFASs的报道。与其他动物组织样本不同,昆虫样品在提取和净化过程中的主要干扰物质是蛋白质、不饱和脂肪酸和色素。另外,文献报道的目标化合物多以传统的PFOA和PFOS为主,缺乏对新型PFASs的关注。因此,本研究优化了多种新型PFASs的UPLC-MS/MS仪器参数,同时比较了不同萃取剂对昆虫样品中PFASs提取效率的影响,以及不同dSPE的使用对昆虫样品净化效果的影响,最终确定了一套昆虫样品中35种传统和新型PFASs的检测方法。
QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物
Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry
-
摘要: 昆虫作为常见的指示生物,已被用于监测环境中全氟和多氟烷基化合物(PFASs)的污染特征。本文基于QuEChERS前处理方法结合超高效液相色谱-串联质谱(UPLC-MS/MS),建立了昆虫中35种PFASs的检测方法,包括9种全氟羧酸(PFCAs)、5 种全氟磺酸(PFSAs)、3种多氟调聚羧酸(FTCAs)、3种多氟调聚磺酸(FTSs)、3种多氟调聚磷酸二酯(diPAPs)、2种氯代多氟醚基磺酸(Cl-PFESAs)、7种全氟聚醚羧酸(PFECAs)以及全氟辛基磺酰胺(FOSA)、全氟-4-(五氟乙基)环己烷磺酸(PFECHS)和全氟壬烯氧基苯磺酸钠(OBS)。昆虫样品采用离子对萃取,0.1 g Envi-Carb和0.05 g DSC-18为吸附剂的前处理方法,在多反应负离子监测模式下进行PFASs检测,内标法定量。结果表明,35种PFASs的回收率在62%—128%,方法定量限为0.0314—0.0876 ng·g−1 dw,标准曲线线性关系良好(R2 > 0.999)。利用本方法对3个目的5种昆虫进行测定,结果表明水生昆虫中ƩPFASs浓度(42—304 ng·g−1 dw)明显高于陆生昆虫(4.7—19 ng·g−1 dw)。水生昆虫中污染物以长链PFCAs(PFOA、PFNA、PFDA和PFUnDA)和PFOS为主,而陆生昆虫以新型PFASs(6:2 FTS、OBS和Cl-PFESAs)为主。本研究建立的方法具有经济、便捷、高效、准确、灵敏等优点,可同时监测不同种类昆虫体内多种典型和新型PFASs。
-
关键词:
- 全氟和多氟烷基化合物 /
- 昆虫 /
- QuEChERS /
- 超高效液相色谱-串联质谱 /
- 工业园
Abstract: Insects as common indicator species have been used to monitor the occurrence of per- and polyfluoroalkyl substances (PFASs) in the environment. In this study, a method for the detection of 35 PFASs in insects was established based on QuEChERS pretreatment method combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). These PFASs include 9 perfluoroalkyl carboxylic acids (PFCAs), 5 perfluoroalkyl sulfonic acids (PFSAs), 3 fluorotelomer carboxylic acids (FTCAs), 3 fluorotelomer sulfonates (FTSs), 3 polyfluoroalkyl phosphoric acid diester (diPAPs), 2 chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs), 7 perfluoroalkyl ether carboxylic acids (PFECAs), perfluorooctane sulfonamide (FOSA), perfluoro-4-ethylcyclohexane sulfonate (PFECHS) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). The insect samples were pretreated by ion-pair liquid-liquid extraction, and purified with 0.1g ENVI-Carb and 0.05 g DSC-18 as adsorbent. The target PFASs were detected by UPLC-MS/MS in the negative electrospray ionization mode with multiple reaction monitoring, and quantified by internal standard. The results showed that the recoveries of PFASs ranged from 62% to 128%, and the method limits of quantitation were 0.0314—0.0876 ng·g−1 dw. The standard curves of individual PFASs have good linear correlation (R2 > 0.999). The levels of PFASs in 5 species of insects from 3 orders were determined by the optimized methods. The concentrations of ƩPFASs in aquatic insects (42—304 ng·g−1 dw) were obviously higher than that in terrestrial insects (4.7—19 ng·g−1 dw). Long-chain PFCAs (PFOA, PFNA, PFDA and PFUnDA) and PFOS were predominated PFASs in aquatic insects, while emerging PFASs (6:2 FTS, OBS and Cl-PFESAs) were dominant in terrestrial insects. The method established in this study has the advantages of economy, convenience, efficiency, accuracy and sensitivity, and can be used to monitor legacy and emerging PFASs in different species of insects.-
