QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物

张兴绘, 汤爱萍, 郭会琴, 涂文清, 刘煜. QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物[J]. 环境化学, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
引用本文: 张兴绘, 汤爱萍, 郭会琴, 涂文清, 刘煜. QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物[J]. 环境化学, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
ZHANG Xinghui, TANG Aiping, GUO Huiqin, TU Wenqing, LIU Yu. Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
Citation: ZHANG Xinghui, TANG Aiping, GUO Huiqin, TU Wenqing, LIU Yu. Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801

QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物

    通讯作者: Tel:0791-88177105,E-mail:liuyu@jxas.ac.cn
  • 基金项目:
    国家自然科学基金(42167056),江西省自然科学基金(20212BAB203036)和江西省科学院科研开发项目(2018-XTPH1-20, 2020-YZD-28,2021YSBG22026)资助.

Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry

    Corresponding author: LIU Yu, liuyu@jxas.ac.cn
  • Fund Project: the National Natural Science Foundation of China (42167056), Natural Science Foundation of Jiangxi Province (20212BAB203036) and Research and Development Project of Jiangxi Academy of Sciences (2018-XTPH1-20, 2020-YZD-28, 2021YSBG22026).
  • 摘要: 昆虫作为常见的指示生物,已被用于监测环境中全氟和多氟烷基化合物(PFASs)的污染特征。本文基于QuEChERS前处理方法结合超高效液相色谱-串联质谱(UPLC-MS/MS),建立了昆虫中35种PFASs的检测方法,包括9种全氟羧酸(PFCAs)、5 种全氟磺酸(PFSAs)、3种多氟调聚羧酸(FTCAs)、3种多氟调聚磺酸(FTSs)、3种多氟调聚磷酸二酯(diPAPs)、2种氯代多氟醚基磺酸(Cl-PFESAs)、7种全氟聚醚羧酸(PFECAs)以及全氟辛基磺酰胺(FOSA)、全氟-4-(五氟乙基)环己烷磺酸(PFECHS)和全氟壬烯氧基苯磺酸钠(OBS)。昆虫样品采用离子对萃取,0.1 g Envi-Carb和0.05 g DSC-18为吸附剂的前处理方法,在多反应负离子监测模式下进行PFASs检测,内标法定量。结果表明,35种PFASs的回收率在62%—128%,方法定量限为0.0314—0.0876 ng·g−1 dw,标准曲线线性关系良好(R2 > 0.999)。利用本方法对3个目的5种昆虫进行测定,结果表明水生昆虫中ƩPFASs浓度(42—304 ng·g−1 dw)明显高于陆生昆虫(4.7—19 ng·g−1 dw)。水生昆虫中污染物以长链PFCAs(PFOA、PFNA、PFDA和PFUnDA)和PFOS为主,而陆生昆虫以新型PFASs(6:2 FTS、OBS和Cl-PFESAs)为主。本研究建立的方法具有经济、便捷、高效、准确、灵敏等优点,可同时监测不同种类昆虫体内多种典型和新型PFASs。
  • 印制电路板行业在生产印制电路板(PCB)过程中涉及大量有机溶剂、醚类有机物以及表面活性剂等,产生的废液中包含的有机污染物组成复杂、浓度高、毒性大且难以降解[1-2]。目前,企业针对高浓度难降解PCB有机废液的处理方法主要是Fenton氧化法,但该方法存在有机物降解不彻底、Fenton试剂不能循环利用且处理费用高等问题。因此,急需寻找高效、安全且低成本的处理技术来对该类废液进行治理。

    高级氧化工艺(AOP)主要包括Fenton/photo-Fenton[3-4]、湿法氧化[5-6]、光催化氧化[7-8]以及臭氧氧化[9-10]等技术。其中,催化臭氧氧化技术克服了臭氧氧化法中存在的不足,能在常温常压下高效降解大部分有机污染物且无二次污染[11-14],从而备受关注。大部分研究[15-17]表明,催化剂的加入会促进活性自由基的产生。其中,羟基自由基( · OH)是催化臭氧氧化过程的主要活性自由基,对有机物的降解起关键性作用。目前,使用较为广泛的是非均相催化剂,主要包括金属和金属氧化物负载、金属氧化物,活性炭以及其他多孔材料等[18-19]。金属氧化物催化剂(如MnO2[20-21]、MgO[22-24]、ZnO[25-26]、TiO2[27-28]、Al2O3[29-30]和CeO2[31]等)、金属氧化物载体的材料(如Al2O3[32]、TiO2[33]等)、多孔材料载体(如石墨烯[34]、碳纳米管[35]等)都已经用于催化臭氧氧化过程,并且已经被证明具有良好的催化活性。然而,很多催化剂在制备及应用时存在一些缺点,如制备工艺复杂、成本较高、重复利用率低等,这些因素限制了催化臭氧氧化技术在实际高浓度难降解工业废液的应用。在催化臭氧化过程中,氧化钙(CaO)很少用于催化臭氧化过程;但初步实验表明,CaO结合臭氧氧化法,在处理实际工业废液中有机污染物时具有很大的优势,并且CaO具有活性高、成本低、毒性低、pH稳定性好和环境友好的特点,因此,将其应用于催化臭氧氧化过程有良好的发展前景[36]

    本研究探讨了PCB废液降解过程中的催化降解机理以及有机物降解途径,考察了催化剂的循环稳定性并分析催化剂失活的可能原因;通过单纯形优化实验考察了CaO在PCB废液的臭氧氧化过程中的催化性能,包括CaO质量、pH、臭氧浓度、降解时间和废液深度对废液中有机物降解率的影响;最后,将CaO催化臭氧过程应用于实际高浓度难降解废水并探讨其应用潜能,为实际工业废水的处理提供参考。

    氧化钙(CaO)、氢氧化钠(NaOH)、硫酸(H2SO4)、异丙醇(C3H8O)、正己烷(C6H14)、乙二醇单丁醚(C6H14O2)、吐温-80、碘化钾(KI)、硫代硫酸钠(Na2S2O3)、叔丁醇(C4H10O)和水杨酸(C7H6O3)购于中国成都科隆化学试剂厂。二乙二醇单乙醚(C6H14O3),2,3-二羟基苯甲酸(C6H14O4)和2,5-二羟基苯甲酸(C6H14O4)购于梯希爱(上海)化成工业发展有限公司。所有试剂均为分析级,无须进一步处理,所有溶液均是由超纯水净化机(ATSro)获得的去离子水制备。

    PCB废液来源于某工厂制造PCB过程,PCB废液为黄色,略带刺激性气味,pH为10.10,COD高达20 246.4 mg·L−1,属于碱性高浓度有机废液,主要成分为异丙醇、正己烷、二乙二醇单乙醚、乙二醇单丁醚和吐温-80等。

    通过UV光谱(Shimadzu,Japan)检测水杨酸及其与 · OH的反应产物,波长扫描范围为260~400 nm。通过LC-MS(LCMS-8060)对水杨酸羟基化产物进行定量分析。PCB废液中的降解过程中的中间产物通过GC/MS(Agilent 7890A)检测。采用扫描电子显微镜(SEM)检测催化剂使用前后的形貌。通过X射线衍射分析仪(Empryean PANalytical B.V.)检测催化剂使用前后的组成,测定X射线为Cu靶Kα射线(λ=0.154 18 nm,加速电压为40 kV,发射电流为40 mA,扫描角度为10°~85°。用重铬酸钾法测量废液处理前后的COD。通过pH计(SevenEasyS20,Mettler Toledo)测定废液pH。

    催化臭氧化过程在半连续反应器(内径可调,总高度25 cm)中进行,该反应器盛有250 mL PCB废液和一定量的CaO用作催化剂,在常温常压条件下进行反应。臭氧由臭氧发生器产生,并通过曝气石将O3分散到废液中,并且通过磁力搅拌使废液与O3接触更充分。在实验过程中,气体流速为4 L·min−1,臭氧浓度通过靛蓝法检测,残余臭氧用20%KI溶液吸收。

    在催化臭氧化过程中,以异丙醇(IPA)、正己烷(nHA)、二乙二醇单乙醚(DGDE)、乙二醇单丁醚(EB)和吐温-80(Tween-80)为原料,模拟PCB实际废液。将3.0 g CaO加入到含有250 mL模拟废液的反应器中,然后通入一定浓度的臭氧以降解废液中的有机污染物。在此过程中,以一定的时间间隔从反应器中取出10 mL的降解液样品,加入Na2S2O3钠溶液淬灭样品中残余臭氧。将获得的样品通过0.22 μm微孔膜过滤,并将过滤的样品用于GC/MS检测分析。叔丁醇(TBA)用作 · OH淬灭剂,水杨酸(SA)用作 · OH捕获剂,添加到催化臭氧化过程中以研究催化臭氧氧化过程的主要活性自由基。使用过后的催化剂经过过滤、洗涤、50 ℃干燥后,用于催化剂的稳定性实验。

    臭氧与有机物的反应主要有2种途径,即直接反应和间接反应。直接反应是指O3直接氧化有机物,间接反应主要是通过O3分解产生的活性自由基对有机物进行氧化[37-38]。通过研究 · OH淬灭剂的影响进行对比实验,研究 · OH对有机物的降解作用。TBA是一种常见的 · OH淬灭剂,它与臭氧分子基本不反应,反应速率仅3×10-3 L·(mol·s)−1,而其与 · OH的反应速率高达6×108 L·(mol·s)−1。因此,可以通过加入TBA到臭氧或催化臭氧过程,间接检测体系中是否有 · OH的产生[39]图1为单独臭氧氧化过程以及催化臭氧氧化过程加入TBA前后废液的COD去除率对比图。由此可知,CaO催化臭氧氧化过程和单独臭氧氧化过程加入TBA后,处理180 min后,COD去除率分别降低13.04%和5.71%,表明TBA的加入对2个过程降解率均造成负面影响,从而间接证明单独臭氧氧化过程与催化臭氧氧化过程都有 · OH产生。此外,从TBA对2个过程的影响程度上可以看出,CaO可以促进O3产生更多的 · OH,表明CaO催化臭氧氧化过程遵循羟基自由基机理。

    图 1  TBA对PCB废液降解率的影响
    Figure 1.  Effect of TBA on COD removal ratio of PCB effluents

    水杨酸(SA)羟基化实验是另外一种间接检测羟基自由基的方法[40]。羟基自由基具有存在时间短、不稳定的特点,但SA可以作为 · OH的捕捉剂,SA与 · OH反应后会生成较为稳定的2,3-二羟基苯甲酸(2,3-DHBA)和2,3-二羟基苯甲酸(2,5-DHBA)。本研究结合紫外-可见分光光度计跟踪SA与 · OH反应后产物,再结合液相色谱-质谱联用仪对2,3-DHBA和2,5-DHBA进行定量分析。

