-
Feammox是在厌氧的环境条件下以及微生物的催化作用下,能够实现以Fe(Ⅲ)为电子受体,NH4+为电子供体,发生类似于Anammox的氨氧化反应,且最终实现Fe(Ⅲ)还原和NH4+的氧化过程,也称之为厌氧铁氨氧化过程。Feammox作为一种新型的生物脱氮反应,其自然反应广泛存在于湿地、河流及湖泊底泥、稻田、旱地土壤等不同环境体系中[1-4]。Feammox反应过程中NH4+被氧化生成NO2−、NO3−和N2后,氮的损失可通过反硝化或Anammox进行[5],且其可直接产生N2的途径使得氮循环路径极大程度的缩短,并导致生态系统氮的损失[4]。此过程不但对陆地生态系统和水生生态系统具有重大意义,对整个自然界间氮的循环机制产生更深层次的认知和理解。
Feammox是由微生物驱使的生物脱氮过程,Feammox菌是Feammox反应的驱动者。Huang等[5]在2015年首次分离出了能够同时发生铵氧化和铁还原的嗜酸微生物科细菌A6(Acidimicrobiaceae bacterium A6)。Huang等[6]研究发现,A6能够以无机碳(CO2)作为碳源将NH4+氧化的同时还原Fe(Ⅲ),对NH4+的去除率可达52%。A6对重金属也具有一定的耐受性,Gilson等[7]研究发现在铀(U)污染的湿地沉积物中依然存在A6,并且其在厌氧状态下能将U(VI)作为电子受体还原和氧化NH4+。相比于氨氧化细菌,Feammox菌在厌氧条件下反应,以Fe(Ⅲ)替代氧作为电子受体,因此不需供氧且产生较少的N2O[8]。根据Feammox的脱氮特点,相比于传统的硝化反硝化脱氮,Feammox工艺应用于污水中可实现自养脱氮,不需要外加碳源和曝气,减少污泥量的生成,对解决低碳氮比(C/N)废水反硝化过程碳源不足问题,以及含重金属废水的处理具有一定的可行性和理论依据。
本文综述了Feammox反应机理以及Fe(Ⅲ)还原过程中电子传递机制,并探讨Feammox对自然界中氮损失的贡献程度及对生态环境的影响,最后分析了Feammox在污水脱氮领域的探索和应用,对其未来发展趋势进行了总结和归纳。
铁氨氧化研究进展及在污水脱氮中的应用探索
Research progress of Feammox and its application in wastewater denitrification
-
摘要: 近几年来,铁氨氧化(Feammox)反应在不同的环境体系中相继被发现。Feammox反应是在厌氧环境中以及微生物的驱使作用下,NH4+和Fe(Ⅲ)分别作为电子供体和电子受体,Fe(Ⅲ)被还原生成为Fe(Ⅱ),而NH4+则转化生成为亚硝酸盐(NO2−)、硝酸盐(NO3−)和氮气(N2)几种不同形态的氮素。Feammox的发现进一步揭示了氮素在自然界循环中的新的转化途径,这种新的氮素转换途径给污水领域中的脱氮技术方法带来了全新视角。另外,Feammox能够和厌氧氨氧化(Anammox)和铁型反硝化(NDFO)耦合或者通过实现Fe(Ⅲ)和Fe(Ⅱ)之间的循环转化进行脱氮,使得Feammox成为了一种潜在的新型脱氮技术。通过综述Feammox的发展历程、反应机制、以及对自然界生态系统所产生的的影响和其所受影响的物理性因素,最后,进一步探讨Feammox在污水脱氮中的应用,并对其未来发展进行总结和展望。Abstract: The Feammox reaction has been discovered in different environmental systems in recent years.The Feammox reaction occurs in an anaerobic environment and under the action of microorganisms. During the reaction, ammonia and Fe(Ⅲ) act as electron donors and electron acceptors respectively, Fe(Ⅲ) is reduced to Fe(Ⅱ), while ammonia is converted Nitrogen is produced in the form of nitrite (NO2−), nitrate (NO3−) and nitrogen (N2).The discovery of Feammox further reveals a new conversion pathway of nitrogen in the natural cycle, and this new conversion pathway of nitrogen brings a new perspective to the technology of denitrification in the sewage field.This process can also be coupled with Anammox and Iron Type Denitrification (NDFO) or through the cyclic conversion between Fe(Ⅲ) and Fe(Ⅱ) for nitrogen removal, which makes Feammox a potential Nitrogen removal technology.the article summarizes the development process and reaction mechanism of Feammox, as well as the impact on the natural ecosystem and the physical factors affected, and finally discusses its application and future development in wastewater denitrification.
