-
左旋葡聚糖(LG)即1,6-脱水-β-D-葡萄糖,是一种由纤维素热分解产生的水溶性无水糖[1]。一直以来, 左旋葡聚糖(LG)被当做生物质燃烧的有机分子标记物受到大量关注[2]。左旋葡聚糖(LG)来源广泛,当燃烧温度高于300 ℃时,纤维素和半纤维素的热裂解会生成LG[2-8],在淀粉和糖类的热变过程中也会生成LG[9],同时木质纤维素和泥炭木加热后生成的产物中也有LG存在[10]。LG分布广泛[11-15],在大气中具有明显的区域分布特征,整体表现为农村高于城市[11-13, 16-25]、高于森林海洋等偏远地区[14-15, 26-37]。在对LG研究不断深入的过程中,可采用多种分析检测技术,有气相色谱-质谱法(GC-MS)[38]、热解吸气相色谱质谱法(TD-GC-MS)[39]、高效液相色谱(HPLC)与质谱相结合法[40]、离子色谱法(IC)[41]、离子色谱-质谱-电喷雾电离法(IC-MS-ESI)[42]法等方法。近几十年,很多研究者已对LG的来源、分布、检测方法等方面进行了综述,例如Bhattarai等 [43]对LG的测量分析技术,排放特性(包括形成,稳定性,比率)和空间变化做了很好的总结,Janoszka等[44]和Schkolnik等[45]对LG测定方法也做了很好的总结。
LG作为生物质燃烧过程的独特示踪剂,一度被认为是在大气中具有高稳定性、高丰度的生物质燃烧产物[43]。然而,近年的研究却表明,LG在大气条件下也会发生不同程度的光化学降解,同时也在不同相态的实验室模拟实验得到该结论,甚至外场的同位素观察也证实了LG在大气条件下的不稳定性[41, 44]。但是,目前并没有研究者从不同相态的角度来对LG的光化学降解进行总结。本文总结了实验室模拟中液相[30,46-52]、气相[53-55]和非均相[56-57]下自由基、离子、温度、湿度等因素对LG的光化学的影响,以及大气中LG的光化学影响因素和LG排放进入大气后的光化学反应机制,并对减缓LG光化学降解的研究进行了展望。
大气颗粒物中左旋葡聚糖光化学的研究进展
Photochemistry of levoglucosan in atmospheric aerosols: A review
-
摘要: 大量的有机污染物通过生物质燃烧排到大气中,从而影响着空气质量、气候变化以及人类健康等。左旋葡聚糖长期以来被视作生物质燃烧的标志物,在大气化学的源解析中具有重要的意义。本文综述了左旋葡聚糖的光化学稳定性,全面讨论了在实验室模拟研究中左旋葡聚糖在液相、非均相和气相等模拟条件中发生的光化学氧化反应。此外,还结合本实验室的工作总结了左旋葡聚糖的光化学机制,对比了它在不同相态中的降解速率。Abstract: A large number of organic pollutants are discharged into the atmosphere through biomass burning, thereby affecting air quality, climate change, and human health. Levoglucosan has widely been regarded as a marker of biomass burning and has important significance in the source analysis of atmospheric chemistry. This article reviews the photochemical transformation of levoglucosan and comprehensively discusses the photochemical oxidation of levoglucosan in the liquid phase, heterogeneous phase, and gas phase in the laboratory simulation. In addition, combined with the work of our laboratory, we summarized the photochemical mechanism of levoglucosan and compared its degradation rate in different phases.
