-
樟子松(Pinus sylvestris var. mongolica)是我国“三北”地区营建防护林的优良树种,具有适应性强、耐寒耐旱、根系发达等特性。因其可以将土壤中的水分紧紧留住,固定沙丘的流动从而起到防风固沙作用,在辽西北章古台地区有着大面积的栽植。近年来,学者们分别从土壤水分[1]、土壤养分[2]、土壤物理性质[3-4]、土壤酶活性[5-6]等方面对樟子松人工林的合理经营进行了研究。
土壤微生物作为土壤有机及无机复合体的组成部分,在森林生态系统的物质循环和能量流动中具有明显促进作用[7]。土壤微生物易受到环境条件的影响而发生变化,能产生快速灵敏的响应[8-10],其中土壤微生物量通常可以反映土壤肥力状况。土壤微生物量主要包括土壤微生物量碳、氮、磷、硫,与土壤有机质、全氮等养分指标存在相关性[11]。土壤微生物量碳(MBC)能够体现土壤中有机碳的活性,周转周期较短,可以较为敏捷地指示土壤环境的细微变化,可用于预测土壤有机质早期变化[12]。而土壤微生物量氮(MBN)作为土壤氮素的贮藏库,具有较强的活跃性,能够参与土壤氮素循环转化[13]。土壤呼吸强度可以反映土壤微生物的活性,土壤呼吸作用影响大气碳循环,在土壤碳源输送中扮演着重要角色[14]。通过土壤呼吸所释放的CO2既可以作为土壤植物和动物的活性指标,还可以检测土壤肥力和土壤透气性[15]。因而土壤微生物可以作为评估土壤质量及肥力变化最为敏感同时也最具潜力的指标[16-17]。
目前,国内外关于森林生态系统对土壤微生物的影响多集中于土地利用类型[18]、森林类型[19-20]和林木根系[21]方面。对于樟子松人工林,李陆平等[22]研究了幼林龄到中龄林下土壤微生物类群(细菌、真菌、放线菌)数量变化特征。林雅超等[23]研究了中龄林和成熟林下樟子松土壤微生物量动态变化规律。然而对樟子松人工林全生育周期(幼龄林到过熟林)下土壤微生物特性尚未系统开展。本文对不同林龄樟子松人工林土壤微生物量碳、氮、土壤呼吸变化规律进行研究,可为人工林经营管理提供科学基础。
沙地不同林龄樟子松人工林土壤微生物量特征
Characteristics of soil microbial biomass in Pinus sylvestris var. mongolica plantations with different ages in sandy land
-
摘要: 为揭示不同林龄沙地樟子松人工林土壤微生物性质的变化规律,选择10、20、30、40、50、60 a生科尔沁沙地樟子松人工林为研究对象,测定分析了土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤呼吸强度、土壤微生物量碳氮比(MBC/MBN)、土壤微生物碳、氮熵等特征的变化。结果表明,随林龄增加,MBC和MBN均先增大后平稳再下降,二者最大值分别出现在40 a和50 a;土壤呼吸强度、土壤微生物碳、氮熵都呈现出上升-下降-上升-下降的变化趋势,且各指标均在60 a最小,表明过熟林微生物性质恶化;MBC/MBN先维持稳定,后期大幅度增大,在60 a时达到最大。随着土层深度增加,MBC、MBN及呼吸强度呈现表聚性;土壤微生物碳、氮熵呈现出先增后减的变化规律,深层MBC/MBN大于表层土壤。微生物各指标与樟子松人工林地上部分存在正相关关系,与全磷呈显著正相关关系。冗余分析表明,全磷、有机碳对不同林龄樟子松林下土壤微生物量影响显著。综上所述,樟子松近熟林和成熟林期微生物各指标达到最佳,过熟林时微生物活性差。Abstract: To reveal the changing laws of soil microbial properties of Pinus sylvestris var. mongolica plantation with different ages in sandy land, we determined and analyzed the changes of soil microbial biomass C(MBC) and N(MBN), soil respiratory intensity, soil microbial biomass C/N(MBC/MBN), soil microbial quotient and other characteristics changes in P. sylvestris var. mongolica plantations at 10, 20, 30, 40, 50, and 60 a in Horqin sandy land. The results showed that with the increase of forest age, both MBC and MBN first increased, then remained stable and finally decreased, and the maximum values of the two respectively appeared at 40 a and 50 a; The soil respiratory intensity, soil microbial carbon and nitrogen entropy all showed a change trend of increased—decreased—increased—decreased, and the minimum values of each index appeared at 60 years, indicating that the microbial properties of the over-mature stand have deteriorated; MBC/MBN remained stable at first, then increased substantially, and reached its maximum at 60 years. As the soil depth increased, MBC, MBN and respiratory intensity showed the surface aggregation; the change law of microbial quotient increased first and then decreased, and MBC/MBN of deep soil was greater than that of surface soil. Microbial indicators had a positive correlation with the above—ground part of P. sylvestris var. mongolica plantation, and had a significant positive correlation with total phosphorus. Redundancy analysis showed that TP and SOC had significant effects on soil microbial biomass at different stand ages of P. sylvestris var. mongolica. The microbial indicators reached the best in near—mature and mature stand, and its microbial activity was poor in over—mature stand.