    图2为SA、2,3-DHBA和2,5-BHBA的紫外-可见吸收光谱图以及CaO催化臭氧氧化处理后的紫外-可见吸收光谱。可以看出,SA在302 nm处有最大吸收峰,而2,3-DHBA和2,5-DHBA分别在315 nm和330 nm处出现最大吸收峰,SA经过催化臭氧氧化处理后最大吸收峰波长向右移动,在2,3-DHBA和2,5-DHBA的大吸收峰处有一定的吸收,证明在该过程中有 · OH产生。

    图 2  SA、2,3-DHBA、2,5-DHBA以及催化臭氧氧化处理SA后混合溶液的紫外-可见吸收光谱
    Figure 2.  Absorption spectra of SA, 2,3-DHBA, 2,5-DHBA and their mixture solution after SA degradation by catalytic ozonation

    图2中可以观察到2,3-DHBA和2,5-DHBA的存在,接下来使用LC-MS联用仪对2,3-DHBA和2,5-DHBA的含量进行定量分析。图3(a)图3(b)分别表示2,3-DHBA和2,5-DHBA的液相色谱标准曲线,根据该标准曲线求得CaO催化臭氧处理不同时间溶液中2,3-DHBA和2,5-DHBA的含量,结果如表1所示。从表1中可以看出,CaO催化臭氧处理4、8和12 min后,溶液中2,3-DHBA的含量分别为0.037 3、0.022 1和0.020 mg·L−1,2,5-DHBA的含量分别为0.015 5、0.014 4和0.013 7 mg·L−1。可以看出,随着时间的增加,2,3-DHBA和2,5-DHBA的含量都不断减少,表明催化臭氧过程中SA与羟基自由基结合的同时,羟基化产物2,3-DHBA和2,5-DHBA也被氧化降解。

    图 3  2,3-DHBA和2,5-DHBA的液相色谱标准曲线
    Figure 3.  Liquid chromatography standard curves for 2,3-DHBA and 2,5-DHBA
    表 1  2,3-DHBA和2,5-DHBA不同时间的含量
    Table 1.  Contents of 2,3-DHBA and 2,5-DHBA at different times
    降解时间/min 2,3-DHBA浓度/(mg·L−1) 2,5-DHBA浓度/(mg·L−1)
    4 0.037 3 0.015 5
    8 0.022 1 0.014 4
    12 0.020 0 0.013 7
     | Show Table
    DownLoad: CSV

    为了研究废液的降解路径,以废液主要成分异丙醇和乙二醇单丁醚为例进行探讨,对2种物质进行降解并对降解产物用GC/MS进行检测。

    异丙醇降解30 min和60 min的GC/MS结果如图4所示,对应的中间产物信息如表2所示。异丙醇溶液经催化臭氧氧化降解30~60 min后,检测到的中间产物有羟基丙酮、1,2-羟基丙二醇以及乙酸,由此推测出异丙醇的可能降解路径为:异丙醇与 · OH结合形成了1,2-羟基丙二醇,1,2-羟基丙二醇再被氧化为羟基丙酮,然后再进一步被氧化为小分子酸乙酸,结果如图5所示。

    图 4  异丙醇降解30 min和60 min总离子流色谱图
    Figure 4.  GC chromatograms of isopropanol effluents at 30 min and 60 min degradation
    表 2  异丙醇降解30 min和60 min的降解产物
    Table 2.  Products of IPA at 30 min and 60 min degradation
    异丙醇降解30 min质谱结果 异丙醇降解60 min质谱结果
    保留时间/min 分子式 相对分子质量 相对峰面积/% 保留时间/min 分子式 相对分子质量 相对峰面积/%
    2.385 C2H4O2 60.05 46.014 2.278 C2H4O2 60.05 68.57
    2.775 C2H8O2Si 92.169 9.246 2.769 C2H8O2Si 92.169 2 11.175
    2.865 C3H6O2 74.08 22.436 3.170 C3H8O2 76.09 20.255
    3.257 C3H8O2 76.09 22.304
     | Show Table
    DownLoad: CSV
    图 5  异丙醇降解路径
    Figure 5.  Probable degradation pathway of isopropanol

    乙二醇单丁醚降解30 min和60 min后的总离子流色谱图如图6所示,对应的中间产物信息如表3所示。乙二醇单丁醚的降解中间产物主要有1-丁醇、乙二醇、4-羟基-2-丁酮、丁内酯和乙酸。由此可以推测乙二醇单丁醚的可能降解路径如图7所示,乙二醇单丁醚的降解一部分是被氧化断链形成乙二醇,然后再接着被氧化为乙酸。另外有一部分乙二醇单丁醚被氧化断链形成1-丁醇,1-丁醇与 · OH结合,结合产物再被氧化形成酮或酸,最后再被氧化形成小分子酸乙酸,最后形成CO2和H2O。

    图 6  乙二醇单丁醚降解液总离子流色谱图
    Figure 6.  GC chromatograms of 2-butoxyethanol effluents at 30 min and 60 min degradation
    表 3  乙二醇单丁醚降解30 min和60 min的降解产物
    Table 3.  Products of EB at 30 min and 60 min degradation
    乙二醇丁醚降解30 min质谱结果 乙二醇丁醚降解60 min质谱结果
    保留时间/min 分子式 相对分子质量 相对峰面积/% 保留时间/min 分子式 相对分子质量 相对峰面积/%
    2.184 C4H10O 74.12 7.624 2.329 C2H4O2 60.05 42.980
    2.384 C2H4O2 60.05 19.742 2.793 C2H8O2Si 92.169 7.158
    2.831 C2H8O2Si 92.169 2 1.453 2.859 (CH2OH)2 62.068 29.959
    2.898 (CH2OH)2 62.068 12.649 3.642 C4H8O2 88.105 3.316
    3.660 C4H8O2 88.105 1 2.856 4.692 C6H14O2 118.17 12.300
    4.605 C6H14O2 118.17 28.126 4.843 C6H14O2 118.17 4.287
    4.680 C6H14O2 118.17 25.537
    4.854 C4H6O2 86.09 2.013
     | Show Table
    DownLoad: CSV
    图 7  乙二醇单丁醚降解路径
    Figure 7.  Probable degradation pathway of 2-butoxyethanol

    在实际应用中,催化剂的稳定性十分重要。催化剂的多次循环使用可以节约催化剂成本,并且减少固废。本实验对催化剂进行了5次循环,每次使用后对催化剂进行过滤、洗涤、干燥后进行循环使用。如图8所示,催化剂在每一次使用时的催化效率分别是92.78%、90.67%、88.98%、86.94%和84.04%。经过多次循环,催化剂活性下降,但每次循环均没有显著下降,表明该催化剂具有良好的循环性能。

    图 8  催化剂循环稳定性
    Figure 8.  Stability test of catalyst

    为了探讨催化剂失活原因以及催化剂活化的方式,对使用前后的催化剂进行了表征,研究催化剂使用前后的形貌、组成以及比表面积变化。图9(a)显示的是催化剂使用前的形貌,图9(b)图9(c)表示催化剂使用1次和3次后的形貌。可以看出,使用后的催化剂较使用前的催化剂不易分散,产生的团聚现象更为严重,从而导致催化剂的性能降低。

    图 9  催化剂使用前后SEM形貌图
    Figure 9.  SEM images of fresh catalyst and used catalyst

    图10显示的是催化剂使用前后的XRD谱图。图10(a)得到的XRD谱图与标准JCPDS对照可知,2θ为32.3°、37.4°、53.9°对应的是CaO的特征吸收峰,2θ为18°、28.7°、34.1°、47.1°和50.9°对应的是Ca(OH)2的特征峰,表明在使用前的催化剂中Ca(OH)2的特征峰也有一定的吸收强度。使用前的催化剂中CaO的特征峰十分清晰且强度较大,表明其主要成分是CaO,但也含有少量的Ca(OH)2,说明催化剂在存放过程中或者样品测试时受到空气中水分的影响。

    图 10  催化剂使用前和使用后XRD模型
    Figure 10.  XRD patterns of fresh catalyst and used catalyst

    图10(b)为催化剂使用1次和使用3次后的XRD图。催化剂使用1次后的XRD谱图在2θ为18°、28.7°、34.1°、47.1°和50.9°处存在较强的峰,这些峰与Ca(OH)2的特征峰一致,表明其主要成分是Ca(OH)2。而使用3次的催化剂测出的2θ为23°、29.4°、39.4°、43.2°和47.1°对应的峰是CaCO3的特征峰,说明催化剂的失活过程主要是:经过多次循环后的催化剂与水结合变成了Ca(OH)2,形成的Ca(OH)2与矿化产物CO2结合从而变为CaCO3,最终由于多次反应后CaCO3含量不断增加从而导致催化剂催化效率逐渐降低。

    有研究[41-42]表明,pH变化对催化效率有很大影响,这可能会影响催化剂的表面性质和活性自由基的产生。废液深度的变化会影响O3分子与废液的接触时间,从而影响废液的降解率。O3在催化臭氧氧化过程起氧化作用。臭氧用量的增加,可以促进活性自由基的产生并且可以增加臭氧与废液的接触面积,从而促进废液中有机物的降解[43]。因此,废液pH、CaO质量(m)、废液深度(h)、降解时间(t)、臭氧用量等工艺条件的优化就显得尤为重要。考虑到CaO会造成固废以及时间成本,因此,综合考虑了CaO质量、降解时间和COD去除率(η)三者的关系,以0.7η+0.1/t+0.2/m为考察指标进行单纯形优化实验。表4显示各因素的初点和步长,即各个因素的初始值以及变化值。表5为根据均匀设计表U6(65)得到的初始实验条件,经过优化之后得到的优化结果如表6所示。可以看出,pH为12.6~13.2,降解时间为150~180 min以及臭氧量为120 ~200 mg·min−1时会取得较好的催化降解率。综合考虑固废以及时间成本,pH为12.97、CaO质量为1.0 g、废液深度为11 cm、降解时间为150 min、臭氧用量为120 mg·min−1时,COD去除率可达到90.045%,并且0.7η+0.1/t+0.2/m综合效率为0.870 3,能够满足在较短时间、较少催化剂用量下取得较高的降解率,可以应用于高浓度难降解有机废水的处理。

