-
大气细颗粒物PM2.5 [1]是影响环境空气质量的主要污染物,细颗粒物污染不仅能降低大气能见度[2],而且对人类的健康也具有重要影响[3-6],如果长期暴露在其中会造成肺-呼吸系统和心脑血管疾病,甚至死亡[7-9]。大量研究证明,二次组分(
${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 和SOA)是大气细颗粒物的重要组成成分,含量约占PM2.5的30%—70%,二次组分严重影响空气质量,且更易进入呼吸系统,对人们的健康影响更大[10]。春节是中国的传统佳节,春节期间因市民活动密集、车流量增加以及燃放烟花爆竹等因素都会造成对空气质量的影响,尤其是2021年春节爆发了二次新冠疫情。因此,研究2021年春节PM2.5中二次组分污染特征及其影响效应对于区域空气环境质量及人类健康具有重要的意义。新冠疫情爆发以来,有学者对疫情期间城市空气中PM2.5组分污染特征及成因进行了研究,并调研了气象条件和污染排放对其的影响。纪源等[11]分析了南京市疫情期间PM2.5中碳质组分污染特征,王申博[12]等分析了河南省疫情和春节影响情景下PM2.5组分特征。黄炯丽等[13]分析了南宁市疫情下一次大气PM2.5污染成因,张红等[14]分析了安徽省春节和疫情影响下PM2.5浓度变化成因。朱媛媛等[15]评估了疫情期间“2+26”城市污染减排成效,逯世泽等[16]研究了武汉市新冠肺炎疫情期间气象条件和污染源排放变化对PM2.5的影响。现有研究对大中型城市疫情期间PM2.5污染特征及其健康风险评价已有积累,但对于疫情常态化管控下PM2.5中二次组分的污染特征及其影响因素的研究还需进一步跟进。
济南市是“2+26”京津冀大气污染传输通道城市之一,是以煤炭为主要能源的老工业城市[17]。2020年春节(1月25日)前后新冠肺炎席卷中国,国家实施“不拜年不聚会不串门”政策,机动车大量减少,工地停工,城市烟花爆竹燃放得到控制[18]。2021年春节期间仍实施新冠肺炎常态化管控,国家实施“就地过年”政策,虽跨省出行不多,但省内出行还是绿色通道,尤其是春节后复工复产,疫情期间人为源污染排放量变化会对城市PM2.5中二次组分产生显著影响。因此本研究对疫情常态化管控下济南市2021春节前后PM2.5中二次组分污染特征进行分析,结合在线数据,从PM2.5中
${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 和SOA时间变化规律、二次无机组分与气态前体物的气-粒分配、PM2.5中二次组分的影响因素等多角度分析,对于济南市PM2.5中二次组分综合治理提供技术支持。
疫情常态化管控下济南市春节前后PM2.5中二次组分变化特征
Characteristics of secondary PM2.5 component changes before and after the Spring Festival in Jinan City under the normal control of the epidemic
-
摘要: 为研究新冠肺炎疫情常态化管控下,济南市春节前后PM2.5中二次组分的变化特征、气粒分配规律及其影响因素,本文对2021年2月1—27日春节前、春节期间和春节后的3个时段济南市区在线监测的水溶性离子、碳组分及气态前体物质量浓度小时数据进行分析。结果表明,2021年疫情常态化管控下济南市春节前后二次组分浓度与2020年同比均明显下降,ρ(
${\rm{NO}}_3^{-} $ )、ρ(${\rm{SO}}_4^{2-} $ )、ρ(${\rm{NH}}_4^{+} $ )和ρ(SOA)分别下降53.09%、58.32%、51.17%和61.84%,其中二次无机组分(${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 之和)和SOA在PM2.5中的占比分别为54.07%和8.20%,春节期间PM2.5及二次组分在10—18时浓度较低,与春节期间白天人为活动相对减少,机动车、建筑工地等排放源减少有关,同时湿度较小和大气边界层较高也有利于污染物的扩散。疫情常态化管控下2021年济南市春节前、春节期间和春节后过剩NH3指数均>0,说明PM2.5中${\rm{NO}}_3^{-} $ 气溶胶在形成过程中主要受HNO3的限制,整个春节PM2.5中铵盐主要以NH4HSO4、(NH4)2SO4和NH4NO3的形式存在。ρ(PM2.5)与${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 、${\rm{NH}}_4^{+} $ 、湿度均显著正相关,ρ(PM2.5)与PBL显著负相关。湿度较小时,${\rm{NH}}_4^{+} $ 和${\rm{NO}}_3^{-} $ 浓度主要受到酸度影响,而湿度较大时,${\rm{NH}}_4^{+} $ 和${\rm{NO}}_3^{-} $ 浓度主要受含水量影响,温度主要通过影响气溶胶含水量从而影响${\rm{NH}}_4^{+} $ 和${\rm{NO}}_3^{-} $ 浓度,O3、NOX、pH和含水量对SOA的生成有显著影响。