-
Key words:
- sandy land /
- Pinus sylvestris var. mongolica plantation /
- stand age /
- microbial biomass
-
表 1 标准地基本情况
Table 1. Basic overview of the plots
样地 Plot Z10 Z20 Z30 Z40 Z50 Z60 林龄/a Tree age 10 20 30 40 50 60 密度/(plants·hm−2) Density 625 625 675 675 650 650 树高/m Height 3.28 7.80 9.25 11.27 11.01 13.04 胸径/cm DBH 7.50 13.31 16.69 20.92 19.61 20.59 东西平均冠幅/m Wew 2.59 3.6 4.01 4.3 4.59 4.62 南北平均冠幅/m Wsn 2.42 4.21 4.10 4.69 4.72 4.92 枯落物厚度/cm Litter depth 8.11 10.04 12.67 16.89 16.66 13.11 郁闭度 Canopy density 0.5 0.7 0.8 0.7 0.8 0.6 有机碳/(g·kg−1) SOC 5.96 5.96 8.85 8.31 10.73 11.16 全氮/(g·kg−1) TN 0.26 0.24 0.16 0.21 0.24 0.27 碱解氮/(mg·kg−1) HN 7.25 4.77 2.54 4.89 7.30 6.97 全磷/(g·kg−1) TP 0.92 1.0 1.11 1.12 1.04 1.01 有效磷/(mg·kg−1) AP 10.52 4.59 7.94 6.33 4.74 6.41 注:Z10、Z20、Z30、Z40、Z50、Z60分别为10年生、20年生、30年生、40年生、50年生和60年生樟子松人工林.
Note: Z10, Z20, Z30, Z40, Z50, Z60 were respectively 10, 20, 30, 40, 50, and 60 a P. sylvestris var. mongolica plantations.表 2 不同林龄土壤微生物量碳、土壤微生物量氮、土壤呼吸强度特征
Table 2. Characteristics of MBC,MBN and soil respiration intensity with different stand ages
土壤微生物指标
Soil microbial indexes土层
深度/cm
Soil depth林龄/a
Stand agesCK 10 20 30 40 50 60 土壤微生物量碳/
(mg·kg−1)0—20 60.74 Da 133.83 Ca 158.17 Ba 206.76 ABa 246.19 Aa 242.91 Aa 206.48 ABa 20—40 41.09 Db 103.09 Cb 142.30 Ba 186.63 ABb 213.49 Aab 207.70 Ab 191.31 Aab 40—60 32.43 Db 98.61 Cbc 117.25 Cb 171.33 Bb 206.68 Ab 201.60 Ab 174.25 Bb 60—80 32.51 Db 95.86 Cbc 100.65 Cb 163.76 Bb 194.37 Ab 186.05 Ac 175.83 ABb 80—100 32.60 Db 82.41 CDc 88.54 Cc 141.42 Bc 185.63 Ab 172.87 Ac 159.72 ABc 0—100 39.87 Db 102.76 Cb 121.38 Cb 173.98 Bb 209.27 Ab 202.23 ABb 181.52 ABb 土壤微生物量氮/
(mg·kg−1)0—20 4.72 Ca 4.85 Ca 6.72 ABa 11.39 Aa 10.08 Aa 10.23 Aa 5.43 Ba 20—40 4.40 Ca 4.28 Ca 5.94 BCb 9.47 Ab 7.56 Bb 9.04 Aab 4.78 Cb 40—60 2.73 Cb 3.24 Cb 4.84 Bbc 7.39 Abc 6.88 ABb 7.63 Ac 3.27 Cbc 60—80 2.27 Cb 3.78 BCb 4.41 Bc 5.29 Bc 6.48 ABb 8.22 Ab 2.71 Cc 80—100 2.68 Bb 2.71 Bc 3.27 Bc 5.26 Ac 4.85 Ac 5.95 Ac 2.72 Bc 0—100 3.36 Bab 3.77 Bb 5.04 Bb 7.76 Abc 7.17 Ab 8.21 Ab 3.78 Bbc 土壤呼吸