    表 4  因素的初始值和变化值
    Table 4.  Initial and change values of factors
    初始值与变化值 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1)
    初始值 12.0 0 7 60 80
    变化值 0.2 1.0 2 20 20
     | Show Table
    DownLoad: CSV
    表 5  初始实验条件
    Table 5.  Initial experimental conditions
    实验序号 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1)
    1 12.2 2.0 11 140 200
    2 12.4 4.0 13 80 180
    3 12.6 6.0 9 160 160
    4 12.8 1.0 13 100 140
    5 13.0 3.0 9 180 120
    6 13.2 5.0 11 120 100
     | Show Table
    DownLoad: CSV
    表 6  单纯形优化结果
    Table 6.  Result of simplex optimization
    实验序号 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1) COD去除率/% 标准差 0.7η+0.1/t+0.2/m
    1 12.2 2.0 11 140 200 66.31 0.987 6 0.607 1
    2 12.4 4.0 13 80 180 66.97 0.120 2 0.552 1
    3 12.6 6.0 9 160 160 83.21 0.720 8 0.653 3
    4 12.8 1.0 13 100 140 64.26 2.716 2 0.709 7
    5 13.0 3.0 9 180 120 83.4 1.419 3 0.683 8
    6 13.2 5.0 11 120 100 62.36 1.007 0 0.526 5
    7 12.2 1.4 11 144 200 67.97 1.689 9 0.660 3
    8 12.7 1.36 9 180 150 87.24 1.225 3 0.791 1
    9 13.2 3.38 9 172 100 91.81 1.565 4 0.736 7
    10 12.9 1.0 11 150 120 90.04 0.431 3 0.870 3
    11 13.2 2.77 9 175 100 86.8 0.671 7 0.714 3
    12 13.2 1.0 11 130 120 75.72 2.517 3 0.776 2
    13 13.2 2.804 9 180 100 88.51 2.026 4 0.724 2
     | Show Table
    DownLoad: CSV

    图11显示了CaO催化臭氧氧化处理工厂的实际PCB清槽剂废液的处理效果,其工艺条件如下:pH为13.0、CaO质量为2.0 g、废液深度为11 cm、降解时间为180 min、臭氧用量为180 mg·min−1。可以看出,处理180 min后,废液COD去除率达到了94.67%,比单独臭氧氧化过程COD去除率高26.92%,CaO作为催化剂加入到臭氧氧化过程大幅度提高了有机物的降解率。上述结果表明CaO催化臭氧氧化处理实际高浓度难降解废液具有可行性,并且对有机物的降解效果显著,具有广阔的应用前景。

    图 11  CaO在实际PCB废液中的催化降解率
    Figure 11.  Catalytic degradation efficiency in actual PCB effluents by CaO

    1)自由基淬灭实验和水杨酸羟基化实验结果表明,CaO催化臭氧氧化体系中存在 · OH,主要是遵循羟基自由基机理。

    2)通过GCMS检测,废液降解后检测出了中间体,如羟基丙酮、乙二醇、正丁醇、乙酸等。因此,有机物可能降解途径是:有机物主要是先与 · OH结合,再进一步被氧化形成酮,然后被氧化为乙酸,最后形成CO2和H2O。

    3)催化剂稳定性测试表明,CaO具有优良的循环稳定性,经过5次循环后,催化剂的催化效率可以达到84.04%。SEM、XRD测试结果表明,使用后的催化剂团聚现象明显增大,其主要成分由CaO变为了Ca(OH)2和CaCO3,从而导致催化效率降低。

    4)单纯形优化实验表明,在优化条件下可以满足在较短时间,使用较少催化剂情况下,催化效率达到90.04%。最后,将CaO催化臭氧氧化技术应用到实际PCB废液中,废液COD去除率可以达到94.67%,表明CaO催化臭氧氧化技术可应用于实际高浓度难降解废液。

  • 图 1  21种新型PFASs标准品的MRM色谱图 (10 ng·mL−1

    Figure 1.  MRM chromatograms of twenty-one emerging PFASs standards (10 ng·mL−1

    图 2  不同萃取方法对35种目标化合物回收率的影响

    Figure 2.  Effect of different extraction methods on recoveries of 35 target compounds

    图 3  不同分散固相萃取吸附剂(dSPE)比例对35种目标化合物回收率的影响

    Figure 3.  Effect of different proportions of dispersive SPE on recoveries of 35 target compounds

    图 4  水生和陆生昆虫体内PFASs的污染水平(ng·g−1 dw)

    Figure 4.  Concentrations and profiles of detected PFASs in aquatic and terrestrial insects

    表 1  35种PFASs以及19种内标的质谱参数

    Table 1.  Detailed mass spectrometry parameters of 35 individual PFASs and 19 isotopic internal standards

    简称Acronym化合物全称Compound name母离子Precursor Ion (m/z子离子Product Ion (m/z碎裂电压/VFragmentor碰撞能/eVCollision Energy
    PFBAPerfluorobutanoic acid212.8168.8606
    PFPeAPerfluoropentanoic acid262.9218.8805
    PFHxAPerfluorohexanoic acid312.9268.9805
    PFHpAPerfluoroheptanoic acid362.8318.9805
    PFOAPerfluorooctanoic acid412.9368.9905
    PFNAPerfluorononanoic acid462.8418.9905
    PFDAPerfluorodecanoic acid512.8468.91005
    PFUnDAPerfluoroundecanoic acid562.9518.9805
    PFDoDAPerfluorododecanoic acid612.9568.910010
    PFBSPotassium perfluorobutane sulfonate298.879.915045
    PFPeSSodium perfluoropentane sulfonate348.979.915050
    PFHxSSodium perfluorohexane sulfonate398.879.915060
    PFHpSSodium perfluoroheptane sulfonate448.979.915060
    PFOSSodium perfluorooctane sulfonate498.879.915060
    FOSA-IPerfluoro-1-octanesulfonamide497.877.915050
    3.6-OPFHpAPerfluoro-3,6-dioxaheptanoic acid20184.98010
    PF4OPeAPerfluoro-4-oxapentanoic acid228.984.95010
    PF5OHxAPerfluoro-5-oxahexanoic acid278.984.95012
    ADONA3H-perfluoro-3-(3-methoxy-propoxy)-propanoate acid376.9250.68010
    PFEESAPerfluoro (2-ethoxyethane) sulfonic acid314.9134.710025
    HFPO-DAHexafluoropropylene oxide dimer acid284.9168.8605
    HFPO-TAHexafluoropropylene oxide trimer acid184.7118.78015
    6:2 FTCA6:2 fluorotelomer carboxylic acid376.9292.98010
    8:2 FTCA8:2 fluorotelomer carboxylic acid476.6392.98012
    10:2 FTCA10:2 fluorotelomer carboxylic acid576.6492.99010
    4:2 FTS4:2 fluorotelomer sulfonate acid326.9306.715020
    6:2 FTS6:2 fluorotelomer sulfonate acid426.9406.718025
    8:2 FTS8:2 fluorotelomer sulfonate acid526.9506.720030
    6:2 Cl-PFESA6:2 chlorinated polyfluorinated ether sulfonates530.9350.815030
    8:2 Cl-PFESA8:2 chlorinated polyfluorinated ether sulfonates630.9450.815035
    OBSSodium p-perfluorous nonenoxybenzene sulfonate602.8171.620050
    PFECHSPotassium perfluoro-4-ethylcyclohexanesulfonate460.8380.815030
    6:2 diPAPSodium bis(1H,1H,2H,2H-perfluorooctyl) phosphate788.796.719540
    6:2/8:2 diPAPSodium bis(1H,1H,2H,2H-perfluorooctyl-1H,1H,2H,2H- perfluorodecyl) phosphate888.796.720050
    8:2 diPAPSodium bis(1H,1H,2H,2H-perfluorodecyl) phosphate988.796.720050
    13C4-PFBAPerfluoro-(13C4)-butanoic acid216.9171.9606
    13C2-PFHxAPerfluoro-(13C2)-hexanoic acid314.9269.9805
    13C4-PFOAPerfluoro-(13C4)-octanoic acid416.8371.9905
    13C5-PFNAPerfluoro-(13C5)-nonanoic acid467.9422.9905
    13C2-PFDAPerfluoro-(13C2)-decanoic acid514.9469.91005
    13C2-PFUnDAPerfluoro-(13C2)-undecanoic acid564.9519.9805
    13C2-PFDoDAPerfluoro-(13C2)-dodecanoic acid614.9569.910010
    13C3-PFBSPerfluoro-(13C3)- butane sulfonate301.879.915045
    18O2-PFHxSPerfluoro-(18O2)-hexane sulfonic acid402.979.915060
    13C4-PFOSPerfluoro-(13C4)-octane sulfonic acid502.879.915060
    13C3-HFPO-DAHexafluoropropylene-(13C3)-dimer acid286.9168.8605
    13C2-6:2 FTCA2-Perfluorohexyl-(13C2)-ethanoic acid378.9293.68010
    13C2-8:2 FTCA2-Perfluorooctyl-(13C2)-ethanoic acid478.6393.98012
    13C2-10:2 FTCA2-Perfluorodecyl-(13C2)-ethanoic acid578.6493.99010
    13C2-4:2 FTS4:2 fluorotelomer-(13C2)-sulfonate328.980.915020
    13C2-6:2 FTS6:2 fluorotelomer-(13C2)-sulfonate428.980.918025
    13C2-8:2 FTS8:2 fluorotelomer-(13C2)-sulfonate528.980.920030
    13C4-6:2 diPAPSodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorooctyl) phosphate792.7445.820040
    13C4-8:2 diPAPSodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorodecyl) phosphate992.7545.820050
    简称Acronym化合物全称Compound name母离子Precursor Ion (m/z子离子Product Ion (m/z碎裂电压/VFragmentor碰撞能/eVCollision Energy
    PFBAPerfluorobutanoic acid212.8168.8606
    PFPeAPerfluoropentanoic acid262.9218.8805
    PFHxAPerfluorohexanoic acid312.9268.9805
    PFHpAPerfluoroheptanoic acid362.8318.9805
    PFOAPerfluorooctanoic acid412.9368.9905
    PFNAPerfluorononanoic acid462.8418.9905
    PFDAPerfluorodecanoic acid512.8468.91005
    PFUnDAPerfluoroundecanoic acid562.9518.9805
    PFDoDAPerfluorododecanoic acid612.9568.910010
    PFBSPotassium perfluorobutane sulfonate298.879.915045
    PFPeSSodium perfluoropentane sulfonate348.979.915050
    PFHxSSodium perfluorohexane sulfonate398.879.915060
    PFHpSSodium perfluoroheptane sulfonate448.979.915060
    PFOSSodium perfluorooctane sulfonate498.879.915060
    FOSA-IPerfluoro-1-octanesulfonamide497.877.915050
    3.6-OPFHpAPerfluoro-3,6-dioxaheptanoic acid20184.98010
    PF4OPeAPerfluoro-4-oxapentanoic acid228.984.95010
    PF5OHxAPerfluoro-5-oxahexanoic acid278.984.95012
    ADONA3H-perfluoro-3-(3-methoxy-propoxy)-propanoate acid376.9250.68010
    PFEESAPerfluoro (2-ethoxyethane) sulfonic acid314.9134.710025
    HFPO-DAHexafluoropropylene oxide dimer acid284.9168.8605
    HFPO-TAHexafluoropropylene oxide trimer acid184.7118.78015
    6:2 FTCA6:2 fluorotelomer carboxylic acid376.9292.98010
    8:2 FTCA8:2 fluorotelomer carboxylic acid476.6392.98012
    10:2 FTCA10:2 fluorotelomer carboxylic acid576.6492.99010
    4:2 FTS4:2 fluorotelomer sulfonate acid326.9306.715020
    6:2 FTS6:2 fluorotelomer sulfonate acid426.9406.718025
    8:2 FTS8:2 fluorotelomer sulfonate acid526.9506.720030
    6:2 Cl-PFESA6:2 chlorinated polyfluorinated ether sulfonates530.9350.815030
    8:2 Cl-PFESA8:2 chlorinated polyfluorinated ether sulfonates630.9450.815035
    OBSSodium p-perfluorous nonenoxybenzene sulfonate602.8171.620050
    PFECHSPotassium perfluoro-4-ethylcyclohexanesulfonate460.8380.815030
    6:2 diPAPSodium bis(1H,1H,2H,2H-perfluorooctyl) phosphate788.796.719540
    6:2/8:2 diPAPSodium bis(1H,1H,2H,2H-perfluorooctyl-1H,1H,2H,2H- perfluorodecyl) phosphate888.796.720050
    8:2 diPAPSodium bis(1H,1H,2H,2H-perfluorodecyl) phosphate988.796.720050
    13C4-PFBAPerfluoro-(13C4)-butanoic acid216.9171.9606
    13C2-PFHxAPerfluoro-(13C2)-hexanoic acid314.9269.9805
    13C4-PFOAPerfluoro-(13C4)-octanoic acid416.8371.9905
    13C5-PFNAPerfluoro-(13C5)-nonanoic acid467.9422.9905
    13C2-PFDAPerfluoro-(13C2)-decanoic acid514.9469.91005
    13C2-PFUnDAPerfluoro-(13C2)-undecanoic acid564.9519.9805
    13C2-PFDoDAPerfluoro-(13C2)-dodecanoic acid614.9569.910010
    13C3-PFBSPerfluoro-(13C3)- butane sulfonate301.879.915045
    18O2-PFHxSPerfluoro-(18O2)-hexane sulfonic acid402.979.915060
    13C4-PFOSPerfluoro-(13C4)-octane sulfonic acid502.879.915060
    13C3-HFPO-DAHexafluoropropylene-(13C3)-dimer acid286.9168.8605
    13C2-6:2 FTCA2-Perfluorohexyl-(13C2)-ethanoic acid378.9293.68010
    13C2-8:2 FTCA2-Perfluorooctyl-(13C2)-ethanoic acid478.6393.98012
    13C2-10:2 FTCA2-Perfluorodecyl-(13C2)-ethanoic acid578.6493.99010
    13C2-4:2 FTS4:2 fluorotelomer-(13C2)-sulfonate328.980.915020
    13C2-6:2 FTS6:2 fluorotelomer-(13C2)-sulfonate428.980.918025
    13C2-8:2 FTS8:2 fluorotelomer-(13C2)-sulfonate528.980.920030
    13C4-6:2 diPAPSodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorooctyl) phosphate792.7445.820040
    13C4-8:2 diPAPSodium bis(1H,1H,2H,2H-[1,2-13C2]perfluorodecyl) phosphate992.7545.820050
    下载: 导出CSV