Abstract: This study analyzed the changing characteristics, gas-particle distribution law, and influencing factors of the secondary components of PM2.5 in Jinan City under the normal control of the new crown pneumonia epidemic before, during, and after the Spring Festival. The hourly data of water-soluble ions, carbon components, and gas precursor mass concentration obtained by the online monitoring station and vehicle were analyzed during the three periods. The results showed that under the normal epidemic control in 2021, the concentration of secondary components before and after the Spring Festival significantly decreased in 2020. The ρ(${\rm{NO}}_3^{-} $ ), ρ(${\rm{SO}}_4^{2-} $ ), ρ(${\rm{NH}}_4^{+} $ ), and ρ(SOA) decreased by 53.09%, 58.32%, 51.17%, and 61.84%, the ratio of secondary inorganic components (${\rm{NO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ , NH4 plus) and SOA in PM2.5 was 54.07% and 8.20%, respectively. During the Spring Festival, the concentrations of PM2.5 and secondary components 10–18 were low. This was due to the decreased human activities during the Spring Festival and reduced emission sources such as motor vehicles and construction sites; however, low humidity and higher atmospheric boundary layers were conducive to the spread of pollutants. The epidemic was under normal control before, during, and after the Spring Festival in Jinan City in 2021. The surplus NH3 index was more than 0, indicating that${\rm{NO}}_3^{-} $ aerosols in the formation process were primarily limited by HNO3. Ammonium salts were primarily present in the form of NH4HSO4, (NH4)2SO4, and NH4NO3 throughout spring PM2.5. ρ(PM2.5) was significantly positively correlated with${\rm{NO}}_3^{-} $ ,${\rm{SO}}_4^{2-} $ ,${\rm{NH}}_4^{+} $ , temperature, and humidity, and ρ(PM2.5) was significantly negatively correlated with PBL. When the humidity was low, the${\rm{NH}}_4^{+} $ and${\rm{NO}}_3^{-} $ concentrations were primarily affected by acidity; however, when the humidity was high, the${\rm{NH}}_4^{+} $ and${\rm{NO}}_3^{-} $ concentrations were primarily affected by water content, and the temperature was primarily affected by the water content of aerosols, thereby affecting${\rm{NH}}_4^{+} $ and${\rm{NO}}_3^{-} $ concentration. O3, NOX, pH, and moisture content had a significant impact on SOA generation.-
Key words:
- normal epidemic control /
- PM2.5 /
- secondary components /
- gas-particle distribution /
- ISORROPIA-II model /
- Jinan City
-
图 5 [
${\rm{NO}}_3^{-} $ ]/[${\rm{SO}}_4^{2-} $ ]和[${\rm{NH}}_4^{+} $ ]/[${\rm{SO}}_4^{2-} $ ](a)、[${\rm{NH}}_4^{+} $ ]Excess和[${\rm{NO}}_3^{-} $ ](b)的回归直线Figure 5. Regression lines of [