强度/(mg·kg−1·24h−1)0—20 2.28 Ba 1.70 Ca 2.30 Ba 3.22 Aa 1.55 Ca 3.03 Aa 1.62 Ca 20—40 2.19 ABa 1.44 Bb 2.19 ABa 2.60 Ab 1.21 Cb 2.63 Ab 1.47 Bab 40—60 1.92 ABab 1.46 Bb 1.94 ABb 2.38 Abc 1.19 Cb 2.94 Aa 1.22 Cb 60—80 1.92 Bab 1.70 Ba 2.23 Aa 2.14 ABc 1.21 Cb 2.46 Ab 1.23 Cb 80—100 1.69 Bb 1.22 Cc 1.72 Bc 2.61 Ab 1.45 BCab 2.44 Ab 1.24 Cb 0—100 2.00 Ba 1.50 Cab 2.07 Bab 2.59 Ab 1.33 Cb 2.70 Aa 1.36 Cb 注:不同大写字母表示同一土层不同林龄间差异显著,不同小写字母表示同一林龄不同土层间差异显著(下同)。 Note: Different capital letters indicate significant differences between different stand ages in the same soil layer, and different lowercase letters indicate significant differences between different soil layers of the same stand age (the same below). 表 3 不同林龄土壤微生物量碳氮比、土壤微生物碳熵、土壤微生物氮熵特征
Table 3. Characteristics of soil MBC/MBN, microbial C quotien and microbial N quotient with different stand ages
土壤微生物指标
Soil microbial indexes土层
深度/cm
Soil depth林龄/a
Stand agesCK 10 20 30 40 50 60 土壤微生物量碳氮比
MBC/MBN0—20 12.86 Da 27.60 ABa 23.58 Bb 18.17 Cc 24.42 Bc 23.82 Bb 38.03 Ab 20—40 9.33 Db 24.08 Bb 23.97 Bab 19.72 Cc 28.25 Bb 22.96 Bb 40.00 Ab 40—60 11.87 Db 30.42 Ba 24.22 Ca 23.18 Cbc 30.03 Bb 26.44 BCa 53.24Aab 60—80 14.29 Da 25.35 BCb 22.82 Cb 30.93 Ba 30.00 Bb 22.65 Cb 64.90 Aa 80—100 12.17 Da 30.42 BCa 27.04 Ca 26.87 Cb 38.31 Ba 29.04 BCa 58.81 Aa 0—100 12.11 Ca 27.58 Ba 24.33 Ba 23.77 Bbc 30.20 Bb 24.98 Bb 50.99 Aab 土壤微生物碳熵/%
Soil microbial C quotien0—20 0.57 Ca 1.97 Ba 2.48 Aa 2.50 Aa 2.84 Aa 2.35 Aa 1.78 Ba 20—40 0.43 Ca 1.98 ABa 2.55 Aa 2.17 Aa 2.52 Aa 1.77 Bab 1.71 Ba 40—60 0.35 Cb 1.93 ABa 1.96 Aab 1.73 Bb 2.58 Aa 1.93 ABa 1.73 Ba 60—80 0.36 Cb 1.52 BCb 1.72 Bb 1.92 ABa 2.33 Ab 1.69 Bb 1.61 Bb 80—100 0.38 Cb 1.48 Bb 1.59 Bb 1.71 ABb 2.44 Aab 1.68 Bb 1.44 Bb 0—100 0.42 Da 1.78 BCab 2.06 Bab 2.01 BCa 2.54 Aa 1.88 BCa 1.66 Cab 土壤微生物氮熵/%
Soil microbial N quotien0—20 1.39 Cc 1.41 Cb 2.26 Ba 5.44 Aa 3.85 ABa 3.12 ABb 1.51 Cb 20—40 1.83 BCab 1.71 Ca 2.35 Ba 5.92 Aa 4.01 ABa 4.63 Aa 1.85 BCa 40—60 1.61 Cb 1.34 Db 2.31 BCa 5.65 Aa 3.76 Ba 3.92 Bb 1.60 Cb 60—80 1.62 BCb 1.86 BCa 2.13 Bab 3.89 Ab 3.52 ABa 4.50 Aa 1.26 Cc 80—100 2.23 Ba 1.38 Cb 1.80 BCb 4.60 Aab 3.06 ABb 3.38 ABb 1.34 Cc 0—100 1.74 Cb 1.54 Cb 2.17 Cab 5.10 Aa 3.64 Ba 3.91 Bb 1.51 Cb 表 4 土壤微生物指标与环境因素的相关性(n=360)
Table 4. Correlation between soil microbial indexes and environmental factors (n=360)
指标
Indexes株高Heigh 胸径Diameter 冠幅Crown 有机碳
SOC全氮
TN碱解氮
HN全磷
TP有效磷
AP土壤微生物量碳
MBC0.748** 0.816** 0.743** 0.685** 0.215 0.253 0.604** −0.303 土壤微生物量氮
MBN0.284 0.390* 0.354* 0.314 0.129 0.134 0.543** −0.258 土壤呼吸强度
Soil respiratory intensity0.012 0.114 0.124 −0.100 0.178 0.108 0.478** −0.218 土壤微生物碳熵