Key words:
- PFASs /
- insect /
- QuEChERS /
- UPLC-MS/MS /
- industrial park
-
表 1 35种PFASs以及19种内标的质谱参数
Table 1. Detailed mass spectrometry parameters of 35 individual PFASs and 19 isotopic internal standards
简称
Acronym化合物全称
Compound name母离子
Precursor
Ion (m/z)子离子
Product
Ion (m/z)碎裂电压/V
Fragmentor碰撞能/eV
Collision
EnergyPFBA Perfluorobutanoic acid 212.8 168.8 60 6 PFPeA Perfluoropentanoic acid 262.9 218.8 80 5 PFHxA Perfluorohexanoic acid 312.9 268.9 80 5 PFHpA Perfluoroheptanoic acid 362.8 318.9 80 5 PFOA Perfluorooctanoic acid 412.9 368.9 90 5 PFNA Perfluorononanoic acid 462.8 418.9 90 5 PFDA Perfluorodecanoic acid 512.8 468.9 100 5 PFUnDA Perfluoroundecanoic acid 562.9 518.9 80 5 PFDoDA Perfluorododecanoic acid 612.9 568.9 100 10 PFBS Potassium perfluorobutane sulfonate 298.8 79.9 150 45 PFPeS Sodium perfluoropentane sulfonate 348.9 79.9 150 50 PFHxS Sodium perfluorohexane sulfonate 398.8 79.9 150 60 PFHpS Sodium perfluoroheptane sulfonate 448.9 79.9 150 60 PFOS Sodium perfluorooctane sulfonate 498.8 79.9 150 60 FOSA-I Perfluoro-1-octanesulfonamide 497.8 77.9 150 50 3.6-OPFHpA Perfluoro-3,6-dioxaheptanoic acid 201 84.9 80 10 PF4OPeA Perfluoro-4-oxapentanoic acid 228.9 84.9 50 10 PF5OHxA Perfluoro-5-oxahexanoic acid 278.9 84.9 50 12 ADONA 3H-perfluoro-3-(3-methoxy-propoxy)-propanoate acid 376.9 250.6 80 10 PFEESA Perfluoro (2-ethoxyethane) sulfonic acid 314.9 134.7 100 25 HFPO-DA Hexafluoropropylene oxide dimer acid 284.9 168.8 60 5 HFPO-TA Hexafluoropropylene oxide trimer acid 184.7 118.7 80 15 6:2 FTCA 6:2 fluorotelomer carboxylic acid 376.9 292.9 80 10 8:2 FTCA 8:2 fluorotelomer carboxylic acid 476.6 392.9 80 12 10:2 FTCA 10:2 fluorotelomer carboxylic acid 576.6 492.9 90 10 4:2 FTS 4:2 fluorotelomer sulfonate acid 326.9 306.7 150 20 6:2 FTS 6:2 fluorotelomer sulfonate acid 426.9 406.7 180 25 8:2 FTS 8:2 fluorotelomer sulfonate acid 526.9 506.7 200 30 6:2 Cl-PFESA 6:2 chlorinated polyfluorinated ether sulfonates 530.9 350.8 150 30 8:2 Cl-PFESA 8:2 chlorinated polyfluorinated ether sulfonates 630.9 450.8 150 35 OBS Sodium p-perfluorous nonenoxybenzene sulfonate 602.8 171.6 200 50 PFECHS Potassium perfluoro-4-ethylcyclohexanesulfonate 460.8 380.8 150 30 6:2 diPAP Sodium bis(1H,1H,2H,2H-perfluorooctyl) phosphate 788.7 96.7 195 40 6:2/8:2 diPAP Sodium bis(1H,1H,2H,2H-perfluorooctyl-1H,1H,2H,2H- perfluorodecyl) phosphate 