${\rm{NO}}_3^{-} $ ]/[${\rm{SO}}_4^{2-} $ ] and [${\rm{NH}}_4^{+} $ ]/[${\rm{SO}}_4^{2-} $ ](a) and [${\rm{NH}}_4^{+} $ ]Excess and [${\rm{NO}}_3^{-} $ ](b)表 1 2020年和2021年春节前后PM2.5及二次组分浓度(μg·m−3)
Table 1. PM2.5 and secondary component concentrations before and after the Spring Festival of 2020 and 2021
年份
Yearρ(PM2.5) ρ( )${\rm{NO}}_3^{-} $ ρ( )${\rm{SO}}_4^{2-} $ ρ( )${\rm{NH}}_4^{+} $ ρ(SOA) 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 春节前均值 110.71 46.4 31.05 12.48 16.41 5.65 15.17 6.61 8.23 3.46 春节期间均值 97.24 41.36 23.10 8.61 16.79 7.56 12.44 5.69 11.72 3.66 春节后均值 75.26 43.57 15.36 10.68 15.76 7.34 10.89 6.33 9.08 3.72 春节前占比 28.05 26.90 14.82 12.18 13.70 14.25 7.43 7.46 春节期间占比 23.76 20.82 17.27 18.28 12.79 13.76 12.05 8.85 春节后占比 20.41 24.51 20.94 16.85 14.47 14.53 12.06 8.54 平均值* 94.01 44.05 22.98 10.78 16.27 6.78 12.82 6.26 9.46 3.61 标准偏差* 47.06 24.94 15.28 7.50 9.72 6.32 6.93 4.33 3.96 1.27 注*:表中平均值和标准偏差分别表示春节前后(春节前、春节期间和春节后)数据的平均值水平和离散程度.
Note*: The average and standard deviations in the table represent the average level and degree of dispersion of data before and after the Spring Festival (before, during, and after the Spring Festival).表 2 2020年和2021年春节前后气象条件
Table 2. Weather conditions before and after the Spring Festival of 2020 and 2021
年份
Year温度/℃
Temperature湿度/%
Humidity风速/(m·s−1)
Wind speed风向/(°)
Wind directionPBL/m 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 春节前均值 4.03 9.79 49.85 35.75 1.06 0.75 161.80 256.13 647.24 1523.86 春节期间均值 3.17 7.99 50.87 44.59 0.98 0.84 122.09 268.90 697.48 1790.05 春节后均值 2.25 7.43 52.27 27.48 0.73 0.75 196.08 272.36 799.40 1580.49 平均值 3.18 8.45 50.96 34.98 0.927 0.77 162.93 265.45 716.62 1613.84 标准偏差 3.21 5.76 13.71 17.93 0.55 0.42 97.72 51.86 253.75 945.70 表 3 细颗粒物二次组分和气态前体物的相关性系数
Table 3. Correlation coefficients for secondary components of fine particulate matter and gaseous precursor
${\rm{NO}}_3^{-} $ ${\rm{SO}}_4^{2-} $ ${\rm{NH}}_4^{+} $ NO2 NO SO2 NH3 HNO2 HNO3 ${\rm{NO}}_3^{-} $ 1 ${\rm{SO}}_4^{2-} $ 0.586** 1 ${\rm{NH}}_4^{+} $ 0.910** 0.856** 1 NO2 0.278** 0.254** 0.301** 1 NO −0.077 0.079* −0.004 0.552** 1 SO2 0.286** 0.652** 0.191** 0.631** 0.345** 1 NH3 0.345** 0.210** 0.316** 0.018 −0.102** −0.061 1 HNO2 0.360** 0.425** 0.427** 0.359** 0.218** 0.094* 0.362** 1 HNO3 0.544** 0.06 0.361** 0.034 −0.217** 0.238** 0.278** 0.013 1 注:**在0.01 水平(双侧)上显著相关;*在0.05 水平(双侧)上显著相关.