    表 2  35种PFASs的线性方程、相关系数(R2)、仪器检出限和方法定量限

    Table 2.  Linear equation, correlation coefficient (R2), limit of detection (LOD), and limit of quantitation (LOQ,) for 35 target PFASs

    目标化合物Target compound内标Internal standard线性方程Linear equation相关系数(R2)Correlation coefficient检出限/(ng·mL−1)LOD定量限/(ng·g−1 dw)LOQ
    PFBA13C4-PFBAy=0.026676x−0.0178170.999510.01350.0405
    PFPeA13C4-PFBAy=0.015960x−0.0044340.999790.02220.0665
    PFHxA13C2-PFHxAy=0.031886x−0.0092410.999860.01990.0596
    PFHpA13C2-PFHxAy=0.034467x−0.0098200.999890.01870.0561
    PFOA13C4-PFOAy=0.034039x−0.0164620.999720.01980.0595
    PFNA13C5-PFNAy=0.030688x−0.0074620.999920.01980.0595
    PFDA13C2-PFDAy=0.030758x−0.0144030.999830.01760.0527
    PFUnDA13C2-PFUnDAy=0.035521x−0.0355780.999920.01840.0553
    PFDoDA13C2-PFDoDAy=0.029815x−0.0116760.999880.01660.0498
    PFBS13C3-PFBSy=0.043224x−0.0014820.999800.01810.0542
    PFPeS13C3-PFBSy=0.047911x+0.0013431.000000.01890.0567
    PFHxS18O2-PFHxSy=0.058056x−0.0068990.999890.02040.0612
    PFHpS18O2-PFHxSy=0.035339x−0.0111980.999860.01050.0314
    PFOS13C4-PFOSy=0.041710x+0.0429380.999810.02040.0613
    FOSA-I13C4-PFOSy=0.016368x−0.0018610.999870.02920.0876
    3.6-OPFHpA13C4-PFBAy=0.017046x−0.0130550.999290.02020.0606
    PF4OPeA13C4-PFBAy=0.016543x−0.0119430.999390.01880.0563
    PF5OHxA13C2-PFHxAy=0.014955x−0.0106790.999410.01920.0577
    ADONA13C4-PFOAy=0.058757x−0.0417350.999420.01900.0571
    PFEESA13C4-PFOAy=0.047871x−0.0425870.999010.01860.0558
    HFPO-DA13C3-HFPO-DAy=0.007638x−0.0060910.999130.01820.0547
    HFPO-TA13C3-HFPO-DAy=0.024974x−0.0085960.999510.02790.0836
    6:2 FTCA13C2-6:2 FTCAy=0.001298x−0.0007050.999680.03100.0930
    8:2 FTCA13C2-8:2 FTCAy=0.001433x−0.0004810.999880.01920.0576
    10:2 FTCA13C2-10:2 FTCAy=0.001310x−0.0004310.999710.01770.0531
    4:2 FTS13C2-4:2 FTSy=0.028611x−0.0047850.999810.01760.0528
    6:2 FTS13C2-6:2 FTSy=0.026094x+0.0083800.999490.01910.0573
    8:2 FTS13C2-8:2 FTSy=0.017183x+0.0033590.999210.01520.0457
    6:2 CL-PFESA13C4-PFOSy=0.175038x−0.0865730.999730.01730.0520
    8:2 CL-PFESA13C4-PFOSy=0.140150x−0.0554190.999880.01630.0488
    OBS13C4-PFOSy=0.018987x+0.0027970.999280.01290.0387
    PFECHS13C4-PFOSy=0.156627x−0.0165280.999860.01960.0588
    6:2 diPAP13C4-6:2 diPAPy=0.007340x−0.0031770.999750.02400.0719
    6:2/8:2 diPAP13C4-6:2 diPAPy=0.012541x−0.0009630.999120.02090.0626
    8:2 diPAP13C4-8:2 diPAPy=0.004813x−0.0002420.999270.03290.0988
    目标化合物Target compound内标Internal standard线性方程Linear equation相关系数(R2)Correlation coefficient检出限/(ng·mL−1)LOD定量限/(ng·g−1 dw)LOQ
    PFBA13C4-PFBAy=0.026676x−0.0178170.999510.01350.0405
    PFPeA13C4-PFBAy=0.015960x−0.0044340.999790.02220.0665
    PFHxA13C2-PFHxAy=0.031886x−0.0092410.999860.01990.0596
    PFHpA13C2-PFHxAy=0.034467x−0.0098200.999890.01870.0561
    PFOA13C4-PFOAy=0.034039x−0.0164620.999720.01980.0595
    PFNA13C5-PFNAy=0.030688x−0.0074620.999920.01980.0595
    PFDA13C2-PFDAy=0.030758x−0.0144030.999830.01760.0527
    PFUnDA13C2-PFUnDAy=0.035521x−0.0355780.999920.01840.0553
    PFDoDA13C2-PFDoDAy=0.029815x−0.0116760.999880.01660.0498
    PFBS13C3-PFBSy=0.043224x−0.0014820.999800.01810.0542
    PFPeS13C3-PFBSy=0.047911x+0.0013431.000000.01890.0567
    PFHxS18O2-PFHxSy=0.058056x−0.0068990.999890.02040.0612
    PFHpS18O2-PFHxSy=0.035339x−0.0111980.999860.01050.0314
    PFOS13C4-PFOSy=0.041710x+0.0429380.999810.02040.0613
    FOSA-I13C4-PFOSy=0.016368x−0.0018610.999870.02920.0876
    3.6-OPFHpA13C4-PFBAy=0.017046x−0.0130550.999290.02020.0606
    PF4OPeA13C4-PFBAy=0.016543x−0.0119430.999390.01880.0563
    PF5OHxA13C2-PFHxAy=0.014955x−0.0106790.999410.01920.0577
    ADONA13C4-PFOAy=0.058757x−0.0417350.999420.01900.0571
    PFEESA13C4-PFOAy=0.047871x−0.0425870.999010.01860.0558
    HFPO-DA13C3-HFPO-DAy=0.007638x−0.0060910.999130.01820.0547
    HFPO-TA13C3-HFPO-DAy=0.024974x−0.0085960.999510.02790.0836
    6:2 FTCA13C2-6:2 FTCAy=0.001298x−0.0007050.999680.03100.0930
    8:2 FTCA13C2-8:2 FTCAy=0.001433x−0.0004810.999880.01920.0576
    10:2 FTCA13C2-10:2 FTCAy=0.001310x−0.0004310.999710.01770.0531
    4:2 FTS13C2-4:2 FTSy=0.028611x−0.0047850.999810.01760.0528
    6:2 FTS13C2-6:2 FTSy=0.026094x+0.0083800.999490.01910.0573
    8:2 FTS13C2-8:2 FTSy=0.017183x+0.0033590.999210.01520.0457
    6:2 CL-PFESA13C4-PFOSy=0.175038x−0.0865730.999730.01730.0520
    8:2 CL-PFESA13C4-PFOSy=0.140150x−0.0554190.999880.01630.0488
    OBS13C4-PFOSy=0.018987x+0.0027970.999280.01290.0387
    PFECHS13C4-PFOSy=0.156627x−0.0165280.999860.01960.0588
    6:2 diPAP13C4-6:2 diPAPy=0.007340x−0.0031770.999750.02400.0719
    6:2/8:2 diPAP13C4-6:2 diPAPy=0.012541x−0.0009630.999120.02090.0626
    8:2 diPAP13C4-8:2 diPAPy=0.004813x−0.0002420.999270.03290.0988
    下载: 导出CSV

    表 3  水生和陆生昆虫中35种PFASs的加标回收率和标准偏差(%)

    Table 3.  The recoveries and relative standard deviation (%) for 35 target PFASs in aquatic and terrestrial insects

