-
土壤污染具有隐蔽性、滞后性、累积性等特点,对人体健康和生态环境安全存在潜在风险和威胁。部分医药化工类企业生产历史悠久、产品种类繁多、工艺流程复杂,退役后地块土壤污染具有特异性[1]。国内外学者针对有色金属冶炼、化工、电镀、焦化等典型行业企业地块土壤污染状况开展了大量研究,主要专注于重金属污染情况、空间分布、危害评价及污染源识别等方向。土壤污染评价方面,主流的评价方法有单因子污染指数法[2-3]、内梅洛综合污染指数法[4]、潜在生态危害指数法[5]、地累积指数法[6]、层次分析法[7]、土壤环境质量评价法[8-9]等。污染成因分析方面,大体上可分以为两类,一类为定性污染源解析,另一类为定量污染源解析[10-11]。定性污染源解析主要通过空间插值或分析数据的内在联系,从而判断出某一环境介质污染源类型,现阶段主要以传统多元统计方法为主;定量污染源解析则参考大气污染源解析方法中的受体模型法,通过分析土壤样品中有指示意义的示踪物来识别污染源并量化其贡献率[12]。总体来看,关于地块土壤环境的研究主要以单一介质中污染状况及其空间分布特征为主[13],研究区域和关注的污染物相对局限。污染来源大多为定性分析,定量分析多为成土母质、大气沉降、污灌等贡献计算,验证污染源对周边其他利用方式的土壤、地表水等介质影响和联系的报道较少。
本文选取湖北某地典型医药企业聚集区腾退地块,开展地块内及周边影响区农田土壤和河流沉积物等多介质中污染特征的研究,查清地块内及周边土壤重金属污染因子、程度、范围,探明地块内土壤污染成因及其和周边环境要素之间的交互关系,为针对不同区域和介质的土壤污染因地制宜实施风险管控和修复措施,保障地块安全再利用。
典型医药企业聚集区土壤重金属污染特征及成因分析
Characteristics and causes of soil heavy metal pollution in typical pharmaceutical enterprise gathering areas
-
摘要: 为探究湖北省某地典型医药化工企业腾退地块土壤污染状况及对周边环境介质的影响并量化土壤重金属的来源贡献,系统采集地块内及其农田影响区的土壤样品592个、水稻样品23个、河流沉积物样品11个,测定了As、Cd、Cu、Pb、Hg、Ni等重金属含量,分别运用地累积指数法、生态风险评估法、土壤污染风险评价法分析了地块内及其周边农田土壤重金属的污染特征,并探究了土壤重金属来源。结果表明,医药企业地块内土壤中重金属含量均值显著高于周边农田土壤,土壤重金属As 地累计指数最高,是地块内土壤生态风险的主要污染元素,最大污染深度达4.5 m。地块周边农田土壤重金属As、Cd、Pb、Hg超过标准筛选值,水稻重金属含量未超食品安全标准限值。地块内重金属主要来源于历史生产企业生产活动,地块内地表径流对其周边河流水质造成了影响,河流作为周边农田的灌溉水,长期的灌溉活动和可能的淤泥回填已经对农田土壤环境安全产生了威胁。医药企业聚集区及其影响区的重金属源汇关系应得到重视,相关部门应针对不同介质和区域的污染现状加强重金属的污染防治和风险管理,并对企业聚集区腾退地块土壤污染进行源头管控。Abstract: The purpose of this paper is to investigate the status of soil pollution and its impact on the surrounding environmental media in a typical pharmaceutical and chemical enterprise vacated site in Hubei Province and to quantify the source contribution of soil heavy metals. In this paper, 592 soil samples, 23 rice samples and 11 river sediment samples were systematically collected from the plot and its farmland impact area, and the heavy metal contents of As, Cd, Cu, Pb, Hg and Ni were determined. This paper analyzed the pollution characteristics of soil heavy metals in the plot and its surrounding farmland and explored the sources of soil heavy metals by using the ground accumulation index method, ecological risk assessment method and soil pollution risk evaluation method, respectively. The results showed that the average value of heavy metal content in the soil of the pharmaceutical enterprise plot was significantly higher than that of the surrounding farmland soil. The cumulative index of soil heavy metal As land was the highest. It is the main contaminant element of soil ecological risk in the plot. The maximum contamination depth reached 4.5 m. The heavy metals As, Cd, Pb and Hg in the farmland soil around the plot exceeded the standard screening values. The heavy metal content of rice did not exceed the limit of food safety standards. The heavy metals within the plot mainly originated from the production activities of historical production enterprises. Surface runoff within the parcel has impacted the water quality of its surrounding rivers. Water as the irrigation water of the surrounding farmland, the long-term irrigation activities and possible silt backfill have threatened the soil environmental safety of the farmland. The source-sink relationship of heavy metals in the pharmaceutical enterprises gathering area and its influence area should be paid attention. Relevant departments should strengthen the pollution prevention and risk management of heavy metals for different media and pollution status of the region. Relevant departments should also control the source of soil pollution in the vacated land of the enterprise gathering area.