Soil microbial C quotien0.103 0.201 0.141 −0.273 0.051 0.021 0.459** −0.066 土壤微生物量碳氮比MBC/MBN 0.427** 0.323 0.309 0.347* −0.009 0.050 −0.132 0.143 土壤微生物氮熵
Soil microbial N quotien0.260 0.376* 0.319 0.173 −0.508** −0.429** 0.686** −0.144 注:*表示显著相关(P ˂ 0.05),**表示极显著相关(P ˂ 0.01).
Note:*indicates significant correlation (P ˂0.05), **indicates extremely significant correlation (P ˂0.01). -
[1] 魏晓婷, 雷泽勇, 韩辉. 章古台沙地不同林龄樟子松人工林土壤水分研究 [J]. 干旱区资源与环境, 2016, 30(06): 115-121. WEI X T, LEI Z Y, HAN H. Soil moistures characteristics of different- aged Pinus sylvestris var. mongolica artificial forests in Zhanggutai sandy area [J]. Journal of Arid Land Resources and Environment, 2016, 30(06): 115-121(in Chinese).
[2] 张日升. 章古台沙地针叶人工林对土壤养分的影响 [J]. 防护林科技, 2016(12): 10-12. ZHANG R S. Effects of coniferous plantations in Zhanggutai sandland on soil nutrients [J]. Protection Forest Science and Technology, 2016(12): 10-12(in Chinese).
[3] 段民福, 廖超英, 孙长忠, 等. 毛乌素沙地樟子松人工林土壤物理性质的时空变异规律 [J]. 西北农业学报, 2012, 21(3): 188-192. doi: 10.3969/j.issn.1004-1389.2012.03.036 DUAN M F, LIAO C Y, SUN C Z, et al. Spatio-temporal variabilities of soil physical properties of Pinus sylvestris var. mongolica artificial forest in Mu Us desert [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(3): 188-192(in Chinese). doi: 10.3969/j.issn.1004-1389.2012.03.036
[4] 牛沙沙, 周永斌, 刘丽颖, 等. 不同林龄樟子松人工林土壤理化性质 [J]. 东北林业大学学报, 2015, 43(2): 47-50,62. doi: 10.3969/j.issn.1000-5382.2015.02.011 NIU S S, ZHOU Y B, LIU L Y, et al. Soil Properties in Pinus sylvestris var. mongolica Plantation of Different Ages [J]. Journal of Northeast Forestry University, 2015, 43(2): 47-50,62(in Chinese). doi: 10.3969/j.issn.1000-5382.2015.02.011
[5] 赵燕娜, 廖超英, 李晓明, 等. 毛乌素沙地不同林龄樟子松人工林土壤酶活性变化特征 [J]. 西北林学院学报, 2014, 29(2): 1-5,19. doi: 10.3969/j.issn.1001-7461.2014.02.01 ZHAO Y N, LIAO C Y, LI X M, et al. Evolution of soil enzyme activities of Pinus sytvestris var. mongolica plantation at different ages in muus sandland [J]. Journal of Northwest Forestry University, 2014, 29(2): 1-5,19(in Chinese). doi: 10.3969/j.issn.1001-7461.2014.02.01
[6] 于德良, 雷泽勇, 张岩松, 等. 沙地樟子松人工林土壤酶活性及其影响因子 [J]. 干旱区研究, 2019, 36(03): 621-629. YU D L, LEI Z Y, ZHANG Y S, et al. Soil enzyme activity and its affecting factors under Pinus sylvestris var. mongolica plantation in sandy land [J]. Arid Zone Research, 2019, 36(03): 621-629(in Chinese).