-
Key words:
- levoglucosan /
- atmospheric chemistry /
- mechanism /
- biomass burning
-
表 1 不同相态中左旋葡聚糖光化学反应参数
Table 1. The parameters of photochemical reaction of levoglucosan in different phase
反应类型
Reaction type自由基
Free radical反应物降解速率
Reactant degradation rate大气寿命
Atmosphere lifetime参考文献
Ref液相酸催化 ${\rm{H^\text{+} }}$ (0.599±0.009) mol·L−1·min−1 [46] 无 (0.023±0.008) mol·L−1·min−1 模型模拟 •OH (2.4±0.3)×109 mol·L−1·min−1 [30] ${\rm{NO_3}} $ (1.6±0.2)×107 mol·L−1·min−1 $ {\rm{SO_4^\text {2−}}} $ (5.2±0.9)×107 mol·L−1·min−1 液相芬顿 •OH (1.28±0.45)×109 mol·L−1·min−1 [48-49] 液相 •OH (1.08±0.16)×109 mol·L−1·min−1 [50] 液相 •OH(pH 3.0—8.0) 7.9×108—2.4×109 mol·L−1·min−1 [52] 液相 (0 mmol·L−1)$ {\rm{SO_4^\text {2−}}} $ 28.9×10−2 min−1 [30] (0.01 mmol·L−1)$ {\rm{SO_4^\text {2−}}} $ 21.9×10−2 min−1 (0.1 mmol·L−1)$ {\rm{SO_4^\text {2−}}} $ 25.79×10−2 min−1 (1 mmol·L−1)$ {\rm{SO_4^\text {2−}}} $ 26.5×10−2 min−1 液相 (0 mmol·L−1)${\rm{ NO_3^\text{−}}} $ 28.9×10−2 min−1 [62] (0.01 mmol·L−11)${\rm{ NO_3^\text{−}}} $ 17.9×10−2 min−1 (0.1 mmol·L−1)${\rm{ NO_3^\text{−}}} $ 13.9×10−2 min−1 (1 mmol·L−1)${\rm{ NO_3^\text{−}}} $ 20.2×10−2 min−1 液相 (0 mmol·L−1)${\rm{ NO_2^\text{−}}} $ 28.9×10−2 min−1 [30] (0.01 mmol·L−11)${\rm{ NO_2^\text{−} } } $ 17.3×10−2 min−1 (0.1 mmol·L−1)${\rm{ NO_2^\text{−} } } $ 9.6×10−2 min−1 (1 mmol·L−1)${\rm{ NO_2^\text{−} } } $ 0.5×10−2 min−1 非均相 ${\rm{O_3}} $ (3.09±0.18)×10−13 cm3·molecule−1·s−1 [54] 气相 •OH (1.1±0.5)×10−11 cm3 ·molecule−1·s−1 0.7—2.2 d [54] 气相 •OH (4.04±0.29)×10−12—(12.5±0.17)×10−12 cm3·molecule−1·s−1 1.2—3.9 d [54] -
[1] SUCIU L G, MASIELLO C A, GRIFFIN R J. Anhydrosugars as tracers in the earth system [J]. Biogeochemistry, 2019, 146(3): 209-256. doi: 10.1007/s10533-019-00622-0 [2] SIMONEIT B R T, SCHAUER J J, NOLTE C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles [J]. Atmospheric Environment, 1999, 33(2): 173-182. doi: 10.1016/S1352-2310(98)00145-9 [3] FABBRI D, TORRI C, SIMONEIT B R T, et al. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites [J]. Atmospheric Environment, 2009, 43(14): 2286-2295. doi: 10.1016/j.atmosenv.2009.01.030 [4] FRASER M P, LAKSHMANAN K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols [J]. Environmental Science & Technology, 2000, 34(21): 4560-4564. [5] SAARNIO K, TEINILÄ K, AURELA M, et al. High-performance anion-exchange chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter [J]. Analytical and Bioanalytical Chemistry, 2010, 398(5): 2253-2264. doi: 10.1007/s00216-010-4151-4 [6] SAARNIO K, TEINILÄ K, SAARIKOSKI S, et al. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler–high-performance anion-exchange chromatography–mass spectrometry (PILS–HPAEC–MS) [J]. Atmospheric Measurement Techniques, 2013, 6(10): 2839-2849. doi: 10.5194/amt-6-2839-2013 [7] SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0 [8] ZHANG X L, YANG W H, BLASIAK W. Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 110-119. doi: 10.1016/j.jaap.2012.03.012 [9] LAKSHMANAN C M, HOELSCHER H E. Production of levoglucosan by pyrolysis of carbohydrates pyrolysis in hot inert gas stream [J]. Starch - Stä rke, 1970, 22(8): 261-264. [10] GALLETTI G C, BOCCHINI P. Pyrolysis/gas chromatography/mass spectrometry of lignocellulose [J]. Rapid Communications in Mass Spectrometry, 1995, 9(9): 815-826. doi: 10.1002/rcm.1290090920 [11] CASEIRO A, OLIVEIRA C. Variations in wood burning organic marker concentrations in the atmospheres of four European cities [J]. Journal of Environmental Monitoring:JEM, 2012, 14(8): 2261-2269. doi: 10.1039/c2em10849f [12] MAENHAUT W, VERMEYLEN R, CLAEYS M, et al. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium [J]. Science of the Total Environment, 2012, 437: 226-236. doi: 10.1016/j.scitotenv.2012.08.015 [13] KŘŮMAL K, MIKUŠKA P, VOJTĚŠEK M, et al. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas [J]. Atmospheric Environment, 2010, 44(39): 5148-5155. doi: 10.1016/j.atmosenv.2010.08.057 [14] WANG X Y, THAI P K, MALLET M, et al. Emissions of selected semivolatile organic chemicals from forest and savannah fires [J]. Environmental Science & Technology, 2017, 51(3): 1293-1302. [15] de OLIVEIRA ALVES N, BRITO J, CAUMO S, et al. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment [J]. Atmospheric Environment, 2015, 120: 277-285. doi: 10.1016/j.atmosenv.2015.08.059 [16] XU J S, XU H H, XIAO H, et al. Aerosol composition and sources during high and low pollution periods in Ningbo, China [J]. Atmospheric Research, 2016, 178/179: 559-569. doi: 10.1016/j.atmosres.2016.05.006 [17] 朱红霞, 陶雪梅, 王超, 等. 北京及周边6个城市大气PM2.5中左旋葡聚糖及其异构体的时空分布特征 [J]. 环境科学, 2020, 41(4): 1544-1549. ZHU H X, TAO X M, WANG C, et al. Spatial and temporal distribution characteristics of levoglucosan and its isomers in PM2.5 in Beijing and six surrounding cities [J]. Environmental Science, 2020, 41(4): 1544-1549(in Chinese).
[18] MA S X, WANG Z Z, BI X H, et al. Composition and source of saccharides in aerosols in Guangzhou, China [J]. Chinese Science Bulletin, 2009, 54(23): 4500-4506. [19] WANG G H, KAWAMURA K, LEE S C, et al. Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities [J]. Environmental Science & Technology, 2006, 40(15): 4619-4625. [20] ZHAO Z Z, CAO J J, ZHANG T, et al. Stable carbon isotopes and levoglucosan for PM2.5 elemental carbon source apportionments in the largest city of Northwest China [J]. Atmospheric Environment, 2018, 185: 253-261. doi: 10.1016/j.atmosenv.2018.05.008 [21] FU P Q, KAWAMURA K, PAVULURI C M, et al. Molecular characterization of urban organic aerosol in tropical India: Contributions of primary emissions and secondary photooxidation [J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2663-2689. doi: 10.5194/acp-10-2663-2010 [22] SEVIMOGLU O, ROGGE W F. Organic compound concentrations of size-segregated PM10 during sugarcane burning and growing seasons at a rural and an urban site in Florida, USA [J]. Aerosol and Air Quality Research, 2015, 15(5): 1720-1736. doi: 10.4209/aaqr.2015.02.0069 [23] NIRMALKAR J, DESHMUKH D K, DEB M K, et al. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India [J]. Atmospheric Environment, 2015, 117: 41-50. doi: 10.1016/j.atmosenv.2015.07.003 [24] CAO F, ZHANG S C, KAWAMURA K, et al. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China [J]. Environmental Pollution, 2017, 231: 654-662. doi: 10.1016/j.envpol.2017.08.045 [25] WAN X, KANG S C, LI Q L, et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning [J]. Atmospheric Chemistry and Physics, 2017, 17(14): 8867-8885. doi: 10.5194/acp-17-8867-2017 [26] SCHKOLNIK G, FALKOVICH A H, RUDICH Y, et al. New analytical method for the determination of levoglucosan, polyhydroxy compounds, and 2-methylerythritol and its application to smoke and rainwater samples [J]. Environmental Science & Technology, 2005, 39(8): 2744-2752. [27] PIO C A, LEGRAND M, ALVES C A, et al. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period [J]. Atmospheric Environment, 2008, 42(32): 7530-7543. doi: 10.1016/j.atmosenv.2008.05.032 [28] HU Q H, XIE Z Q, WANG X M, et al. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic [J]. Scientific Reports, 2013, 3: 3119. doi: 10.1038/srep03119 [29] FU P Q, KAWAMURA K. Diurnal variations of polar organic tracers in summer forest aerosols: A case study of a Quercus and Picea mixed forest in Hokkaido, Japan [J]. Geochemical Journal, 2011, 45(4): 297-308. doi: 10.2343/geochemj.1.0123 [30] HOFFMANN D, TILGNER A, IINUMA Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study [J]. Environmental Science & Technology, 2010, 44(2): 694-699. [31] KAWAMURA K, ISHIMURA Y, YAMAZAKI K. Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific [J]. Global Biogeochemical Cycles, 2003, 17(1): 3-1. [32] FU P Q, KAWAMURA K, BARRIE L A. Photochemical and other sources of organic compounds in the Canadian high Arctic aerosol pollution during winter-spring [J]. Environmental Science & Technology, 2009, 43(2): 286-292. [33] von SCHNEIDEMESSER E, SCHAUER J J, HAGLER G S W, et al. Concentrations and sources of carbonaceous aerosol in the atmosphere of Summit, Greenland [J]. Atmospheric Environment, 2009, 43(27): 4155-4162. doi: 10.1016/j.atmosenv.2009.05.043 [34] HARA K, OSADA K, YABUKI M, et al. Haze episodes at Syowa Station, coastal Antarctica: Where did they come from? [J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D14): D14205. doi: 10.1029/2009JD012582 [35] ZANGRANDO R, BARBARO E, VECCHIATO M, et al. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols [J]. Science of the Total Environment, 2016, 544: 606-616. doi: 10.1016/j.scitotenv.2015.11.166 [36] SANG X F, ZHANG Z S, CHAN C, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau [J]. Atmospheric Environment, 2013, 78: 113-123. doi: 10.1016/j.atmosenv.2012.12.012 [37] CONG Z, KANG S, KAWAMURA K, et al. Carbonaceous aerosols on the south edge of the Tibetan Plateau: Concentrations, seasonality and sources [J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1573-1584. doi: 10.5194/acp-15-1573-2015 [38] PASHYNSKA V, VERMEYLEN R, VAS G, et al. Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban aerosols [J]. Journal of Mass Spectrometry, 2002, 37(12): 1249-1257. doi: 10.1002/jms.391 [39] SHEESLEY R J, MIERITZ M, DEMINTER J T, et al. Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol [J]. Atmospheric Environment, 2015, 123: 251-255. doi: 10.1016/j.atmosenv.2015.10.047 [40] YTTRI K E, DYE C, SLØRDAL L H, et al. Quantification of monosaccharide anhydrides by liquid chromatography combined with mass spectrometry: Application to aerosol samples from an urban and a suburban site influenced by small-scale wood burning [J]. Journal of the Air & Waste Management Association, 2005, 55(8): 1169-1177. [41] ENGLING G, CARRICO C M, KREIDENWEIS S M, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection [J]. Atmospheric Environment, 2006, 40: 299-311. doi: 10.1016/j.atmosenv.2005.12.069 [42] KIRCHGEORG T, SCHÜPBACH S, KEHRWALD N, et al. Method for the determination of specific molecular markers of biomass burning in lake sediments [J]. Organic Geochemistry, 2014, 71: 1-6. doi: 10.1016/j.orggeochem.2014.02.014 [43] BHATTARAI H, SAIKAWA E, WAN X, et al. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives [J]. Atmospheric Research, 2019, 220: 20-33. doi: 10.1016/j.atmosres.2019.01.004 [44] JANOSZKA K, CZAPLICKA M. Methods for the determination of levoglucosan and other sugar anhydrides as biomass burning tracers in environmental samples - A review [J]. Journal of Separation Science, 2019, 42(1): 319-329. doi: 10.1002/jssc.201800650 [45] SCHKOLNIK G, RUDICH Y. Detection and quantification of levoglucosan in atmospheric aerosols: A review [J]. Analytical and Bioanalytical Chemistry, 2006, 385(1): 26-33. doi: 10.1007/s00216-005-0168-5 [46] ABDILLA R M, RASRENDRA C B, HEERES H J. Kinetic studies on the conversion of levoglucosan to glucose in water using brønsted acids as the catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3204-3214. [47] HOSOYA T, KAWAMOTO H, SAKA S. Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases [J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 64-70. doi: 10.1016/j.jaap.2008.06.008 [48] HOLMES B J, PETRUCCI G A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols [J]. Environmental Science & Technology, 2006, 40(16): 4983-4989. [49] HOLMES B J, PETRUCCI G A. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols [J]. Journal of Atmospheric Chemistry, 2007, 58(2): 151-166. doi: 10.1007/s10874-007-9084-8 [50] ZHAO R, MUNGALL E L, LEE A K Y, et al. Aqueous-phase photooxidation of levoglucosan–a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS) [J]. Atmospheric Chemistry and Physics, 2014, 14(18): 9695-9706. doi: 10.5194/acp-14-9695-2014 [51] ENAMI S, HOFFMANN M R, COLUSSI A J. Criegee intermediates react with levoglucosan on water [J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3888-3894. doi: 10.1021/acs.jpclett.7b01665 [52] TERAJI T, ARAKAKI T. Bimolecular rate constants between levoglucosan and hydroxyl radical: Effects of pH and temperature [J]. Chemistry Letters, 2010, 39(8): 900-901. doi: 10.1246/cl.2010.900 [53] HENNIGAN C J, SULLIVAN A P, COLLETT JR J L, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals [J]. Geophysical Research Letters, 2010, 37(9): L09806. [54] LAI C Y, LIU Y C, MA J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions [J]. Atmospheric Environment, 2014, 91: 32-39. doi: 10.1016/j.atmosenv.2014.03.054 [55] PRATAP V, BIAN Q J, KIRAN S A, et al. Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results [J]. Atmospheric Environment, 2019, 199: 224-232. doi: 10.1016/j.atmosenv.2018.11.020 [56] KESSLER S H, SMITH J D, CHE D L, et al. Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan [J]. Environmental Science & Technology, 2010, 44(18): 7005-7010. [57] SANG X F, GENSCH I, KAMMER B, et al. Chemical stability of levoglucosan: An isotopic perspective [J]. Geophysical Research Letters, 2016, 43(10): 5419-5424. doi: 10.1002/2016GL069179 [58] BAI J, SUN X M, ZHANG C X, et al. The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning [J]. Chemosphere, 2013, 93(9): 2004-2010. doi: 10.1016/j.chemosphere.2013.07.021 [59] 黄通, 杨池, 张春燕, 等. 无机离子对左旋葡聚糖光降解的影响 [J]. 环境化学, 2021, 40(2): 624-631. HUANG T, YANG C, ZHANG C Y, et al. Effect of inorganic ions on photodegradation of Levoglucosan [J]. Environmental Chemistry, 2021, 40(2): 624-631(in Chinese).
[60] SLADE J H, KNOPF D A. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity [J]. Geophysical Research Letters, 2014, 41(14): 5297-5306. doi: 10.1002/2014GL060582 [61] HENNIGAN C J, MIRACOLO M A, ENGELHART G J, et al. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber [J]. Atmospheric Chemistry and Physics, 2011, 11(15): 7669-7686. doi: 10.5194/acp-11-7669-2011 [62] GENSCH I, SANG-ARLT X F, LAUMER W, et al. Using δ13C of levoglucosan as a chemical clock [J]. Environmental Science & Technology, 2018, 52(19): 11094-11101. [63] FAVEZ O, EL HADDAD I, PIOT C, et al. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine City (Grenoble, France) [J]. Atmospheric Chemistry and Physics, 2010, 10(12): 5295-5314. doi: 10.5194/acp-10-5295-2010 [64] YANG C, ZHANG C Y, LUO X S, et al. Isomerization and degradation of levoglucosan via the photo-Fenton process: Insights from aqueous-phase experiments and atmospheric particulate matter [J]. Environmental Science & Technology, 2020, 54(19): 11789-11797. [65] STYLER S A, DONALDSON D J. Heterogeneous photochemistry of oxalic acid on Mauritanian sand and Icelandic volcanic ash [J]. Environmental Science & Technology, 2012, 46(16): 8756-8763. [66] XU C Y, LIN X M, YIN S S, et al. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants [J]. Environmental Pollution, 2018, 243: 1274-1286. doi: 10.1016/j.envpol.2018.09.095