Note: ** 0.01 (two sides) level of significance ; * 0.05 (two sides) level of significance.表 4 细颗粒物二次组分和气象因素与ρ(PM2.5)的相关性系数
Table 4. Correlation coefficients between the secondary components of fine particulate matter and meteorological factors and ρ (PM2.5)
春节前
Before the Spring Festival春节期间
During the Spring Festival春节后
After the Spring Festival${\rm{NO}}_3^{-} $ 0.951** 0.915** 0.922** ${\rm{SO}}_4^{2-} $ 0.837** 0.779** 0.870** ${\rm{NH}}_4^{+} $ 0.945** 0.936** 0.957** SOA 0.093 0.622** 0.447** 气温 0.380** 0.219** −0.160* 湿度 0.446** 0.624** 0.454** 风速 0.129* −0.038 0.214** PBL −0.622** −0.699** −0.490** 注:**在0.01 水平(双侧)上显著相关;*在0.05 水平(双侧)上显著相关.
Note: ** 0.01 (two sides) level of significance;* 0.05 (two sides) level of significance.表 5 2021年春节前后PM2.5中
、${\rm{NO}}_3^{-} $ 、${\rm{SO}}_4^{2-} $ 预测值和实测值对比${\rm{NH}}_4^{+} $ Table 5. Comparison of
,${\rm{NO}}_3^{-} $ , and NH4 plus forecasts and measured values in PM2.5 before and after the Spring Festival 2021${\rm{SO}}_4^{2-} $ 项目
Project${\rm{NH}}_4^{+} $ ${\rm{NO}}_3^{-} $ ${\rm{SO}}_4^{2-} $ 实测值/(μg·m−3) 6.26 10.78 6.78 模拟值/(μg·m−3) 5.02 11.19 5.87 NMB/% −20.14 2.54 −19.37 MB/(μg·m−3) −1.2 0.26 −1.25 RMSE/(μg·m−3) 1.91 2.96 2.74 相关关系曲线 y=0.93x−0.74 y=1.04x−0.04 y=0.95x−0.78 R2 0.94 0.97 0.95 注:NMB:归一平均偏差,Σ (模拟值-实测值) /Σ实测值; MB:平均偏差,Σ (模拟值-实测值)/N; RMSE: 均方根误差,[Σ (模拟值-实测值) 2 /N]1 /2 ;样品数N=618.
Note: NMB: general average deviation, Σ(analog value-measured value) / Σ measured value; MB: average deviation, Σ(analog value-measured value)/N; RMSE: mean square root error, Σ (analog value-measured value) 2 /N1/2 ; number of samples N=618.表 6 O3、NOX、pH、含水量和气象因素与ρ(SOA)的相关性系数
Table 6. Correlation coefficients for O3, NOX, pH, water content, and meteorological factors to SOA
温度
Temperature湿度
HumidityO3 PBL 含水量
Water contentpH NOX SOA(白天) 0.165** 0.363** 0.136* −0.382** 0.138* 0.017 0.147* SOA(夜晚) 0.295** 0.370** 0.019 −0.403** 0.229** −0.242** −0.011 注:**在0.01 水平(双侧)上显著相关;*在0.05 水平(双侧)上显著相关.
Note: ** 0.01 (two sides) level of significance ; * 0.05 (two sides) level of significance. -
[1] 李明燕, 杨文, 魏敏, 等. 典型沿海城市采暖期细颗粒物组分特征及来源解析 [J]. 环境科学, 2020, 41(4): 1550-1560. doi: 10.13227/j.hjkx.201907043 LI M Y, YANG W, WEI M, et al. Analysis of the components and sources of fine particulate matter during heating in typical coastal cities [J]. Environmental Science, 2020, 41(4): 1550-1560(in Chinese). doi: 10.13227/j.hjkx.201907043
[2] LI X, LI S S, XIONG Q L, et al. Characteristics of PM2.5 chemical compositions and their effect on atmospheric visibility in urban Beijing, China during the heating season [J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1924. doi: 10.3390/ijerph15091924 [3] SHARMA S, CHANDRA M,KOTA S H. Health effects associated with PM2.5: A systematic review[J]. Current Pollution Reports, 2020,6:345-367. [4] XIE J J, YUAN C G, XIE J, et al. Fraction distribution of arsenic in different-sized atmospheric particulate matters [J]. Environmental Science and Pollution Research, 2019, 26(30): 30826-30835. doi: 10.1007/s11356-019-06176-w [5] SUN H, CHEN H, YAO L, et al. Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area [J]. Journal of Environmental Sciences, 2020, 95: 240-247. doi: 10.1016/j.jes.2020.03.051 [6] PANWAR P, PRABHU V, SONI A, et al. Sources and health risks of atmospheric particulate matter at Bhagwanpur, an industrial site along the Himalayan foothills [J]. SN Applied Sciences, 2020, 2(4): 1-12. [7] YANG H M, WANG J F, CHEN M D, et al. Chemical characteristics, sources and evolution processes of fine particles in Lin’an, Yangtze River Delta, China [J]. Chemosphere, 2020, 254: 126851. doi: 10.1016/j.chemosphere.2020.126851 [8] 王成, 闫雨龙, 谢凯, 等. 阳泉市秋冬季PM2.5化学组分及来源分析 [J]. 环境科学, 2020, 41(3): 1036-1044. WANG C, YAN Y L, XIE K, et al. Analysis of chemical components and sources of PM2.5 during autumn and winter in Yangquan city [J]. Environmental Science, 2020, 41(3): 1036-1044(in Chinese).