[7] LEGAY N, CLÉMENT J C, GRASSEIN F, et al. Plant growth drives soil nitrogen cycling and N-related microbial activity through changing root traits [J]. Fungal Ecology, 2020, 44: 100910. doi: 10.1016/j.funeco.2019.100910 [8] KHAN A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation [J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4): 355-364. doi: 10.1016/j.jtemb.2005.02.006 [9] 刘爽, 王传宽. 五种温带森林土壤微生物生物量碳氮的时空格局 [J]. 生态学报, 2010, 30(12): 3135-3143. LIU S, WANG C K. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems [J]. Acta Ecologica Sinica, 2010, 30(12): 3135-3143(in Chinese).
[10] 王宝荣, 杨佳佳, 安韶山, 等. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响 [J]. 应用生态学报, 2018, 29(01): 247-259. WANG B R, YANG J J, AN S S, et al. Effects of vegetation and topography features on ecological stoichiometry of soil and soil microbial biomass in the hilly-gully region of the Loess Plateau, China [J]. Chinese Journal of Applied Ecology, 2018, 29(01): 247-259(in Chinese).
[11] 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响 [J]. 土壤学报, 2002, 39(1): 89-96. XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping [J]. Acta Pedologica Sinica, 2002, 39(1): 89-96(in Chinese).
[12] 李陆平, 廖超英, 李晓明, 等. 毛乌素沙地樟子松人工林对土壤微生物及酶活性的影响 [J]. 西北林学院学报, 2012, 27(3): 12-16. doi: 10.3969/j.issn.1001-7461.2012.03.03 LI L P, LIAO C Y, LI X M, et al. Effects on soil microorganism and enzyme activities of artificial Pinus sylvestris var. mongolica in mu us sand land [J]. Journal of Northwest Forestry University, 2012, 27(3): 12-16(in Chinese). doi: 10.3969/j.issn.1001-7461.2012.03.03
[13] 仇少君, 彭佩钦, 刘强, 等. 土壤微生物生物量氮及其在氮素循环中作用 [J]. 生态学杂志, 2006, 25(4): 443-448. doi: 10.3321/j.issn:1000-4890.2006.04.018 QIU S J, PENG P Q, LIU Q, et al. Soil microbial biomass nitrogen and its role in nitrogen cycling [J]. Chinese Journal of Ecology, 2006, 25(4): 443-448(in Chinese). doi: 10.3321/j.issn:1000-4890.2006.04.018
[14] 严俊霞, 秦作栋, 李洪建, 等. 黄土高原地区柠条人工林土壤呼吸 [J]. 林业科学, 2010, 46(3): 1-8. doi: 10.11707/j.1001-7488.20100301 YAN J X, QIN Z D, LI H J, et al. Soil respiration characters in a Caragana plantation in loess plateau region [J]. Scientia Silvae Sinicae, 2010, 46(3): 1-8(in Chinese). doi: 10.11707/j.1001-7488.20100301
[15] 刘恩科, 赵秉强, 李秀英, 等. 长期施肥对土壤微生物量及土壤酶活性的影响 [J]. 植物生态学报, 2008, 32(1): 176-182. doi: 10.3773/j.issn.1005-264x.2008.01.020 LIU E K, ZHAO B Q, LI X Y, et al. Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems [J]. Journal of Plant Ecology, 2008, 32(1): 176-182(in Chinese). doi: 10.3773/j.issn.1005-264x.2008.01.020
[16] BURTON J, CHEN C R, XU Z H, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia [J]. Journal of Soils and Sediments, 2010, 10(7): 1267-1277. doi: 10.1007/s11368-010-0238-y [17] ROVIRA P, JORBA M, ROMANYÀ J. Active and passive organic matter fractions in Mediterranean forest soils [J]. Biology and Fertility of Soils, 2010, 46(4): 355-369. doi: 10.1007/s00374-009-0437-0 [18] MORENO J L, TORRES I F, GARCÍA C, et al. Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area [J]. Science of the Total Environment, 2019, 648: 1018-1030. doi: 10.1016/j.scitotenv.2018.08.214 [19] BARGALI K, MANRAL V, PADALIA K, et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India [J]. CATENA, 2018, 171: 125-135. doi: 10.1016/j.catena.2018.07.001 [20] 林尤伟, 金光泽. 冻融期去根处理对小兴安岭6种林型土壤微生物量的影响 [J]. 生态学报, 2016, 36(19): 6159-6169. LIN Y W, JIN G Z. Effects of root resectioning on soil microbial biomass in six forest types in the Xiaoxing'an Mountains during freezing-thawing cycles [J]. Acta Ecologica Sinica, 2016, 36(19): 6159-6169(in Chinese).