    目标化合物Target compound水生昆虫Aquatic insect陆生昆虫Terrestrial insect
    1 ng·mL−110 ng·mL−1100 ng·mL−11 ng·mL−110 ng·mL−1100 ng·mL−1
    PFBA118.9 ± 2.3 ª99.3 ± 2.998.5 ± 4.2101.7 ± 8.787.2 ± 5.081.5 ± 0.72
    PFPeA94.5 ± 1.899.6 ± 5.499.0 ± 6.487.8 ± 2.773.5 ± 4.370.3 ± 3.0
    PFHxA94.0 ± 8.595.8 ± 4.596.1 ± 5.197.6 ± 3.481.1 ± 1.587.1 ± 3.6
    PFHpA89.5 ± 5.494.3 ± 9.8101.5 ± 6.576.2 ± 7.976.4 ± 0.5095.1 ± 4.0
    PFOA89.3 ± 5.893.1 ± 1199.4 ± 6.677.4 ± 8.575.2 ± 3.699.5 ± 6.2
    PFNA82.2 ± 3.8104.8 ± 3.0102.9 ± 6.579.1 ± 7.878.9 ± 3.7101.0 ± 6.0
    PFDA82.7 ± 4.8117.0 ± 8.7106.2 ± 6.273.8 ± 5.878.2 ± 2.798.5 ± 6.1
    PFUnDA85.0 ± 5.191.3 ± 2.8108.8 ± 4.467.8 ± 1.470.4 ± 1.385.2 ± 5.6
    PFDoDA82.8 ± 3.493.5 ± 7.7104.8 ± 5.981.9 ± 8.895.0 ± 1.295.7 ± 4.3
    PFBS101.4 ± 1181.4 ± 8.1101.5 ± 7.6107.2 ± 1079.5 ± 1.2106.1 ± 4.3
    PFPeS108.6 ± 3.899.8 ± 8.3107.6 ± 7.896.4 ± 1680.9 ± 2.1106.8 ± 6.1
    PFHxS84.8 ± 7.090.0 ± 7.986.6 ± 7.083.0 ± 1172.8 ± 1.680.5 ± 4.9
    PFHpS110.1 ± 5.8103.7 ± 4.8119.8 ± 6.097.7 ± 1194.7 ± 7.3108.6 ± 5.1
    PFOS124.6 ± 8.594.8 ± 5.086.9 ± 6.0102.8 ± 2498.1 ± 6.179.8 ± 5.0
    FOSA-I78.1 ± 5.580.2 ± 8.376.7 ± 6.189.6 ± 6.898.6 ± 1.086.5 ± 2.5
    3.6-OPFHpA81.4 ± 8.186.3 ± 6.395.0 ± 4.278.2 ± 3.776.8 ± 5.179.4 ± 0.66
    PF4OPeA118.4 ± 5.7104.8 ± 4.9106.1 ± 2.396.3 ± 6.380.0 ± 4.481.0 ± 2.8
    PF5OHxA93.1 ± 4.9105.2 ± 2.6111.5 ± 4.075.5 ± 4.871.3 ± 4.971.4 ± 2.5
    ADONA70.0 ± 2.081.4 ± 6.393.0 ± 5.567.8 ± 1.465.2 ± 2.479.8 ± 1.5
    PFEESA73.7 ± 8.178.4 ± 6.495.0 ± 5.869.9 ± 1.167.7 ± 2.381.7 ± 2.0
    HFPO-DA94.6 ± 1090.1 ± 4.096.0 ± 4.9103.5 ± 5.276.8 ± 2.676.7 ± 1.6
    HFPO-TA104.8 ± 4.772.8 ± 6.285.7 ± 8.195.2 ± 5.5104.1 ± 4.763.7 ± 1.1
    6:2 FTCA115.8 ± 3.789.9 ± 9.4114.2 ± 4.2101.5 ± 9.386.7 ± 5.4102.6 ± 4.1
    8:2 FTCA100.3 ± 2.4107.3 ± 12109.0 ± 4.893.3 ± 7.7115.0 ± 2.9103.1 ± 5.6
    10:2 FTCA126.0 ± 4.279.6 ± 3.791.9 ± 2.7101.3 ± 9.972.7 ± 7.878.0 ± 1.3
    4:2 FTS110.1 ± 20102.0 ± 7.084.5 ± 5.498.4 ± 9.5100.7 ± 6.175.4 ± 2.4
    6:2 FTS97.7 ± 1799.8 ± 9.875.5 ± 5.3106.3 ± 1193.2 ± 7.073.5 ± 0.15
    8:2 FTS69.9 ± 3.8104.5 ± 1496.2 ± 5.567.3 ± 3.8101.4 ± 8.9107.1 ± 0.19
    6:2 Cl-PFESA117.4 ± 8.183.8 ± 3.3103.9 ± 4.293.1 ± 2.692.9 ± 5.296.7 ± 2.2
    8:2 Cl-PFESA82.5 ± 8.6101.2 ± 2.1111.1 ± 4.3100.8 ± 2.198.7 ± 4.999.4 ± 2.6
    OBS88.0 ± 1389.1 ± 4.681.0 ± 6.799.6 ± 9.497.7 ± 6.679.0 ± 1.0
    PFECHS87.9 ± 6.279.2 ± 2.1112.1 ± 6.671.5 ± 6.173.5 ± 3.996.9 ± 2.1
    6:2 diPAP109.0 ± 2.591.0 ± 16113.9 ± 16112.4 ± 5.192.4 ± 7.1115.1 ± 9.9
    6:2/8:2 diPAP101.0 ± 2094.0 ± 3.8116.0 ± 3.492.4 ± 2.480.3 ± 1189.9 ± 1.1
    8:2 diPAP121.5 ± 5.479.8 ± 1.191.4 ± 11111.3 ± 6.4109.5 ± 1192.8 ± 3.6
      ª 均值±相对标准偏差。ª Mean ± RSD.
    目标化合物Target compound水生昆虫Aquatic insect陆生昆虫Terrestrial insect
    1 ng·mL−110 ng·mL−1100 ng·mL−11 ng·mL−110 ng·mL−1100 ng·mL−1
    PFBA118.9 ± 2.3 ª99.3 ± 2.998.5 ± 4.2101.7 ± 8.787.2 ± 5.081.5 ± 0.72
    PFPeA94.5 ± 1.899.6 ± 5.499.0 ± 6.487.8 ± 2.773.5 ± 4.370.3 ± 3.0
    PFHxA94.0 ± 8.595.8 ± 4.596.1 ± 5.197.6 ± 3.481.1 ± 1.587.1 ± 3.6
    PFHpA89.5 ± 5.494.3 ± 9.8101.5 ± 6.576.2 ± 7.976.4 ± 0.5095.1 ± 4.0
    PFOA89.3 ± 5.893.1 ± 1199.4 ± 6.677.4 ± 8.575.2 ± 3.699.5 ± 6.2
    PFNA82.2 ± 3.8104.8 ± 3.0102.9 ± 6.579.1 ± 7.878.9 ± 3.7101.0 ± 6.0
    PFDA82.7 ± 4.8117.0 ± 8.7106.2 ± 6.273.8 ± 5.878.2 ± 2.798.5 ± 6.1
    PFUnDA85.0 ± 5.191.3 ± 2.8108.8 ± 4.467.8 ± 1.470.4 ± 1.385.2 ± 5.6
    PFDoDA82.8 ± 3.493.5 ± 7.7104.8 ± 5.981.9 ± 8.895.0 ± 1.295.7 ± 4.3
    PFBS101.4 ± 1181.4 ± 8.1101.5 ± 7.6107.2 ± 1079.5 ± 1.2106.1 ± 4.3
    PFPeS108.6 ± 3.899.8 ± 8.3107.6 ± 7.896.4 ± 1680.9 ± 2.1106.8 ± 6.1
    PFHxS84.8 ± 7.090.0 ± 7.986.6 ± 7.083.0 ± 1172.8 ± 1.680.5 ± 4.9
    PFHpS110.1 ± 5.8103.7 ± 4.8119.8 ± 6.097.7 ± 1194.7 ± 7.3108.6 ± 5.1
    PFOS124.6 ± 8.594.8 ± 5.086.9 ± 6.0102.8 ± 2498.1 ± 6.179.8 ± 5.0
    FOSA-I78.1 ± 5.580.2 ± 8.376.7 ± 6.189.6 ± 6.898.6 ± 1.086.5 ± 2.5
    3.6-OPFHpA81.4 ± 8.186.3 ± 6.395.0 ± 4.278.2 ± 3.776.8 ± 5.179.4 ± 0.66
    PF4OPeA118.4 ± 5.7104.8 ± 4.9106.1 ± 2.396.3 ± 6.380.0 ± 4.481.0 ± 2.8
    PF5OHxA93.1 ± 4.9105.2 ± 2.6111.5 ± 4.075.5 ± 4.871.3 ± 4.971.4 ± 2.5
    ADONA70.0 ± 2.081.4 ± 6.393.0 ± 5.567.8 ± 1.465.2 ± 2.479.8 ± 1.5
    PFEESA73.7 ± 8.178.4 ± 6.495.0 ± 5.869.9 ± 1.167.7 ± 2.381.7 ± 2.0
    HFPO-DA94.6 ± 1090.1 ± 4.096.0 ± 4.9103.5 ± 5.276.8 ± 2.676.7 ± 1.6
    HFPO-TA104.8 ± 4.772.8 ± 6.285.7 ± 8.195.2 ± 5.5104.1 ± 4.763.7 ± 1.1
    6:2 FTCA115.8 ± 3.789.9 ± 9.4114.2 ± 4.2101.5 ± 9.386.7 ± 5.4102.6 ± 4.1
    8:2 FTCA100.3 ± 2.4107.3 ± 12109.0 ± 4.893.3 ± 7.7115.0 ± 2.9103.1 ± 5.6
    10:2 FTCA126.0 ± 4.279.6 ± 3.791.9 ± 2.7101.3 ± 9.972.7 ± 7.878.0 ± 1.3
    4:2 FTS110.1 ± 20102.0 ± 7.084.5 ± 5.498.4 ± 9.5100.7 ± 6.175.4 ± 2.4
    6:2 FTS97.7 ± 1799.8 ± 9.875.5 ± 5.3106.3 ± 1193.2 ± 7.073.5 ± 0.15
    8:2 FTS69.9 ± 3.8104.5 ± 1496.2 ± 5.567.3 ± 3.8101.4 ± 8.9107.1 ± 0.19
    6:2 Cl-PFESA117.4 ± 8.183.8 ± 3.3103.9 ± 4.293.1 ± 2.692.9 ± 5.296.7 ± 2.2
    8:2 Cl-PFESA82.5 ± 8.6101.2 ± 2.1111.1 ± 4.3100.8 ± 2.198.7 ± 4.999.4 ± 2.6
    OBS88.0 ± 1389.1 ± 4.681.0 ± 6.799.6 ± 9.497.7 ± 6.679.0 ± 1.0
    PFECHS87.9 ± 6.279.2 ± 2.1112.1 ± 6.671.5 ± 6.173.5 ± 3.996.9 ± 2.1
    6:2 diPAP109.0 ± 2.591.0 ± 16113.9 ± 16112.4 ± 5.192.4 ± 7.1115.1 ± 9.9
    6:2/8:2 diPAP101.0 ± 2094.0 ± 3.8116.0 ± 3.492.4 ± 2.480.3 ± 1189.9 ± 1.1
    8:2 diPAP121.5 ± 5.479.8 ± 1.191.4 ± 11111.3 ± 6.4109.5 ± 1192.8 ± 3.6
      ª 均值±相对标准偏差。ª Mean ± RSD.
    下载: 导出CSV
  • [1] WANG Z Y, DEWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
    [2] 金航标, 祝凌燕, 单国强. 高效液相色谱-串联质谱法同时测定人血清中的全氟辛烷磺酸及其前体物 [J]. 环境化学, 2016, 35(6): 1180-1188. doi: 10.7524/j.issn.0254-6108.2016.06.2015111705