-
Key words:
- Feammox /
- Nitrogen cycle /
- Denitrification technology /
- Anammox
-
表 1 Feammox反应方程式及吉布斯自由能
Table 1. Feammox reaction equation and Gibbs free energy
电子受体
Electron acceptor化学反应方程式
Chemical reaction equation吉布斯自由能ΔG/( kJ·mol−1 )
Gibbs free energy参考文献
ReferenceFeOOH 6FeOOH+10H++NH4+—6Fe2++8H++NO2− −30.9 [9] 3Fe(OH)3+5H++NH4+—3Fe2++9H2O+0.5N2 −245 [4] Fe(OH)3 6Fe(OH)3+10H++NH4+—6Fe2++16H2O+NO2− −164 8Fe(OH)3+14H++NH4+—8Fe2++ 21H2O+ NO3− −207 Fe2O3·0.5H2O 3Fe2O3·0.5H2O+10H++NH4+—6Fe2++8.5H2O+NO2− ≤−145.08 [5] 表 2 铁氨氧化在自然界产生的氮损失
Table 2. Nitrogen loss in nature due to Feammox
样品
Sample来源地点
Source location铁氨氧化速率/(µg·g−1·d−1)
Feammox rate氮损失/(kg·ha-1·a-1)
Nitrogen losspH 文献
Reference热带旱地土壤 美国卢基洛山脉 0.19—0.45 — 4.25—6.15 [4] 丘陵水稻土壤 中国江西省金县
(28°10'—28°45'N,116°1'—116°34'E)0.17—0.59 7.8—61
(占国内常规施氮肥3.9%—31%)4.69—5.72 [2] 水稻土壤 江苏省金坛市(31°39'49.42”N , 119°28'4.12”E) 0.047—0.319 3.64(施肥土壤),15.97—24.91(不施肥土壤),
(占国内常规施氮肥7.99%—12.45%)6.25—6.76 [12] 潮间带湿地 中国上海崇明
(31°30'N,121°59'E)0.24—0.36 115—180
(占长江湿地无机氮的3.1%—4.9%)春潮(8.32—8.46),
小潮(8.48—8.75)[1] 太湖底泥 太湖梅梁湾
(31°31'39— 31°32' 30 N,120°10' 26—120°11' 70 E)0.29(无藻区底泥),
0.01—0.05(聚藻区底泥)— 7.26—7.43 [3] 河岸带土壤 太湖贡湖湾
(31°27'32—31°28'01N, 120°19'27—120°21'18E)0.25—0.29 — 6.87—7.42 [13] 菜地土壤 太湖流域宛山荡
(31°34'32—31°36'30N, 120°30'12—120°32'24E)0.06—0.23 —
(占产生氮气的7.3%—12.4%)4.50—5.21 [44] 农田土壤 太湖万山地区
(31°35′15—31°35′27 N,120°28′43—120°30′32 E)0.12—0.18 17.8
(占总氮损失的4.2%)7.23—7.43 [36] 表 3 不同反应装置和接种污泥下的氨氮转化效果
Table 3. Transformation effect of NH4+-N under different reactor and inoculated sludge
反应器类型
Reactor type废水类型
Wastewater type启动方式
Start modeFe(Ⅲ) Fe(Ⅲ)/(mg·L−1) pH 转化率/%
Removal rate文献
ReferenceASBR 模拟废水 接种二沉池污泥 FeCl3 27—33 7.4—7.6 53.8 [56] ASBR 模拟废水 接种Anammox污泥 FeCl3 12—24 7.4—7.6 52.73 [73] MBR 模拟废水 添加Feammox菌液 Fe(OH)3 573.2 4.5—5 41.49 [74] 生活污水 添加Feammox菌液 — 0.43—0.49 7.32 40.05 血清瓶 小榄江水 添加Feammox菌液 — 0.06—0.08 7.12 12.90 [75] 硫铁矿污水 添加Feammox菌液 — 13.43—13.55 4.5 44.64 -
[1] LI X F, HOU L J, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland [J]. Environmental Science & Technology, 2015, 49(19): 11560-11568. [2] DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence [J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. [3] 罗文齐, 徐梦珊, 李丹丹, 等. 蓝藻暴发对太湖梅梁湾底泥中铁氨氧化速率的影响 [J]. 环境科学学报, 2020, 40(8): 2828-2833. doi: 10.13671/j.hjkxxb.2020.0090 LUO W Q, XU M S, LI D D, et al. Effect of cyanobacteria outbreak on Feammox rates in the sediments of Meiliang Bay, Taihu Lake [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2828-2833(in Chinese). doi: 10.13671/j.hjkxxb.2020.0090
[4] YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction [J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530 [5] HUANG S, JAFFÉ P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions [J]. Biogeosciences, 2015, 12(3): 769-779. doi: 10.5194/bg-12-769-2015 [6] HUANG S, JAFFÉ P R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6 [J]. PLoS One, 2018, 13(4): e0194007. doi: 10.1371/journal.pone.0194007 [7] GILSON E R, HUANG S, JAFFÉ P R. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions [J]. Biodegradation, 2015, 26(6): 475-482. doi: 10.1007/s10532-015-9749-y [8] REN Y, HAO NGO H, GUO W S, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems [J]. Bioresource Technology, 2020, 297: 122491. doi: 10.1016/j.biortech.2019.122491 [9] CLÉMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils [J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328. doi: 10.1016/j.soilbio.2005.03.027 [10] SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation [J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72. doi: 10.1263/jbb.101.70 [11] YANG Y F, ZHANG Y B, LI Y, et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds [J]. Chemical Engineering Journal, 2018, 332: 711-716. doi: 10.1016/j.cej.2017.09.133 [12] JIA W L, WANG Q, ZHANG J, et al. Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process: Effect of iron [J]. Environmental Science and Pollution Research, 2016, 23(15): 15657-15664. doi: 10.1007/s11356-016-6758-2 [13] GE J Y, HUANG S, HAN I, et al. Degradation of Tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6 [J]. Environmental Pollution, 2019, 247: 248-255. doi: 10.1016/j.envpol.2019.01.066 [14] 钟小娟, 王亚军, 唐家桓, 等. 铁氨氧化: 新型的厌氧氨氧化过程及其生态意义 [J]. 福建农林大学学报(自然科学版), 2018, 47(1): 1-7. ZHONG X J, WANG Y J, TANG J H, et al. Feammox: a novel anammox process and ecological significance [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 1-7(in Chinese).
[15] ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction [J]. Environmental Science & Technology, 2016, 50(17): 9298-9307. [16] SHRESTHA J, RICH J J, EHRENFELD J G, et al. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils [J]. Soil Science, 2009, 174(3): 156-164. doi: 10.1097/SS.0b013e3181988fbf [17] 陈丹丹, 罗小波, 李芳柏. 穿梭体影响微生物群落胞外电子传递过程的研究 [J]. 生态环境学报, 2017, 26(8): 1419-1425. doi: 10.16258/j.cnki.1674-5906.2017.08.018 CHEN D D, LUO X B, LI F B. Effects of shuttles on extracellular electron transfer of microbial community [J]. Ecology and Environmental Sciences, 2017, 26(8): 1419-1425(in Chinese). doi: 10.16258/j.cnki.1674-5906.2017.08.018
[18] 张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展 [J]. 生态环境学报, 2021, 30(1): 213-222. ZHANG Y L, CHEN X L, WU Y D. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications [J]. Ecology and Environmental Sciences, 2021, 30(1): 213-222(in Chinese).
[19] 李诗阳. 铁氧化物强化厌氧生物处理过程中胞外电子传递及其调控[D]. 大连: 大连理工大学, 2019. LI S Y. Enhancement and regulation of extracellular electron transfer in anaerobic biological treatment by iron oxides[D]. Dalian, China: Dalian University of Technology, 2019(in Chinese).
[20] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0 [21] NEVIN K P, LOVLEY D R. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments [J]. Environmental Science & Technology, 2000, 34(12): 2472-2478. [22] KADEN J, ALEXANDER S G, SCHINK B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes [J]. Archives of Microbiology, 2002, 178(1): 53-58. doi: 10.1007/s00203-002-0425-3 [23] 马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递: 机制及应用 [J]. 化学进展, 2015, 27(12): 1833-1840. doi: 10.7536/PC150533 MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840(in Chinese). doi: 10.7536/PC150533
[24] 吴彦成, 顾鑫, 朱继涛, 等. 铁氨氧化污水生物脱氮技术的研究进展 [J]. 中国给水排水, 2020, 36(18): 38-44. WU Y C, GU X, ZHU J T, et al. Research advances of biological nitrogen removal from wastewater via Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation(feammox)process [J]. China Water & Wastewater, 2020, 36(18): 38-44(in Chinese).
[25] YANG Y F, PENG H, NIU J F, et al. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2, 6-disulfonate (AQDS) [J]. Environmental Pollution, 2019, 247: 973-979. doi: 10.1016/j.envpol.2019.02.008 [26] 廖宏燕, 宋诚, 万柳杨, 等. 螯合铁对厌氧铁氨氧化脱氮效能及微生物群落的影响 [J]. 环境科学, 2021, 42(9): 4366-4373. LIAO H Y, SONG C, WAN L Y, et al. Effect of chelated iron on nitrogen removal efficiency and microbial community structure in the anaerobic ferric ammonium oxidation [J]. Environmental Science, 2021, 42(9): 4366-4373(in Chinese).