[21] 丁令智, 满秀玲, 肖瑞晗, 等. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化 [J]. 林业科学, 2019, 55(7): 178-186. doi: 10.11707/j.1001-7488.20190720 DING L Z, MAN X L, XIAO R H, et al. Dynamics of soil microbial biomass carbon and nitrogen in the soil of rhizosphere during growing season in the cold temperate forests [J]. Scientia Silvae Sinicae, 2019, 55(7): 178-186(in Chinese). doi: 10.11707/j.1001-7488.20190720
[22] 李陆平, 廖超英, 李晓明, 等. 毛乌素沙地樟子松人工林土壤微生物数量变化 [J]. 干旱地区农业研究, 2013, 31(1): 157-160. doi: 10.3969/j.issn.1000-7601.2013.01.029 LI L P, LIAO C Y, LI X M, et al. Changes of soil microorganism of artificial Pinus sylvestris var. mongolica in Mu Us sandland [J]. Agricultural Research in the Arid Areas, 2013, 31(1): 157-160(in Chinese). doi: 10.3969/j.issn.1000-7601.2013.01.029
[23] 林雅超, 高广磊, 丁国栋, 等. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化 [J]. 生态学杂志, 2020, 39(5): 1445-1454. LIN Y C, GAO G L, DING G D, et al. Dynamics of soil physicochemical properties and microbial biomass in a Pinus sylvestris var. mongolica plantation [J]. Chinese Journal of Ecology, 2020, 39(5): 1445-1454(in Chinese).
[24] 国家林业局. 中华人民共和国林业行业标准: 主要树种龄级与龄组划分 LY/T 2908—2017[S]. 北京: 中国标准出版社, 2017: 4. State Forestry Administration of the People's Republic of China. Forestry Standard of the People's Republic of China: Regulations for age-class and age-group division of main tree-species. LY/T 2908—2017[S]. Beijing: Standards Press of China, 2017: 4(in Chinese).
[25] 胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161-1167. HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(Z1): 1161-1167(in Chinese).
[26] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3 [27] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. doi: 10.1016/0038-0717(87)90052-6 [28] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 50-51. BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000: 50-51(in Chinese).