[9] 张毅. 长治市秋冬季PM2.5组分特征及来源解析 [J]. 环境化学, 2020, 39(6): 1699-1708. doi: 10.7524/j.issn.0254-6108.2020011102 ZHANG Y. Component characteristics and source apportionment of PM2.5 in autumn and winter in Changzhi [J]. Environmental Chemistry, 2020, 39(6): 1699-1708(in Chinese). doi: 10.7524/j.issn.0254-6108.2020011102
[10] 邓靓, 韩新宇, 施择, 等. 云南低纬度高原城市大气PM2.5中水溶性离子特征及来源分析 [J]. 环境化学, 2020, 39(12): 3306-3317. DENG L, HAN X Y, SHI Z, et al. Characteristics and source analysis of water soluble ions in atmospheric PM2.5 in low latitude plateau cities of Yunnan Province [J]. Environmental Chemistry, 2020, 39(12): 3306-3317(in Chinese).
[11] 纪源, 赵秋月, 陈凤, 等. 新冠肺炎疫情期间南京市PM2.5中碳质组分污染特征分析 [J]. 生态与农村环境学报, 2021, 37(8): 992-1000. JI Y, ZHAO Q Y, CHEN F, et al. Characteristics of carbonaceous aerosols in ambient PM2.5 during the COVID-19 period in Nanjing [J]. Journal of Ecology and Rural Environment, 2021, 37(8): 992-1000(in Chinese).
[12] 王申博, 范相阁, 和兵, 等. 河南省春节和疫情影响情景下PM2.5组分特征 [J]. 中国环境科学, 2020, 40(12): 5115-5123. doi: 10.3969/j.issn.1000-6923.2020.12.002 WANG S B, FAN X G, HE B, et al. Chemical composition characteristics of PM2.5 in Henan Province during the Spring Festival and COVID-19 outbreak [J]. China Environmental Science, 2020, 40(12): 5115-5123(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.12.002
[13] 黄炯丽, 莫招育, 刘慧琳, 等. 2020年2月南宁市一次大气PM2.5污染成因分析 [J]. 环境科学学报, 2021, 41(4): 1173-1183. HUANG J L, MO Z Y, LIU H L, et al. Analysis on the causes of PM2.5 pollution in Nanning city in February 2020 [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1173-1183(in Chinese).
[14] 张红, 杨鹏, 汪水兵, 等. 安徽省春节-疫情期间PM2.5浓度变化成因分析 [J]. 环境科学与技术, 2020, 43(10): 177-185. ZHANG H, YANG P, WANG S B, et al. Analysis on the causes of PM2.5 concentration change during the spring festival-epidemic period in Anhui Province [J]. Environmental Science & Technology, 2020, 43(10): 177-185(in Chinese).