    JIN H B, ZHU L Y, SHAN G Q. Determination of perfluorooctane sulfonate and its precursors in human serum samples by high performance liquid chromatography electrospray tandem mass spectrometry [J]. Environmental Chemistry, 2016, 35(6): 1180-1188(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015111705

    [3] ZHANG B, HE Y, YANG G, et al. Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea: Temporal trends and tissue-specific accumulation [J]. Environmental Science & Technology, 2022,56(10): 6113-6122.
    [4] 林泳峰, 阮挺, 江桂斌. 新型全氟和多氟烷基化合物的分析、行为与效应研究进展 [J]. 科学通报, 2017, 62(24): 2724-2738. doi: 10.1360/N972017-00223

    LIN Y F, RUAN T, JIANG G B. Progress on analytical methods and environmental behavior of emerging per-and polyfluoroalkyl substances [J]. Chinese Science Bulletin, 2017, 62(24): 2724-2738(in Chinese). doi: 10.1360/N972017-00223

    [5] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170.
    [6] NAKAYAMA S F, YOSHIKANE M, ONODA Y, et al. Worldwide trends in tracing poly- and perfluoroalkyl substances (PFAS) in the environment [J]. TrAC Trends in Analytical Chemistry, 2019, 121: 115410. doi: 10.1016/j.trac.2019.02.011
    [7] YAO J Z, PAN Y T, SHENG N, et al. Novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs): Occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in China [J]. Environmental Science & Technology, 2020, 54(21): 13389-13398.
    [8] XU L, SHI Y L, LI C X, et al. Discovery of a novel polyfluoroalkyl benzenesulfonic acid around oilfields in Northern China [J]. Environmental Science & Technology, 2017, 51(24): 14173-14181.
    [9] HU H M, ZHANG Y Y, ZHAO N, et al. Legacy and emerging poly- and perfluorochemicals in seawater and sediment from East China Sea [J]. Science of the Total Environment, 2021, 797: 149052. doi: 10.1016/j.scitotenv.2021.149052
    [10] MUNOZ G, LIU J X, VO DUY S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples: A review [J]. Trends in Environmental Analytical Chemistry, 2019, 23: e00066. doi: 10.1016/j.teac.2019.e00066
    [11] GALLOWAY J E, MORENO A V P, LINDSTROM A B, et al. Evidence of air dispersion: HFPO-DA and PFOA in Ohio and west Virginia surface water and soil near a fluoropolymer production facility [J]. Environmental Science & Technology, 2020, 54(12): 7175-7184.
    [12] MENG L Y, SONG B Y, ZHONG H F, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers [J]. Environment International, 2021, 156: 106735. doi: 10.1016/j.envint.2021.106735
    [13] de SOLLA S R, de SILVA A O, LETCHER R J. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada [J]. Environment International, 2012, 39(1): 19-26. doi: 10.1016/j.envint.2011.09.011
    [14] GROFFEN T, RIJNDERS J, van DOORN L, et al. Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans [J]. Environmental Research, 2021, 192: 110299. doi: 10.1016/j.envres.2020.110299
    [15] LESCH V, BOUWMAN H, KINOSHITA A, et al. First report of perfluoroalkyl substances in South African Odonata [J]. Chemosphere, 2017, 175: 153-160. doi: 10.1016/j.chemosphere.2017.02.020
    [16] KOCH A, JONSSON M, YEUNG L W Y, et al. Per- and polyfluoroalkyl-contaminated freshwater impacts adjacent riparian food webs [J]. Environmental Science & Technology, 2020, 54(19): 11951-11960.
    [17] KOCH A, JONSSON M, YEUNG L W Y, et al. Quantification of biodriven transfer of per- and polyfluoroalkyl substances from the aquatic to the terrestrial environment via emergent insects [J]. Environmental Science & Technology, 2021, 55(12): 7900-7909.
    [18] LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts [J]. Environmental Pollution, 2020, 263: 114487. doi: 10.1016/j.envpol.2020.114487
    [19] ARISTIZABAL-HENAO J J, BROWN H J, GRIFFIN E K, et al. Ticks as novel sentinels to monitor environmental levels of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science. Processes & Impacts, 2021, 23(9): 1301-1307.
    [20] KOCH A, KÄRRMAN A, YEUNG L W Y, et al. Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates [J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1887-1898.
    [21] GAO Y, ZHANG Q H, LI X M, et al. Simultaneous determination of legacy and emerging per- and polyfluoroalkyl substances in fish by QuEChERS coupled with ultrahigh performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2018, 10(47): 5715-5722. doi: 10.1039/C8AY01478G
    [22] KANNAN K, TAO L, SINCLAIR E, et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566. doi: 10.1007/s00244-004-0133-x
    [23] 朱萍萍, 岳振峰, 郑宗坤, 等. 分散固相萃取结合高效液相色谱-串联质谱法测定羊肝中19种全氟烷基酸 [J]. 色谱, 2015, 33(5): 494-500. doi: 10.3724/SP.J.1123.2014.12034

    ZHU P P, YUE Z F, ZHENG Z K, et al. Determination of perfluoroalkyl acids in lamb liver by high performance liquid chromatographytandem mass spectrometry combined with dispersive solid phase extraction [J]. Chinese Journal of Chromatography, 2015, 33(5): 494-500(in Chinese). doi: 10.3724/SP.J.1123.2014.12034

    [24] GENUALDI S, YOUNG W, DEJAGER L, et al. Method development and validation of per- and polyfluoroalkyl substances in foods from FDA's total diet study program [J]. Journal of Agricultural and Food Chemistry, 2021, 69(20): 5599-5606. doi: 10.1021/acs.jafc.1c01777
    [25] LACINA O, HRADKOVA P, PULKRABOVA J, et al. Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: Milk and fish [J]. Journal of Chromatography A, 2011, 1218(28): 4312-4321. doi: 10.1016/j.chroma.2011.04.061
    [26] 李帅, 陈辉, 金铃和, 等. 高效液相色谱-串联质谱法测定蜂蜜中20种全氟烷基化合物 [J]. 色谱, 2017, 35(5): 495-501. doi: 10.3724/SP.J.1123.2016.12016

    LI S, CHEN H, JIN L H, et al. Determination of 20 perfluorinated alkyl substances in honey by high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2017, 35(5): 495-501(in Chinese). doi: 10.3724/SP.J.1123.2016.12016

    [27] GURUGE K S, MANAGE P M, YAMANAKA N, et al. Species-specific concentrations of perfluoroalkyl contaminants in farm and pet animals in Japan[J]. Chemosphere, 2008, 73(1 Suppl): S210-S215.
    [28] ZABALETA I, BIZKARGUENAGA E, PRIETO A, et al. Simultaneous determination of perfluorinated compounds and their potential precursors in mussel tissue and fish muscle tissue and liver samples by liquid chromatography-electrospray-tandem mass spectrometry [J]. Journal of Chromatography A, 2015, 1387: 13-23. doi: 10.1016/j.chroma.2015.01.089
    [29] LEHOTAY S J, MAŠTOVSKÁ K, LIGHTFIELD A R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables [J]. Journal of AOAC INTERNATIONAL, 2019, 88(2): 615-629.
    [30] LANKOVA D, LACINA O, PULKRABOVA J, et al. The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula [J]. Talanta, 2013, 117: 318-325. doi: 10.1016/j.talanta.2013.08.040
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 89.6 %HTML全文: 89.6 %摘要: 8.1 %摘要: 8.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.7 %其他: 93.7 %XX: 2.7 %XX: 2.7 %东莞: 0.1 %东莞: 0.1 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兴安盟: 0.0 %兴安盟: 0.0 %内网IP: 0.0 %内网IP: 0.0 %包头: 0.0 %包头: 0.0 %北京: 1.5 %北京: 1.5 %南京: 0.1 %南京: 0.1 %厦门: 0.0 %厦门: 0.0 %咸宁: 0.0 %咸宁: 0.0 %唐山: 0.0 %唐山: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.0 %宣城: 0.0 %广州: 0.1 %广州: 0.1 %昆明: 0.0 %昆明: 0.0 %沈阳: 0.0 %沈阳: 0.0 %河池: 0.0 %河池: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %盐城: 0.0 %盐城: 0.0 %绥化: 0.0 %绥化: 0.0 %芜湖: 0.0 %芜湖: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %西宁: 0.0 %西宁: 0.0 %西安: 0.1 %西安: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.0 %重庆: 0.0 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.0 %阳泉: 0.0 %驻马店: 0.0 %驻马店: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他XX东莞保定六安兴安盟内网IP包头北京南京厦门咸宁唐山大连天津宜宾宣城广州昆明沈阳河池深圳温州盐城绥化芜湖葫芦岛西宁西安贵阳运城郑州重庆银川长春长沙阳泉驻马店龙岩Highcharts.com
图( 4) 表( 3)
计量
  • 文章访问数:  2356
  • HTML全文浏览数:  2356
  • PDF下载数:  111
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-18
  • 录用日期:  2022-01-17
  • 刊出日期:  2023-04-27
张兴绘, 汤爱萍, 郭会琴, 涂文清, 刘煜. QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物[J]. 环境化学, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
引用本文: 张兴绘, 汤爱萍, 郭会琴, 涂文清, 刘煜. QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物[J]. 环境化学, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
ZHANG Xinghui, TANG Aiping, GUO Huiqin, TU Wenqing, LIU Yu. Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801
Citation: ZHANG Xinghui, TANG Aiping, GUO Huiqin, TU Wenqing, LIU Yu. Determination of 35 per- and polyfluoroalkyl substances (PFASs) in insect by QuEChERS pretreatment combined with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(4): 1137-1147. doi: 10.7524/j.issn.0254-6108.2021111801

QuEChERS-超高效液相色谱-串联质谱法测定昆虫体内35种全氟和多氟烷基化合物

    通讯作者: Tel:0791-88177105,E-mail:liuyu@jxas.ac.cn
  • 1. 南昌航空大学环境与化学工程学院,南昌,330063
  • 2. 江西省科学院微生物研究所,南昌,330096
基金项目:
国家自然科学基金(42167056),江西省自然科学基金(20212BAB203036)和江西省科学院科研开发项目(2018-XTPH1-20, 2020-YZD-28,2021YSBG22026)资助.