[29] YIM M H, JOO S J, SHUTOU K, et al. Spatial variability of soil respiration in a larch plantation: Estimation of the number of sampling points required [J]. Forest Ecology and Management, 2003, 175(1-3): 585-588. [30] 杨涛, 徐慧, 李慧, 等. 樟子松人工林土壤养分、微生物及酶活性的研究 [J]. 水土保持学报, 2005, 19(3): 50-53. doi: 10.3321/j.issn:1009-2242.2005.03.013 YANG T, XU H, LI H, et al. Soil nutrient, microorganism and enzyme activity in Pinus sylvestris Plantations [J]. Journal of Soil Water Conservation, 2005, 19(3): 50-53(in Chinese). doi: 10.3321/j.issn:1009-2242.2005.03.013
[31] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因 [J]. 应用生态学报, 2004, 15(12): 2225-2228. doi: 10.3321/j.issn:1001-9332.2004.12.006 WU X Y, JIANG F Q, LI X D, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land [J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2225-2228(in Chinese). doi: 10.3321/j.issn:1001-9332.2004.12.006
[32] 卜涛, 张水奎, 宋新章, 等. 几个环境因子对凋落物分解的影响 [J]. 浙江农林大学学报, 2013, 30(5): 740-747. doi: 10.11833/j.issn.2095-0756.2013.05.017 BU T, ZHANG S K, SONG X Z, et al. Effects of several environmental factors on litter decomposition [J]. Journal of Zhejiang A & F University, 2013, 30(5): 740-747(in Chinese). doi: 10.11833/j.issn.2095-0756.2013.05.017
[33] 郭绪虎, 肖德荣, 田昆, 等. 滇西北高原纳帕海湿地湖滨带优势植物生物量及其凋落物分解 [J]. 生态学报, 2013, 33(5): 1425-1432. doi: 10.5846/stxb201208271209 GUO X H, XIAO D R, TIAN K, et al. Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China [J]. Acta Ecologica Sinica, 2013, 33(5): 1425-1432(in Chinese). doi: 10.5846/stxb201208271209
[34] 关阅章, 刘安田, 仲启铖, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应 [J]. 华东师范大学学报(自然科学版), 2013(5): 27-34. GUAN Y Z, LIU A T, ZHONG Q C, et al. Responses of decomposition of Phragmites australis litter to simulated temperature enhancement in the reclamed coastal wetland [J]. Journal of East China Normal University (Natural Science), 2013(5): 27-34(in Chinese).
[35] 牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性 [J]. 应用生态学报, 2015, 26(9): 2663-2672. NIU X Y, SUN X M, CHEN D S, et al. Soil microorganisms, nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province, China [J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2663-2672(in Chinese).
[36] 杨曾奖, 曾杰, 徐大平, 等. 森林枯枝落叶分解及其影响因素 [J]. 生态环境, 2007, 16(2): 649-654. YANG Z J, ZENG J, XU D P, et al. The processes and dominant factors of forest litter decomposition: A review [J]. Ecology and Environment, 2007, 16(2): 649-654(in Chinese).
[37] 杨传波, 黄敬林, 李宝年, 等. 樟子松树栖真菌群落物种多样性及其与病害的关系 [J]. 东北林业大学学报, 2004, 32(5): 94-96. doi: 10.3969/j.issn.1000-5382.2004.05.034 YANG C B, HUANG J L, LI B N, et al. The relationship between the species diversity of dendrocola mycoflora on Pinus sylvestris var. mongolica and disease [J]. Journal of Northeast Forestry University, 2004, 32(5): 94-96(in Chinese). doi: 10.3969/j.issn.1000-5382.2004.05.034
[38] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征 [J]. 草业学报, 2007, 16(4): 62-68. doi: 10.3321/j.issn:1004-5759.2007.04.010 YANG C D, LONG R J, CHEN X R, et al. Study on microbial biomass and its correlation with the soil physical properties under the alpine grassland of the east of Qilian Mountains [J]. Acta Prataculturae Sinica, 2007, 16(4): 62-68(in Chinese). doi: 10.3321/j.issn:1004-5759.2007.04.010
[39] LIAO J D, BOUTTON T W. Soil microbial biomass response to woody plant invasion of grassland [J]. Soil Biology and Biochemistry, 2008, 40(5): 1207-1216. doi: 10.1016/j.soilbio.2007.12.018 [40] 陈婷, 郗敏, 孔范龙, 等. 枯落物分解及其影响因素 [J]. 生态学杂志, 2016, 35(7): 1927-1935. CHEN T, XI M, KONG F L, et al. A review on litter decomposition and influence factors [J]. Chinese Journal of Ecology, 2016, 35(7): 1927-1935(in Chinese).
[41] 任天志. 持续农业中的土壤生物指标研究 [J]. 中国农业科学, 2000, 33(1): 68-75. REN T Z. Soil bioindicators in sustainable agriculture [J]. Scientia Agricultura Sinica, 2000, 33(1): 68-75(in Chinese).
[42] DEVI N B, YADAVA P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India [J]. Applied Soil Ecology, 2006, 31(3): 220-227. doi: 10.1016/j.apsoil.2005.05.005