[15] 朱媛媛, 汪巍, 高愈霄, 等. 疫情期间“2+26”城市污染减排成效评估 [J]. 中国环境科学, 2021, 41(2): 505-516. doi: 10.3969/j.issn.1000-6923.2021.02.002 ZHU Y Y, WANG W, GAO Y X, et al. Assessment of emission reduction effect in Beijing, Tianjin and surrounding 26 cities from January to March in 2020 during the epidemic of COVID-19 [J]. China Environmental Science, 2021, 41(2): 505-516(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.02.002
[16] 逯世泽, 史旭荣, 薛文博, 等. 新冠肺炎疫情期间气象条件和排放变化对PM2.5的影响 [J]. 环境科学, 2021, 42(7): 3099-3106. LU S Z, SHI X R, XUE W B, et al. Impacts of meteorology and emission variations on PM2.5 concentration throughout the country during the 2020 epidemic period [J]. Environmental Science, 2021, 42(7): 3099-3106(in Chinese).
[17] 魏小锋, 刘光辉, 闫学军, 等. 济南市冬季大气重污染过程PM2.5数浓度谱和组分分布特征 [J]. 生态环境学报, 2020, 29(9): 1847-1854. WEI X F, LIU G H, YAN X J, et al. Characteristics of PM2.5 number concentrations and compositions during heavy air pollution events in ji'nan [J]. Ecology and Environmental Sciences, 2020, 29(9): 1847-1854(in Chinese).
[18] 肖致美, 蔡子颖, 李鹏, 等. 2020年春节期间天津市重污染天气污染特征分析 [J]. 环境科学学报, 2020, 40(12): 4442-4452. doi: 10.13671/j.hjkxxb.2020.0186 XIAO Z M, CAI Z Y, LI P, et al. Characterization of heavy air pollution events during the 2020 Spring Festival in Tianjin [J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4442-4452(in Chinese). doi: 10.13671/j.hjkxxb.2020.0186
[19] 赵孝囡, 王申博, 杨洁茹, 等. 郑州市PM2.5组分、来源及其演变特征 [J]. 环境科学, 2021, 42(8): 3633-3643. ZHAO X N, WANG S B, YANG J R, et al. Chemical components and sources of PM2.5 and their evolutive characteristics in Zhengzhou [J]. Environmental Science, 2021, 42(8): 3633-3643(in Chinese).
[20] 董喆, 袁明浩, 苏方成, 等. 郑州市细颗粒物时空差异及管控措施影响 [J]. 环境科学, 2021, 42(5): 2179-2189. doi: 10.13227/j.hjkx.202009208 DONG Z, YUAN M H, SU F C, et al. Spatiotemporal variations in fine particulate matter and the impact of air quality control in Zhengzhou [J]. Environmental Science, 2021, 42(5): 2179-2189(in Chinese). doi: 10.13227/j.hjkx.202009208
[21] WU C, YU J Z. Determination of Primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization method [J]. Atmospheric Chemistry and Physics, 2016, 16(8): 1-25. [22] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[23] 高洁, 史旭荣, 卫昱婷, 等. 基于天津市在线数据评估ISORROPIA-Ⅱ模式结果及气溶胶pH的影响因素 [J]. 环境科学, 2020, 41(8): 3458-3466. doi: 10.13227/j.hjkx.201912221 GAO J, SHI X R, WEI Y T, et al. Evaluation of different ISORROPIA-Ⅱ modes and the influencing factors of aerosol pH based on Tianjin online data [J]. Environmental Science, 2020, 41(8): 3458-3466(in Chinese). doi: 10.13227/j.hjkx.201912221
[24] 赵晴, 李岩岩, 贺克斌, 等. 2019年元宵节重污染期间济宁市PM2.5化学组分特征及污染成因分析 [J]. 环境化学, 2020, 39(4): 900-910. doi: 10.7524/j.issn.0254-6108.2019090902 ZHAO Q, LI Y Y, HE K B, et al. Analysis of PM2.5 chemical characteristics and causes during heavy pollution in Jining City around the Lantern Festival of 2019 [J]. Environmental Chemistry, 2020, 39(4): 900-910(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090902
[25] KENAGY H S, SPARKS T L, EBBEN C J, et al. NO x lifetime and NO y partitioning during WINTER [J]. Journal of Geophysical Research:Atmospheres, 2018, 123(17): 9813-9827. doi: 10.1029/2018JD028736 [26] 汤莉莉, 汤蕾, 花艳, 等. 苏南三市秋冬季PM2.5中水溶性离子和元素特征及源解析 [J]. 大气科学学报, 2015, 38(5): 686-693. TANG L L, TANG L, HUA Y, et al. Characteristics and source apportionment of water-soluble ions and elements in PM2.5 in three cities of South Jiangsu in autumn and winter [J]. Transactions of Atmospheric Sciences, 2015, 38(5): 686-693(in Chinese).