-
表 1 重金属分析检测方法及检出限
Table 1. Analysis methods and detection limit of heavy metals
项目
Items检测分析方法
Analysis methods of heavy metals检出限/(mg·kg−1)
Detection limitAs 《土壤和沉积物 12种金属元素的测定 王水提取—电感耦合等离子体质谱法》(HJ803-2016) 0.01 Cd 《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》(GB/T17141-1997) 0.01 Cu 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》 (HJ491-2019) 1.0 Pb 《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》(GB/T17141-1997) 0.1 Hg 《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第一部分:土壤中总汞的测定》(GB/T 22105.1-2008) 0.002 Ni 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ491-2019) 3.0 表 2 潜在生态风险指数分级标准
Table 2. Classification standard of potential ecological risk index
Ei与污染程度 Ei and pollution levels RI与污染程度 RI and pollution levels <40,低生态风险$ {E}_{i} $ RI<150,低生态风险 40≤ <80,中等生态风险$ {E}_{i} $ 150≤RI<300,中等生态风险 80≤ <160,较高生态险$ {E}_{i} $ 300≤RI<600,高生态风险 160≤ <320,高生态风险$ {E}_{i} $ RI≥600,极高生态风险 ≥320,极高生态风险$ {E}_{i} $ 表 3 地块及周边农用地土壤生态环境潜在生态风险指数
Table 3. Potential ecological risk index of the soil in the pharmaceutical blocks and the agricultural land
项目 Items As(Ei) Hg(Ei) Cd(Ei) Pb(Ei) Cu(Ei) Ni(Ei) Cr(Ei) 地块内 最大值 1987.80 405.00 179.65 30.90 62.05 361.93 — 最小值 4.03 45.00 13.95 2.94 1.95 0.63 — 均值 307.05 106.13 41.33 6.66 9.85 22.31 — 风险等级 高 较高 中 低 低 低 — RI 493.34(高生态风险) 周边农用地 最大值 5626.02 980.00 387.21 98.13 — — 1.74 最小值 6.71 85.50 27.91 4.36 — — 0.65 均值 177.64 187.97 57.93 9.88 — — 1.20 风险等级 高 高 中 低 — — 低 RI 434.62(高生态风险) 表 4 地块土壤重金属全局莫兰指数
Table 4. Global Moran index of heavy metal of the soil in the study areas
项目Items 镉Cd 铜Cu 汞Hg 镍Ni 砷As 铅Pb 莫兰指数 0.151 0.325 0.0708 0.7369 0.995 0.2603 P值 0.133 0.000 0.182 0.000 0.000 0.000 Z值得分 1.2227 19.3414 0.7608 11.2654 41.3251 26.4042 表 5 地块周边农田土壤重金属主成分分析成分矩阵
Table 5. Principal component analysis of the heavy metals from the agricultural land
项目Items 旋转后因子载荷
Rotated component matrixPC1 PC2 砷As 0.972 0.168 汞Hg 0.963 −0.213 镉Cd 0.937 0.262 铅Pb 0.973 0.108 铬Cr 0.079 0.995 特征值Eigen value 3.76 1.08 累计方差贡献率
Cumulation contribution rate/%75.2 21.7 -
[1] 马妍, 张美娟, 韩聪, 等. 我国典型化工污染地块土壤铬污染特征及区域差异 [J]. 环境工程, 2019, 37(9): 177-181,170. MA Y, ZHANG M J, HAN C, et al. Pollution characteristics and regional differences of chromium in soil of typical chemical pollution plots in China [J]. Environmental Engineering, 2019, 37(9): 177-181,170(in Chinese).
[2] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析 [J]. 环境科学, 2018, 39(9): 4317-4326. SONG B, ZHANG Y X, PANG R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang River draining of Guangxi [J]. Environmental Science, 2018, 39(9): 4317-4326(in Chinese).