888.7 96.7 200 50 8:2 diPAP Sodium bis(1H,1H,2H,2H-perfluorodecyl) phosphate 988.7 96.7 200 50 13C4-PFBA Perfluoro-(13C4)-butanoic acid 216.9 171.9 60 6 13C2-PFHxA Perfluoro-(13C2)-hexanoic acid 314.9 269.9 80 5 13C4-PFOA Perfluoro-(13C4)-octanoic acid 416.8 371.9 90 5 13C5-PFNA Perfluoro-(13C5)-nonanoic acid 467.9 422.9 90 5 13C2-PFDA Perfluoro-(13C2)-decanoic acid 514.9 469.9 100 5 13C2-PFUnDA Perfluoro-(13C2)-undecanoic acid 564.9 519.9 80 5 13C2-PFDoDA Perfluoro-(13C2)-dodecanoic acid 614.9 569.9 100 10 13C3-PFBS Perfluoro-(13C3)- butane sulfonate 301.8 79.9 150 45 18O2-PFHxS Perfluoro-(18O2)-hexane sulfonic acid 402.9 79.9 150 60 13C4-PFOS Perfluoro-(13C4)-octane sulfonic acid 502.8 79.9 150 60 13C3-HFPO-DA Hexafluoropropylene-(13C3)-dimer acid 286.9 168.8 60 5 13C2-6:2 FTCA 2-Perfluorohexyl-(13C2)-ethanoic acid 378.9 293.6 80 10 13C2-8:2 FTCA 2-Perfluorooctyl-(13C2)-ethanoic acid 478.6 393.9 80 12 13C2-10:2 FTCA 2-Perfluorodecyl-(13C2)-ethanoic acid 578.6 493.9 90 10 13C2-4:2 FTS 4:2 fluorotelomer-(13C2)-sulfonate 328.9 80.9 150 20 13C2-6:2 FTS 6:2 fluorotelomer-(13C2)-sulfonate 428.9 80.9 180 25 13C2-8:2 FTS 8:2 fluorotelomer-(13C2)-sulfonate 528.9 80.9 200 30 13C4-6:2 diPAP Sodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorooctyl) phosphate 792.7 445.8 200 40 13C4-8:2 diPAP Sodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorodecyl) phosphate 992.7 545.8 200 50 表 2 35种PFASs的线性方程、相关系数(R2)、仪器检出限和方法定量限
Table 2. Linear equation, correlation coefficient (R2), limit of detection (LOD), and limit of quantitation (LOQ,) for 35 target PFASs
目标化合物
Target
compound内标
Internal
standard线性方程
Linear
equation相关系数(R2)
Correlation
coefficient检出限/(ng·mL−1)
LOD定量限/(ng·g−1 dw)
LOQPFBA 13C4-PFBA y=0.026676x−0.017817 0.99951 0.0135 0.0405 PFPeA 13C4-PFBA y=0.015960x−0.004434 0.99979 0.0222 0.0665 PFHxA 13C2-PFHxA y=0.031886x−0.009241 0.99986 0.0199 0.0596 PFHpA 13C2-PFHxA y=0.034467x−0.009820 0.99989 0.0187 0.0561 PFOA 13C4-PFOA y=0.034039x−0.016462 0.99972 0.0198 0.0595 PFNA 13C5-PFNA y=0.030688x−0.007462 0.99992 0.0198 0.0595 PFDA 13C2-PFDA y=0.030758x−0.014403 0.99983 0.0176 0.0527 PFUnDA 13C2-PFUnDA y=0.035521x−0.035578 0.99992 0.0184 0.0553 PFDoDA 13C2-PFDoDA y=0.029815x−0.011676 0.99988 0.0166 0.0498 PFBS 13C3-PFBS y=0.043224x−0.001482 0.99980 0.0181 0.0542 PFPeS 13C3-PFBS y=0.047911x+0.001343 1.00000 0.0189 0.0567 PFHxS 18O2-PFHxS y=0.058056x−0.006899 0.99989 0.0204 0.0612 PFHpS 18O2-PFHxS y=0.035339x−0.011198 0.99986 0.0105 0.0314 PFOS 13C4-PFOS y=0.041710x+0.042938 0.99981 0.0204 0.0613 FOSA-I 13C4-PFOS y=0.016368x−0.001861 0.99987 0.0292 0.0876 3.6-OPFHpA 13C4-PFBA y=0.017046x−0.013055 0.99929 0.0202 0.0606 PF4OPeA 