摘要: 昆虫作为常见的指示生物,已被用于监测环境中全氟和多氟烷基化合物(PFASs)的污染特征。本文基于QuEChERS前处理方法结合超高效液相色谱-串联质谱(UPLC-MS/MS),建立了昆虫中35种PFASs的检测方法,包括9种全氟羧酸(PFCAs)、5 种全氟磺酸(PFSAs)、3种多氟调聚羧酸(FTCAs)、3种多氟调聚磺酸(FTSs)、3种多氟调聚磷酸二酯(diPAPs)、2种氯代多氟醚基磺酸(Cl-PFESAs)、7种全氟聚醚羧酸(PFECAs)以及全氟辛基磺酰胺(FOSA)、全氟-4-(五氟乙基)环己烷磺酸(PFECHS)和全氟壬烯氧基苯磺酸钠(OBS)。昆虫样品采用离子对萃取,0.1 g Envi-Carb和0.05 g DSC-18为吸附剂的前处理方法,在多反应负离子监测模式下进行PFASs检测,内标法定量。结果表明,35种PFASs的回收率在62%—128%,方法定量限为0.0314—0.0876 ng·g−1 dw,标准曲线线性关系良好(R2 > 0.999)。利用本方法对3个目的5种昆虫进行测定,结果表明水生昆虫中ƩPFASs浓度(42—304 ng·g−1 dw)明显高于陆生昆虫(4.7—19 ng·g−1 dw)。水生昆虫中污染物以长链PFCAs(PFOA、PFNA、PFDA和PFUnDA)和PFOS为主,而陆生昆虫以新型PFASs(6:2 FTS、OBS和Cl-PFESAs)为主。本研究建立的方法具有经济、便捷、高效、准确、灵敏等优点,可同时监测不同种类昆虫体内多种典型和新型PFASs。

English Abstract

  • 全氟和多氟烷基化合物(per- and polyfluoroalkyl substances,PFASs)是一类人工合成的化合物,具有优良的表面活性、化学稳定性和疏油疏水等特性。全氟辛酸(perfluorooctanoic acid,PFOA)和全氟辛磺酸(perfluorooctane sulfonate,PFOS)作为典型的PFASs,已广泛应用于消费品生产和工业生产过程中[1-2]。由于具有环境持久性、生物累积性和潜在的生物毒性,PFOS和PFOA及其盐类先后被列入《关于持久性有机污染物的斯德哥尔摩公约》的受限制名单[3]。随着PFOA和PFOS在各行业的消减与淘汰,大量工业替代品被开发并投入使用[4],例如,氯代多氟醚基磺酸(chlorinated polyfluorinated ether sulfonates,Cl-PFESAs)[5]、多氟调聚磺酸/羧酸(fluorotelomer sulfonic/carboxylic acids,FTSs/FTCAs)[6]、六氟环氧丙烷多聚酸(hexafluoropropylene oxide dimer/trimer acid,HFPO-DA/TA)[7]和全氟壬烯氧基苯磺酸钠(sodium p-perfluorous nonenoxybenzene sulfonate,OBS)[8]等。然而,这些新型PFASs在分子结构和化学性质上与PFOA和PFOS相似,大量使用可能导致同样的环境问题和健康风险。目前已在水体、沉积物和土壤等环境介质中检测到上述新型PFASs [9-12]

    昆虫作为环境污染物指示性物种,利用其监测这些典型和新型PFASs已经受到越来越多的关注。例如,水生昆虫(如蜻蜓幼虫)被用于监测加拿大和坦桑尼亚河流中PFASs的污染水平[13-14],而蜻蜓成虫也用于监测南非地区典型PFASs的时空分布[15]。Koch 等[16-17]研究证明羽化的水生昆虫(如蚊、蜻蜓等)作为重要载体将PFASs从水生生态系统传输到陆地生态系统。Lan等[18]在蝗虫体内检测到多种新型PFASs(如6:2 FTS、6:2 和8:2 Cl-PFESAs),认为蝗虫可作为评估农田生态系统中PFASs的暴露风险的指示性生物。也有研究发现蜱虫可作为“哨兵”监测陆生生态系统中PFASs的污染特征[19]。然而,对于昆虫体内PFASs的检测方法并不一致。Velesia等[15]采用先碱消解后离子对萃取再通过Oasis HLB和Oasis MCX固相萃取小柱(SPE)进行净化的方法处理昆虫样品。Koch 等[20]采用氢氧化钠/甲醇(NaOH/MeOH)超声萃取和Oasis WAX 柱净化的方法。而De Solla等[13]使用一种分散固相萃取吸附剂(dSPE,Envi-Carb)对昆虫样品进行净化。另外,Lan等[18]将PFASs分为中长链(C≥4)和超短链(C2—C3),中长链PFASs采用离子对萃取和GCB-Carbon柱净化的方法,超短链 PFASs则是采用NaOH/MeOH超声萃取和poly-sery PWAX柱净化的方法。

    相比于上述使用的SPE净化方法,QuEChERS样品净化方法具有成本低、操作便捷、目标物损失少和回收率高等优点。目前已广泛运用于生物组织(鱼肉、肝脏等)[21-23]和食品(牛奶、鸡蛋等)[24-26]中PFASs的快速检测,但还未见采用QuEChERS前处理方法检测昆虫体内PFASs的报道。与其他动物组织样本不同,昆虫样品在提取和净化过程中的主要干扰物质是蛋白质、不饱和脂肪酸和色素。另外,文献报道的目标化合物多以传统的PFOA和PFOS为主,缺乏对新型PFASs的关注。因此,本研究优化了多种新型PFASs的UPLC-MS/MS仪器参数,同时比较了不同萃取剂对昆虫样品中PFASs提取效率的影响,以及不同dSPE的使用对昆虫样品净化效果的影响,最终确定了一套昆虫样品中35种传统和新型PFASs的检测方法。

    • 超高效液相色谱-串联质谱仪(Agilent Technologies 1290 Infinity-6460 Triple Quad,美国Agilent公司),高速冷冻离心机(H1850R,湖南湘仪),数控超声波提取仪(KQ-600DE,昆山舒美),干式氮吹仪(EFAA-AC-02,上海安谱),多管涡旋混合仪(EOAA-HM-01,上海安谱),恒温培养振荡器(ZWYR-240,上海智城),真空冷冻干燥仪(FD-1C-50,北京博医康),微量分析天平(AUY220,日本岛津)。

      全氟丁酸(PFBA)、全氟戊酸(PFPeA)、全氟己酸(PFHxA)、全氟庚酸(PFHpA)、PFOA、全氟壬酸(PFNA)、全氟葵酸(PFDA)、全氟十一烷酸(PFUnDA)、全氟十二烷酸(PFDoDA)、全氟丁烷磺酸(PFBS)、全氟戊烷磺酸(PFPeS)、全氟己烷磺酸(PFHxS)、全氟庚烷磺酸(PFHpS)、PFOS、全氟辛基磺酰胺(FOSA-I)、全氟-4-(五氟乙基)环己烷磺酸(PFECHS)、全氟-3-氧杂戊烷磺酸(PFEESA)、全氟-3,6-二氧杂庚酸(3,6-OPFHpA)、全氟-3-甲氧基丙酸(PF4OPeA)、全氟-4-甲氧基丁酸(PF5OHxA)、3H-全氟-3-(3-甲氧基丙氧基)丙酸(ADONA)、HFPO-DA、6:2和8:2 Cl-PFESAs、6:2、8:2和10:2 FTCAs、4:2、6:2和8:2 FTSs、多氟调聚磷酸二酯(6:2、6:2/8:2和8:2 diPAPs)和同位素标记的PFASs(包括13C4-PFBA、13C2-PFHxA、13C4-PFOA、13C5-PFNA、13C2-PFDA、13C2-PFUnDA、13C2-PFDoDA、13C3-PFBS、18O2-PFHxS、13C4-PFOS、13C3-HFPO-DA、13C2-6:2 FTCA、13C2-8:2 FTCA、13C2-10:2 FTCA、13C2-4:2 FTS、13C2-6:2 FTS、13C2-8:2 FTS、13C4-6:2 diPAP、13C4-8:2 diPAP)均购自加拿大Wellington Laboratories(纯度大于98%); HFPO-TA购自加拿大Toronto Research Chemicals(≥ 95%);OBS购自广东滃江化学试剂有限公司(≥ 98%); MeOH(色谱级),乙腈(ACN,色谱级)和甲基叔丁基醚(MTBE,色谱级)均购自德国Merck公司;四丁基硫酸氢氨(TBAH,≥ 98%),乙酸铵(NH4Ac,优级纯),无水碳酸钠(Na2CO3,优级纯),碳酸氢钠(NaHCO3,优级纯)和NaOH(优级纯)均购自上海阿拉丁生化科技有限公司。浓盐酸(HCL,分析纯)购自中国医药集团。两种分散固相萃取吸附剂:Supelclean Envi-Carb(120-400目,100 m2·g−1)和Discovery DSC-18(C18,50 μm,480 m2·g−1)购自美国Supelco公司。

    • 2021年7月采集到3个目的5种昆虫,样品采集后立即进行分类鉴定,按生境可分为水生昆虫(蜻蜓成虫和幼虫)和陆生昆虫(蝗虫、蝼蛄、蟋蟀和蝴蝶)。其中,蜻蜓幼虫、蝼蛄、蟋蟀和部分蝗虫样品购买自山东某昆虫市场,蜻蜓、蝴蝶和部分蝗虫样品采集自江西某电镀工业园区下游水库及周边农田。

    • 所有昆虫样品用超纯水清洗干净后,再冷冻干燥48 h后研磨成粉末。

      TBAH/MTBE离子对萃取法:称取0.1 g干重(dw)昆虫粉末于15 mL聚丙烯(PP)管中,加入2 mL 0.25 mol·L−1碳酸钠缓冲溶液(pH = 10)和1 mL 0.5 mol·L−1 TBAH,再加入3 ng 内标(IS),混匀后加入5 mL MTBE,振荡(300 r·min−1)提取20 min。在4 ℃下12000 r·min−1,离心5 min,取上清液于干净的15 mL PP管中。原PP管中加入10 mL MTBE,进行多次萃取,将上清液氮吹至4 mL,再加入0.1 g Envi-Carb和0.05 g C18,涡旋1 min以12000 r·min−1,离心7 min后取上清。上清液氮吹至净干后,用70%的MeOH/水定容至300 μL,以15000 r·min−1离心15 min,取上清液到进样瓶中待测。