[3] 陆金, 赵兴青. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价 [J]. 环境化学, 2017, 36(9): 1958-1967. doi: 10.7524/j.issn.0254-6108.2017010304 LU J, ZHAO X Q. Characteristics and ecological risk assessment of polluted soil by heavy metals in Shizishan, Tongling [J]. Environmental Chemistry, 2017, 36(9): 1958-1967(in Chinese). doi: 10.7524/j.issn.0254-6108.2017010304
[4] 陶美霞, 胡虎, 胡兰文, 等. 上饶市某铜矿废弃地土壤重金属污染特征及健康风险评价 [J]. 生态环境学报, 2018, 27(6): 1153-1159. TAO M X, HU H, HU L W, et al. Characteristics and health risk assessment of heavy metals in polluted abandon soil of Shangrao, Jiangxi [J]. Ecology and Environmental Sciences, 2018, 27(6): 1153-1159(in Chinese).
[5] 黄华斌, 林承奇, 于瑞莲, 等. 安溪铁观音茶园土壤重金属分布及污染评价 [J]. 环境化学, 2018, 37(5): 994-1001. HUANG H B, LIN C Q, YU R L, et al. Distribution and pollution assessment of heavy metals in soils from Tieguanyin tea garden of Anxi County [J]. Environmental Chemistry, 2018, 37(5): 994-1001(in Chinese).
[6] 杨伟光, 王美娥, 陈卫平. 新疆干旱区某矿冶场对周围土壤重金属累积的影响 [J]. 环境科学, 2019, 40(1): 445-452. YANG W G, WANG M E, CHEN W P. Effect of a mining and smelting plant on the accumulation of heavy metals in soils in arid areas in Xinjiang [J]. Environmental Science, 2019, 40(1): 445-452(in Chinese).
[7] 刘庚, 牛俊杰, 王玲, 等. 污灌区农田土壤多环芳烃污染及风险评价 [J]. 环境化学, 2017, 36(7): 1622-1629. doi: 10.7524/j.issn.0254-6108.2017.07.2016120703 LIU G, NIU J J, WANG L, et al. Contamination and risk assessment of PAHs in agricultural soil from wastewater irrigated area [J]. Environmental Chemistry, 2017, 36(7): 1622-1629(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016120703
[8] 潘自平, 何邵麟, 李朝晋, 等. 贵阳中心区土壤重金属污染及其环境影响 [J]. 环境化学, 2016, 35(11): 2295-2304. doi: 10.7524/j.issn.0254-6108.2016.11.2016053103 PAN Z P, HE S L, LI C J, et al. Heavy metals pollution in soils and its environmental impacts in central district of Guiyang City [J]. Environmental Chemistry, 2016, 35(11): 2295-2304(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016053103
[9] 于靖靖, 师华定, 王明浩, 等. 湘江子流域重点污染企业影响区土壤重金属镉污染源识别 [J]. 环境科学研究, 2020, 33(4): 1013-1020. YU J J, SHI H D, WANG M H, et al. Identification of soil cadmium pollution sources in affected areas of key pollution enterprises in Xiangjiang sub-basin [J]. Research of Environmental Sciences, 2020, 33(4): 1013-1020(in Chinese).
[10] 刘春早, 黄益宗, 雷鸣, 等. 湘江流域土壤重金属污染及其生态环境风险评价 [J]. 环境科学, 2012, 33(1): 260-265. LIU C Z, HUANG Y Z, LEI M, et al. Soil contamination and assessment of heavy metals of Xiangjiang river basin [J]. Environmental Science, 2012, 33(1): 260-265(in Chinese).
[11] 陈凤, 董泽琴, 王程程, 等. 锌冶炼区耕地土壤和农作物重金属污染状况及风险评价 [J]. 环境科学, 2017, 38(10): 4360-4369. CHEN F, DONG Z Q, WANG C C, et al. Heavy metal contamination of soils and crops near a zinc smelter [J]. Environmental Science, 2017, 38(10): 4360-4369(in Chinese).
[12] 李娇, 吴劲, 蒋进元, 等. 近十年土壤污染物源解析研究综述 [J]. 土壤通报, 2018, 49(1): 232-242. LI J, WU J, JIANG J Y, et al. Review on source apportionment of soil pollutants in recent ten years [J]. Chinese Journal of Soil Science, 2018, 49(1): 232-242(in Chinese).