13C4-PFBA y=0.016543x−0.011943 0.99939 0.0188 0.0563 PF5OHxA 13C2-PFHxA y=0.014955x−0.010679 0.99941 0.0192 0.0577 ADONA 13C4-PFOA y=0.058757x−0.041735 0.99942 0.0190 0.0571 PFEESA 13C4-PFOA y=0.047871x−0.042587 0.99901 0.0186 0.0558 HFPO-DA 13C3-HFPO-DA y=0.007638x−0.006091 0.99913 0.0182 0.0547 HFPO-TA 13C3-HFPO-DA y=0.024974x−0.008596 0.99951 0.0279 0.0836 6:2 FTCA 13C2-6:2 FTCA y=0.001298x−0.000705 0.99968 0.0310 0.0930 8:2 FTCA 13C2-8:2 FTCA y=0.001433x−0.000481 0.99988 0.0192 0.0576 10:2 FTCA 13C2-10:2 FTCA y=0.001310x−0.000431 0.99971 0.0177 0.0531 4:2 FTS 13C2-4:2 FTS y=0.028611x−0.004785 0.99981 0.0176 0.0528 6:2 FTS 13C2-6:2 FTS y=0.026094x+0.008380 0.99949 0.0191 0.0573 8:2 FTS 13C2-8:2 FTS y=0.017183x+0.003359 0.99921 0.0152 0.0457 6:2 CL-PFESA 13C4-PFOS y=0.175038x−0.086573 0.99973 0.0173 0.0520 8:2 CL-PFESA 13C4-PFOS y=0.140150x−0.055419 0.99988 0.0163 0.0488 OBS 13C4-PFOS y=0.018987x+0.002797 0.99928 0.0129 0.0387 PFECHS 13C4-PFOS y=0.156627x−0.016528 0.99986 0.0196 0.0588 6:2 diPAP 13C4-6:2 diPAP y=0.007340x−0.003177 0.99975 0.0240 0.0719 6:2/8:2 diPAP 13C4-6:2 diPAP y=0.012541x−0.000963 0.99912 0.0209 0.0626 8:2 diPAP 13C4-8:2 diPAP y=0.004813x−0.000242 0.99927 0.0329 0.0988 表 3 水生和陆生昆虫中35种PFASs的加标回收率和标准偏差(%)
Table 3. The recoveries and relative standard deviation (%) for 35 target PFASs in aquatic and terrestrial insects
目标化合物
Target compound水生昆虫Aquatic insect 陆生昆虫Terrestrial insect 1 ng·mL−1 10 ng·mL−1 100 ng·mL−1 1 ng·mL−1 10 ng·mL−1 100 ng·mL−1 PFBA 118.9 ± 2.3 ª 99.3 ± 2.9 98.5 ± 4.2 101.7 ± 8.7 87.2 ± 5.0 81.5 ± 0.72 PFPeA 94.5 ± 1.8 99.6 ± 5.4 99.0 ± 6.4 87.8 ± 2.7 73.5 ± 4.3 70.3 ± 3.0 PFHxA 94.0 ± 8.5 95.8 ± 4.5 96.1 ± 5.1 97.6 ± 3.4 81.1 ± 1.5 87.1 ± 3.6 PFHpA 89.5 ± 5.4 94.3 ± 9.8 101.5 ± 6.5 76.2 ± 7.9 76.4 ± 0.50 95.1 ± 4.0 PFOA 89.3 ± 5.8 93.1 ± 11 99.4 ± 6.6 77.4 ± 8.5 75.2 ± 3.6 99.5 ± 6.2 PFNA 82.2 ± 3.8 104.8 ± 3.0 102.9 ± 6.5 79.1 ± 7.8 78.9 ± 3.7 101.0 ± 6.0 PFDA 82.7 ± 4.8 117.0 ± 8.7 106.2 ± 6.2 73.8 ± 5.8 78.2 ± 2.7 98.5 ± 6.1 PFUnDA 85.0 ± 5.1 91.3 ± 2.8 108.8 ± 4.4 67.8 ± 1.4 70.4 ± 1.3 85.2 ± 5.6 PFDoDA 82.8 ± 3.4 93.5 ± 7.7 104.8 ± 5.9 81.9 ± 8.8 95.0 ± 1.2 95.7 ± 4.3 PFBS 101.4 ± 11 81.4 ± 8.1 101.5 ± 7.6 107.2 ± 10 79.5 ± 1.2 106.1 ± 4.3 PFPeS 108.6 ± 3.8 99.8 ± 8.3 107.6 ± 7.8 96.4 ± 16 80.9 ± 2.1 106.8 ± 6.1 PFHxS 84.8 ± 7.0 90.0 ± 7.9 86.6 ± 7.0 83.0 ± 11 72.8 ± 1.6 80.5 ± 4.9 PFHpS 110.1 ± 5.8 103.7 ± 4.8 119.8 ± 6.0 97.7 ± 11 94.7 ± 7.3 108.6 ± 5.1 PFOS 124.6 ± 8.5 94.8 ± 5.0 86.9 ± 6.0 102.8 ± 24 98.1 ± 6.1 79.8 ± 5.0 FOSA-I 78.1 ± 5.5 80.2 ± 8.3 76.7 ± 6.1 89.6 ± 6.8 98.6 ± 1.0 86.5 ± 2.5 3.6-OPFHpA 81.4 ± 8.1 86.3 ± 6.3 95.0 ± 4.2 78.2 ± 3.7 76.8 ± 5.1 79.4 ± 0.66 PF4OPeA 118.4 ± 5.7 104.8 ± 