[27] LI X R, WANG Y S, GUO X Q, et al. Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China [J]. Journal of Environmental Sciences, 2013, 25(4): 741-750. doi: 10.1016/S1001-0742(12)60121-1 [28] 潘光, 丁椿, 孙友敏, 等. 德州市采暖季环境空气含氮/硫物质的污染及气-粒分配特征 [J]. 环境科学研究, 2020, 33(8): 1766-1775. doi: 10.13198/j.issn.1001-6929.2020.03.16 PAN G, DING C, SUN Y M, et al. Pollution of ambient Nitrogen/Sulfur substances and associated gas-particle distribution characteristics during heating period in Dezhou city [J]. Research of Environmental Sciences, 2020, 33(8): 1766-1775(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.03.16
[29] PATHAK R K, WU W S, WANG T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere [J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1711-1722. doi: 10.5194/acp-9-1711-2009 [30] 张玉梅, 张卫东, 王军玲. 大气PM2.5源解析“源清单化学质量平衡法(I-CMB)”模型的建立与应用 [J]. 大气科学学报, 2015, 38(2): 279-284. ZHANG Y M, ZHANG W D, WANG J L. Establishment and application of pollutant Inventory-Chemical Mass Balance(I-CMB) model for source apportionment of PM2.5 [J]. Transactions of Atmospheric Sciences, 2015, 38(2): 279-284(in Chinese).
[31] 周佳佳, 石金辉, 李丽平, 等. 青岛大气中酸碱气体及PM2.5中水溶性离子的浓度特征和气粒平衡关系 [J]. 环境科学, 2015, 36(9): 3135-3143. ZHOU J J, SHI J H, LI L P, et al. Acid-base gas and PM2.5 in Qingdao atmosphere. 5 Signs and gas particle balance relationship [J]. Environmental Science, 2015, 36(9): 3135-3143(in Chinese).
[32] 史旭荣. 基于在线观测数据的大气气溶胶pH与硝酸盐相互关系研究[D]. 天津: 南开大学, 2019. SHI X R. Study on the relationship between atmospheric aerosol pH and secondary nitrate based on online observed data[D]. Tianjin: Nankai University, 2019(in Chinese).
[33] 徐敏. 南昌市PM2.5中硫酸盐和硝酸盐的分布特征与形成机制[D]. 南昌: 南昌大学, 2015. XU M. The sulfate and nitrate distribution characteristics and formation mechanism of Pm2.5 in Nanchang[D]. Nanchang: Nanchang University, 2015(in Chinese).
[34] 姜建芳, 侯丽丽, 齐梦溪, 等. 天津市采暖季PM2.5中碳组分污染特征及来源分析 [J]. 生态环境学报, 2020, 29(6): 1181-1188. JIANG J F, HOU L L, QI M X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during heating season in Tianjin [J]. Ecology and Environmental Sciences, 2020, 29(6): 1181-1188(in Chinese).
[35] 衣雅男, 姚蒸蒸, 侯战方, 等. 泰山夏季PM2.5中生物源SOA的分子组成及影响因素 [J]. 中国环境科学, 2020, 40(8): 3352-3359. doi: 10.3969/j.issn.1000-6923.2020.08.012 YI Y N, YAO Z Z, HOU Z F, et al. Molecular compositions and affecting factors of biogenic SOA in PM2.5 from Mount Taishan during the summer [J]. China Environmental Science, 2020, 40(8): 3352-3359(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.012
[36] NG N L, KROLL J H, CHAN A W H, et al. Secondary organic aerosol formation from m-xylene, toluene, and benzene [J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3909-3922. doi: 10.5194/acp-7-3909-2007