[13] 毛志强, 田康, 刘本乐, 等. 广西某采选废矿区重金属生态风险与源汇关系 [J]. 农业环境科学学报, 2021, 40(5): 987-998. doi: 10.11654/jaes.2020-1338 MAO Z Q, TIAN K, LIU B L, et al. Ecological risks of heavy metals and the relationship between sources and sinks in an abandoned mining area of Guangxi Zhuang Autonomous Region [J]. Journal of Agro-Environment Science, 2021, 40(5): 987-998(in Chinese). doi: 10.11654/jaes.2020-1338
[14] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geology Journal, 1969, 2: 108-118. [15] 国家环境保护局主持中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Environmental Monitoring Centre in China. Chinese background value of soil elements [M]. Beijing: China Environment Science Press, 1990(in Chinese).
[16] 王素萍, 张贵友, 杜雷, 等. 武汉市黄陂区农田土壤重金属含量及其污染风险评价 [J]. 湖北农业科学, 2020, 59(16): 30-33,48. WANG S P, ZHANG G Y, DU L, et al. Analysis and pollution risk assessment on heavy metal contents of farmland soils in Huangpi district of Wuhan city [J]. Hubei Agricultural Sciences, 2020, 59(16): 30-33,48(in Chinese).
[17] 刘庆. 湖北某矿区土壤重金属污染状况研究[D]. 武汉: 武汉工程大学, 2015. LIU Q. Research on pollution state of heavy metal to the soil of mining area in Hubei Province[D]. Wuhan: Wuhan Institute of Technology, 2015(in Chinese).
[18] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [19] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 建设用地土壤污染风险管控标准 GB 36600—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment of the People's Republic of China, . National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of development land. GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[20] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment of the People's Republic of China, . National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[21] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 中华人民共和国国家标准: 食品安全国家标准 食品中污染物限量 GB 2762—2017[S]. 北京: 中国标准出版社, 2017. National Health and Family Planning Commission of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: National food safety standard Contamination Limit in Food GB 2762—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[22] 国家环境保护总局, 国家质量监督检验检疫总局. 中华人民共和国国家标准: 地表水环境质量标准 GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Environmental quality standards for surface water. GB 3838—2002[S]. Beijing: China Environment Science Press, 2002(in Chinese).
[23] 陈圆圆, 孙小静, 王军, 等. 上海宝山区农业用地土壤重金属空间分异规律及分布特征研究 [J]. 环境化学, 2010, 29(2): 215-219. [24] 戚洁. 北京市近郊区土壤及农作物中砷累积特征[D]. 杭州: 浙江大学, 2012. [24] 戚洁. 北京市近郊区土壤及农作物中砷累积特征[D]. 杭州: 浙江大学, 2012. QI J. Accumulation characteristics of arsenic in suburban soils and crops in Beijing[D]. Hangzhou: Zhejiang University, 2012(in Chinese). QI J. Accumulation characteristics of arsenic in suburban soils and crops in Beijing[D]. Hangzhou: Zhejiang University, 2012(in Chinese).
[25] 姜林, 钟茂生, 朱笑盈, 等. 多证据分析技术在场地重金属污染评价中的应用研究 [J]. 环境科学, 2013, 34(9): 3641-3647. JIANG L, ZHONG M S, ZHU X Y, et al. Application of multiple lines of evidence analysis technology in the assessment of sites contaminated by heavy metals [J]. Environmental Science, 2013, 34(9): 3641-3647(in Chinese).
[26] 尹国庆, 江宏, 王强, 等. 安徽省典型区农用地土壤重金属污染成因及特征分析 [J]. 农业环境科学学报, 2018, 37(1): 96-104. doi: 10.11654/jaes.2017-0911 YIN G Q, JIANG H, WANG Q, et al. Analysis of the sources and characteristics of heavy metals in farmland soil from a typical district in Anhui Province [J]. Journal of Agro-Environment Science, 2018, 37(1): 96-104(in Chinese). doi: 10.11654/jaes.2017-0911
[27] 安冉. 湘南典型农用地土壤重金属空间分布及污染成因研究[D]. 石家庄: 河北科技大学, 2020. AN R. Study on spatial distribution and pollution causes of soil heavy metals in typical agricultural land in southern Hunan[D]. Shijiazhuang: Hebei University of Science and Technology, 2020(in Chinese).
[28] 天津市质量技术监督局. 中华人民共和国地震行业标准: 中新天津生态城污染水体沉积物修复限值 DB12/ 499—2013[S]. 2013. Earthquake Standard of the People's Republic of China: Tianjin Ecology and Enviroment Bureau, Sediment remediation limits of contaminated surface water for Sina-Singapore tianjin Eco-city DB12/ 499—2013[S]. 2013(in Chinese).