4.9 106.1 ± 2.3 96.3 ± 6.3 80.0 ± 4.4 81.0 ± 2.8 PF5OHxA 93.1 ± 4.9 105.2 ± 2.6 111.5 ± 4.0 75.5 ± 4.8 71.3 ± 4.9 71.4 ± 2.5 ADONA 70.0 ± 2.0 81.4 ± 6.3 93.0 ± 5.5 67.8 ± 1.4 65.2 ± 2.4 79.8 ± 1.5 PFEESA 73.7 ± 8.1 78.4 ± 6.4 95.0 ± 5.8 69.9 ± 1.1 67.7 ± 2.3 81.7 ± 2.0 HFPO-DA 94.6 ± 10 90.1 ± 4.0 96.0 ± 4.9 103.5 ± 5.2 76.8 ± 2.6 76.7 ± 1.6 HFPO-TA 104.8 ± 4.7 72.8 ± 6.2 85.7 ± 8.1 95.2 ± 5.5 104.1 ± 4.7 63.7 ± 1.1 6:2 FTCA 115.8 ± 3.7 89.9 ± 9.4 114.2 ± 4.2 101.5 ± 9.3 86.7 ± 5.4 102.6 ± 4.1 8:2 FTCA 100.3 ± 2.4 107.3 ± 12 109.0 ± 4.8 93.3 ± 7.7 115.0 ± 2.9 103.1 ± 5.6 10:2 FTCA 126.0 ± 4.2 79.6 ± 3.7 91.9 ± 2.7 101.3 ± 9.9 72.7 ± 7.8 78.0 ± 1.3 4:2 FTS 110.1 ± 20 102.0 ± 7.0 84.5 ± 5.4 98.4 ± 9.5 100.7 ± 6.1 75.4 ± 2.4 6:2 FTS 97.7 ± 17 99.8 ± 9.8 75.5 ± 5.3 106.3 ± 11 93.2 ± 7.0 73.5 ± 0.15 8:2 FTS 69.9 ± 3.8 104.5 ± 14 96.2 ± 5.5 67.3 ± 3.8 101.4 ± 8.9 107.1 ± 0.19 6:2 Cl-PFESA 117.4 ± 8.1 83.8 ± 3.3 103.9 ± 4.2 93.1 ± 2.6 92.9 ± 5.2 96.7 ± 2.2 8:2 Cl-PFESA 82.5 ± 8.6 101.2 ± 2.1 111.1 ± 4.3 100.8 ± 2.1 98.7 ± 4.9 99.4 ± 2.6 OBS 88.0 ± 13 89.1 ± 4.6 81.0 ± 6.7 99.6 ± 9.4 97.7 ± 6.6 79.0 ± 1.0 PFECHS 87.9 ± 6.2 79.2 ± 2.1 112.1 ± 6.6 71.5 ± 6.1 73.5 ± 3.9 96.9 ± 2.1 6:2 diPAP 109.0 ± 2.5 91.0 ± 16 113.9 ± 16 112.4 ± 5.1 92.4 ± 7.1 115.1 ± 9.9 6:2/8:2 diPAP 101.0 ± 20 94.0 ± 3.8 116.0 ± 3.4 92.4 ± 2.4 80.3 ± 11 89.9 ± 1.1 8:2 diPAP 121.5 ± 5.4 79.8 ± 1.1 91.4 ± 11 111.3 ± 6.4 109.5 ± 11 92.8 ± 3.6 ª 均值±相对标准偏差。ª Mean ± RSD. -
[1] WANG Z Y, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518. [2] 金航标, 祝凌燕, 单国强. 高效液相色谱-串联质谱法同时测定人血清中的全氟辛烷磺酸及其前体物 [J]. 环境化学, 2016, 35(6): 1180-1188. doi: 10.7524/j.issn.0254-6108.2016.06.2015111705 JIN H B, ZHU L Y, SHAN G Q. Determination of perfluorooctane sulfonate and its precursors in human serum samples by high performance liquid chromatography electrospray tandem mass spectrometry [J]. Environmental Chemistry, 2016, 35(6): 1180-1188(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015111705
[3] ZHANG B, HE Y, YANG G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea: Temporal trends and tissue-specific accumulation [J]. Environmental Science & Technology, 2022,56(10): 6113-6122. [4] 林泳峰, 阮挺, 江桂斌. 新型全氟和多氟烷基化合物的分析、行为与效应研究进展 [J]. 科学通报, 2017, 62(24): 2724-2738. doi: 10.1360/N972017-00223 LIN Y F, RUAN T, JIANG G B. Progress on analytical methods and environmental behavior of emerging per-and polyfluoroalkyl substances [J]. Chinese Science Bulletin, 2017, 62(24): 2724-2738(in Chinese). doi: 10.1360/N972017-00223