      有机溶剂萃取法:MeOH萃取时,样品加入5 mL MeOH和IS后震荡提取过夜(避光),离心取上清液后,再加入5 mL MeOH重复萃取两次; 10 mmol·L−1 NaOH/MeOH萃取时,样品加入5 mL萃取液和IS后震荡提取过夜(避光),离心取上清液加入 0.05 mL的2 mol·L−1 HCL调节pH,再加入5 mL MeOH重复萃取两次;0.1% HCL/ACN萃取时,样品加入5 mL萃取液和IS后超声萃取20 min,再震荡提取过夜(避光),上清液取出后再加入5 mL ACN重复萃取两次。有机溶剂萃取法后续的净化、氮吹、定容等步骤与TBAH/MTBE离子对萃取法相同。

    • 样品中35种PFASs的定性和定量分析采用超高效液相色谱-质谱联用仪(UPLC-MS/MS)。

      色谱条件:色谱柱为Agilent Eclipse Plus C18(3.0 mm × 50 mm,1.8 µm);柱温为40 ℃;进样体积为5 µL;流速为0.3 mL·min−1;流动相A为2 mmol·L−1 NH4Ac,流动相B为ACN;洗脱梯度为0—7 min,70%—30% A;7—9 min,30%—10% A;9—10 min,10%—70% A。进样时间为10 min,后置保留时间为2 min。

      质谱条件:采用电喷雾负离子源(ESI)和多反应检测(MRM)模式;离子源温度:300 ℃;毛细管电压:3500 V;加电压(EMV):400 V;干燥气流速:6.0 mL·min−1,干燥气温度:325 ℃,雾化气电压:30 psi。各单体PFASs的质谱参数见表1,21种新型PFASs的MRM图见图1

    • 采用美国Agilent Technologies公司MassHunter B.07软件进行定量分析,Origin 8.5软件进行作图和数据处理。

    • 采用 70% MeOH/水溶液配制35种PFASs和19种IS的混合标准液,浓度范围为0.20、0.50、1、2、5、10、20、50、100 ng·mL−1。通过内标法定量,IS浓度为10 ng·mL−1。根据优化的UPLC-MS/MS质谱分析方法得到标准曲线,详细信息如表2所示。结果表明,35 种PFASs均在0.20—100 ng·mL−1范围内线性良好,相关系数(R2)均在0.999以上。仪器检出限(LOD)和方法定量限(LOQ)分别通过3倍和10倍的信噪比(S/N)计算得到,目标化合物的LOD和LOQ值范围分别为0.0105—0.0329 ng·mL−1和0.0314—0.0988 ng·g−1 dw ,与前人报道的方法相当[23, 25]

    • 通过加标实验来优化昆虫样品的前处理方法,即在空白样品和昆虫样品中添加10 ng·mL−1水平的目标PFASs标准品,每种方法重复实验3 次,计算不同方法的加标回收率。

      首先对PFASs的萃取方法进行优化,本实验比较了4种方法(MeOH、10 mmol·L−1 NaOH/MeOH、0.1% HCL/ACN和TBAH/MTBE离子对萃取)对目标化合物回收率的影响,如图2所示。结果表明,MeOH、10 mmol·L−1 NaOH/MeOH和0.1% HCL/ACN萃取方法中PFASs回收率的波动较大,其中MeOH为7%—195%,10 mmol·L−1 NaOH/MeOH为8%—177%,0.1% HCL/ACN为21%—220%。MeOH和10 mmol·L−1 NaOH/MeOH萃取的PFPeA、PFHxA、3.6-OPFHpA、PF4OPeA、PF5OHxA等短链PFASs回收率过低(7%—26%),而6:2 diPAP、6:2/8:2 diPAP、8:2FTS和OBS等长链PFASs回收率过高(160%—195%)。0.1% HCL/ACN萃取方法中,PFBA和4:2 FTS的回收率分别高达220%和215%,而HFPO-DA、6:2 FTCA和8:2 diPAP的回收率仅为31%、30%和21%。TBAH/MTBE离子对萃取方法对PFASs回收率的影响相对较小(53%—155%),仅4:2 FTS和OBS的回收率略高于150%,这可能是由于基质效应。对比不同方法可以看出,TBAH/MTBE离子对萃取对PFASs回收率的影响整体较小,因此选择该方法提取昆虫样品中的PFASs。TBAH/MTBE离子对萃取的方法也常用于肝脏等生物组织样品中PFASs的提取[27-28]。另外,从图2可以看出,4种萃取方法分析的6:2 Cl-PFESA、OBS和FTSs等目标化合物的回收率偏高,说明存在基质干扰,需进一步优化昆虫样品的QuEChERS净化方法。

      本研究主要采用的dSPE吸附剂为Envi-Carb和C18,其中Envi-Carb常用的去除极性共萃物,如叶绿素和固醇类[29];C18则主要吸附非极性共萃物,如三酰甘油和其他亲脂性化合物[30]。N-丙基乙二胺(PSA)也常用于QuEChERS共萃物的净化,但是PSA作为弱阴离子交换吸附剂对酸性的PFASs具有一定的吸附作用[25]。已有研究也发现PSA的用量超过0.1 g时会吸附部分PFASs[23],因此在本研究中未使用PSA作吸附剂。对于昆虫样品来说,萃取液中含有大量蛋白质、脂肪和色素等共萃物,单独使用C18或Envi-Carb效果并不好,因此同时添加C18和Envi-Carb来净化样品。本实验比较了0.05 g C18 + 0.05 g Envi-Carb、0.1 g C18 + 0.05 g Envi-Carb、0.05 g C18 + 0.1 g Envi-Carb、0.1 g C18 + 0.1 g Envi-Carb和0.1 g C18 + 0.2 g Envi-Carb对PFASs回收率的影响。图3中,当C18为0.05 g时,Envi-Carb质量过少导致PFASs回收率偏高(大部分目标化合物回收率超过100%);当Envi-Carb为0.1 g时,C18的增加导致一些新型PFASs回收率降低。总的来说,0.05 g C18+0.1 g Envi-Carb的组合对PFASs的影响最小,回收率范围在62%—128%,因此选择该组合对昆虫样品萃取液进行净化。优化后的QuEChERS净化方法不仅能保证回收率还能有效去除溶液中的蛋白质、脂肪和色素等干扰物质,使昆虫样品达到仪器检测要求。

    • 通过不同浓度的加标实验来保证监测实际昆虫样品中PFASs的适用性,即称取0.1 g dw水生昆虫(蜻蜓幼虫)和陆生昆虫(蝗虫)样品,分别加入低、中、高三个浓度水平(定容浓度为 1、10、00 ng·mL−1)的混合PFASs标准品以及IS(10 ng·mL−1)。每个加标浓度重复做3个平行样品,分别计算水生昆虫和陆生昆虫中PFASs的回收率和相对标准偏差(relative standard deviation,RSD)。结果如表3所示,水生昆虫和陆生昆虫中35种PFASs的回收率分别为70%—126%和64%—115%,RSD分别为1.1%—20%和0.15%—24%,说明该方法能满足对实际昆虫样品的定量分析。

    • 本研究的昆虫包括3个目的5种昆虫,分别为蜻蜓目(蜻蜓幼虫和成虫),直翅目(蝗虫,蝼蛄,蟋蟀)和鳞翅目(蝴蝶),按生境可分为水生昆虫和陆生昆虫。如图4所示,水生昆虫和陆生昆虫体内PFASs的浓度和组成差异明显。水生昆虫中ƩPFASs浓度(42—304 ng·g−1 dw)明显高于陆生昆虫(4.7—19 ng·g−1 dw),这与Koch等[16] 的报道结果一致,主要是由于PFASs通常随污水排放到水环境中[20]。从组成上看,水生昆虫以传统的PFCAs(如PFOA、PFNA、PFDA 和PFUnDA)和PFOS为主,而陆生昆虫主要是以新型PFASs(如6:2 FTS、OBS、6:2和8:2 Cl-PFESAs)为主。值得注意的是,在蜻蜓(1)和蝼蛄中浓度最高的PFASs是6:2 Cl-PFESA,说明6:2 Cl-PFESA作为PFOS替代品在我国电镀行业中被广泛使用。另外,6:2 FTS在陆生昆虫体内的浓度均高于PFOS,而OBS和HFPO-DA/TA也在大部分昆虫样品(除了蟋蟀)中检出,这说明近年来这些新型替代品已经在我国广泛生产和应用。而6:2、6:2/8:2 和8:2 diPAPs仅在蜻蜓幼虫和蝼蛄体内检出,说明其使用量在我国还较小。

      在工业园区采集的蜻蜓(1)和蜻蜓(2)中ƩPFASs浓度分别为68 ng·g−1 dw和304 ng·g−1 dw,与加拿大某国际机场下游采集的蜻蜓体内浓度相当(180 ng·g−1 ww)[13],远高于南非未受污染区域的蜻蜓中7种典型PFASs的浓度(0.17—21 ng·g−1 ww)[15],但是低于瑞典某军用机场下游采集的蜻蜓中PFASs的浓度(120—3500 ng·g−1 dw)[16]。而在山东昆虫市场购买的蜻蜓幼虫中ƩPFASs浓度(42 ng·g−1 dw)与坦桑尼亚采集的蜻蜓幼虫中污染水平相当(6.1—24 ng·g−1 ww)[14]。对于陆生昆虫,蝼蛄中ƩPFASs的浓度最高为19 ng·g−1 dw,其次为蝗虫((8.3 ± 0.65) ng·g−1 dw)和蝴蝶(6.6 ng·g−1 dw),蟋蟀浓度最低(4.7 ng·g−1 dw),这可能与其食性相关,蝼蛄为杂食性昆虫,而其他3种陆生昆虫为植食性昆虫。另外,蝗虫体内PFASs的浓度略高于环北京-天津-河北地区农田中采集的蝗虫中PFASs的浓度(3.7 ± 1.8) ng·g−1 dw)[18]。对于其他陆生昆虫,目前并未见到相关PFASs的报道。

    • 本研究建立了一套QuEChERS结合超高效液相色谱-串联质谱法测定昆虫体内的35种典型和新型PFASs,具有快速、高效、便捷、经济、准确等优点。采用该方法对实际昆虫样品进行分析,结果表明水生昆虫中PFASs浓度(42—304 ng·g−1 dw)明显高于陆生昆虫(4.7—19 ng·g−1 dw)。陆生昆虫PFASs的组成以新型PFASs为主,主要是6:2 FTS、6:2 Cl-PFESA 和OBS;而水生昆虫则以传统PFASs为主,如PFOA、PFNA、PFDA 、PFUnDA和PFOS。

    参考文献 (30)

返回顶部

目录

/

返回文章
返回