[5] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170. [6] NAKAYAMA S F, YOSHIKANE M, ONODA Y, et al. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment [J]. TrAC Trends in Analytical Chemistry, 2019, 121: 115410. doi: 10.1016/j.trac.2019.02.011 [7] YAO J Z, PAN Y T, SHENG N, et al. Novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs): Occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in China [J]. Environmental Science & Technology, 2020, 54(21): 13389-13398. [8] XU L, SHI Y L, LI C X, et al. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in Northern China [J]. Environmental Science & Technology, 2017, 51(24): 14173-14181. [9] HU H M, ZHANG Y Y, ZHAO N, et al. Legacy and emerging poly- and perfluorochemicals in seawater and sediment from East China Sea [J]. Science of the Total Environment, 2021, 797: 149052. doi: 10.1016/j.scitotenv.2021.149052 [10] MUNOZ G, LIU J X, VO DUY S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review [J]. Trends in Environmental Analytical Chemistry, 2019, 23: e00066. doi: 10.1016/j.teac.2019.e00066 [11] GALLOWAY J E, MORENO A V P, LINDSTROM A B, et al. Evidence of air dispersion: HFPO-DA and PFOA in Ohio and west Virginia surface water and soil near a fluoropolymer production facility [J]. Environmental Science & Technology, 2020, 54(12): 7175-7184. [12] MENG L Y, SONG B Y, ZHONG H F, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers [J]. Environment International, 2021, 156: 106735. doi: 10.1016/j.envint.2021.106735 [13] de SOLLA S R, de SILVA A O, LETCHER R J. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada [J]. Environment International, 2012, 39(1): 19-26. doi: 10.1016/j.envint.2011.09.011 [14] GROFFEN T, RIJNDERS J, van DOORN L, et al. Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans [J]. Environmental Research, 2021, 192: 110299. doi: 10.1016/j.envres.2020.110299 [15] LESCH V, BOUWMAN H, KINOSHITA A, et al. First report of perfluoroalkyl substances in South African Odonata [J]. Chemosphere, 2017, 175: 153-160. doi: 10.1016/j.chemosphere.2017.02.020 [16] KOCH A, JONSSON M, YEUNG L W Y, et al. Per- and polyfluoroalkyl-contaminated freshwater impacts adjacent riparian food webs [J]. Environmental Science & Technology, 2020, 54(19): 11951-11960. [17] KOCH A, JONSSON M, YEUNG L W Y, et al. Quantification of biodriven transfer of per- and polyfluoroalkyl substances from the aquatic to the terrestrial environment via emergent insects [J]. Environmental Science & Technology, 2021, 55(12): 7900-7909. [18] LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts [J]. Environmental Pollution, 2020, 263: 114487. doi: 10.1016/j.envpol.2020.114487 [19] ARISTIZABAL-HENAO J J, BROWN H J, GRIFFIN E K, et al. Ticks as novel sentinels to monitor environmental levels of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science. Processes & Impacts, 2021, 23(9): 1301-1307. [20] KOCH A, KÄRRMAN A, YEUNG L W Y, et al. Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates [J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1887-1898. [21] GAO Y, ZHANG Q H, LI X M, et al. Simultaneous determination of legacy and emerging per- and polyfluoroalkyl substances in fish by QuEChERS coupled with ultrahigh performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2018, 10(47): 5715-5722. doi: 10.1039/C8AY01478G [22] KANNAN K, TAO L, SINCLAIR E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566. doi: 10.1007/s00244-004-0133-x [23] 朱萍萍, 岳振峰, 郑宗坤, 等. 分散固相萃取结合高效液相色谱-串联质谱法测定羊肝中19种全氟烷基酸 [J]. 色谱, 2015, 33(5): 494-500. doi: 10.3724/SP.J.1123.2014.12034 ZHU P P, YUE Z F, ZHENG Z K, et al. Determination of perfluoroalkyl acids in lamb liver by high performance liquid chromatographytandem mass spectrometry combined with dispersive solid phase extraction [J]. Chinese Journal of Chromatography, 2015, 33(5): 494-500(in Chinese). doi: 10.3724/SP.J.1123.2014.12034
[24] GENUALDI S, YOUNG W, DEJAGER L, et al. Method development and validation of per- and polyfluoroalkyl substances in foods from FDA's total diet study program [J]. Journal of Agricultural and Food Chemistry, 2021, 69(20): 5599-5606. doi: 10.1021/acs.jafc.1c01777 [25] LACINA O, HRADKOVA P, PULKRABOVA J, et al. Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: Milk and fish [J]. Journal of Chromatography A, 2011, 1218(28): 4312-4321. doi: 10.1016/j.chroma.2011.04.061 [26] 李帅, 陈辉, 金铃和, 等. 高效液相色谱-串联质谱法测定蜂蜜中20种全氟烷基化合物 [J]. 色谱, 2017, 35(5): 495-501. doi: 10.3724/SP.J.1123.2016.12016 LI S, CHEN H, JIN L H, et al. Determination of 20 perfluorinated alkyl substances in honey by high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2017, 35(5): 495-501(in Chinese). doi: 10.3724/SP.J.1123.2016.12016
[27] GURUGE K S, MANAGE P M, YAMANAKA N, et al. Species-specific concentrations of perfluoroalkyl contaminants in farm and pet animals in Japan[J]. Chemosphere, 2008, 73(1 Suppl): S210-S215. [28] ZABALETA I, BIZKARGUENAGA E, PRIETO A, et al. Simultaneous determination of perfluorinated compounds and their potential precursors in mussel tissue and fish muscle tissue and liver samples by liquid chromatography-electrospray-tandem mass spectrometry [J]. Journal of Chromatography A, 2015, 1387: 13-23. doi: 10.1016/j.chroma.2015.01.089 [29] LEHOTAY S J, MAŠTOVSKÁ K, LIGHTFIELD A R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables [J]. Journal of AOAC INTERNATIONAL, 2019, 88(2): 615-629. [30] LANKOVA D, LACINA O, PULKRABOVA J, et al. The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula [J]. Talanta, 2013, 117: 318-325. doi: 10.1016/j.talanta.2013.08.040