[27] 柳广飞, 朱佳琪, 于华莉, 等. 电子穿梭体介导微生物还原铁氧化物的研究进展[J]. 地球科学, 2018, 43(增刊1): 157-170. LIU G F, ZHU J Q, YU H L, et al. Review on electron-shuttle-mediated microbial reduction of iron oxides minerals[J]. Earth Science, 2018, 43(Sup 1): 157-170(in Chinese).
[28] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology, 1999, 33(2): 372. [29] CHEN S S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar [J]. Scientific Reports, 2014, 4: 5019. [30] ZHOU G W, YANG X R, MARSHALL C W, et al. Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite enrichments [J]. Frontiers in Microbiology, 2017, 8: 589. [31] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals [J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344. [32] WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite [J]. Environmental Science & Technology, 2017, 51(17): 9709-9717. [33] GUAN Q S, ZHANG Y L, TAO Y R, et al. Graphene functions as a conductive bridge to promote anaerobic ammonium oxidation coupled with iron reduction in mangrove sediment slurries [J]. Geoderma, 2019, 352: 181-184. doi: 10.1016/j.geoderma.2019.05.044 [34] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle [J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120 [35] TAN X, XIE G J, NIE W B, et al. Fe(III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications [J]. Critical Reviews in Environmental Science and Technology, 2021: 1-33. [36] DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region [J]. Science of the Total Environment, 2019, 662: 600-606. doi: 10.1016/j.scitotenv.2019.01.231 [37] DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone [J]. Environmental Pollution, 2017, 231: 379-386. doi: 10.1016/j.envpol.2017.08.027 [38] DING B J, QIN Y B, LUO W Q, et al. Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China [J]. Chemosphere, 2020, 239: 124742. doi: 10.1016/j.chemosphere.2019.124742 [39] LI H, SU J Q, YANG X R, et al. RNA stable isotope probing of potential feammox population in paddy soil [J]. Environmental Science & Technology, 2019, 53(9): 4841-4849. [40] QIN Y B, DING B J, LI Z K, et al. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China [J]. Environmental Pollution, 2019, 252: 119-127. doi: 10.1016/j.envpol.2019.05.055 [41] YI B, WANG H H, ZHANG Q C, et al. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China [J]. Science of the Total Environment, 2019, 652: 1139-1147. doi: 10.1016/j.scitotenv.2018.10.195 [42] 邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响 [J]. 植物营养与肥料学报, 2020, 26(12): 2158-2167. ZOU X, YI B, ZHANG Q C, et al. Effects of long-term fertilization on the microbial community structure and the population of N cycle-related functional microorganism in paddy soil [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2158-2167(in Chinese).
[43] LIU D M, ZHANG S R, FEI C, et al. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils [J]. Applied Soil Ecology, 2021, 168: 104115. doi: 10.1016/j.apsoil.2021.104115 [44] 丁帮璟, 徐梦珊, 李丹丹, 等. 不同菜地土壤的铁氨氧化脱氮过程探究 [J]. 中国环境科学, 2020, 40(8): 3506-3511. doi: 10.3969/j.issn.1000-6923.2020.08.030 DING B J, XU M S, LI D D, et al. Investigation of nitrogen removal by feammox in soils from different vegetable fields [J]. China Environmental Science, 2020, 40(8): 3506-3511(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.030
[45] LI T, WANG H J, DONG W Y, et al. Performance of an anoxic reactor proposed before BAF: Effect of ferrous sulfate on enhancing denitrification during simultaneous phosphorous removal [J]. Chemical Engineering Journal, 2014, 248: 41-48. doi: 10.1016/j.cej.2014.03.033 [46] 张日钊, 李斐然, 袁倩倩, 等. 海洋氮循环过程及基于基因组代谢网络模型的预测 [J]. 微生物学报, 2020, 60(6): 1130-1147. ZHANG R Z, LI F R, YUAN Q Q, et al. Marine nitrogen cycle and prediction based on genome-scale metabolic network model [J]. Acta Microbiologica Sinica, 2020, 60(6): 1130-1147(in Chinese).
[47] RIOS-DEL TORO E E, CERVANTES F J. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments [J]. Biodegradation, 2016, 27(2/3): 107-118. [48] RIOS-DEL TORO E E, VALENZUELA E I, LÓPEZ-LOZANO N E, et al. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments [J]. Biodegradation, 2018, 29(5): 429-442. doi: 10.1007/s10532-018-9839-8 [49] LAUFER K, RØY H, JØRGENSEN B B, et al. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment [J]. Applied and Environmental Microbiology, 2016, 82(20): 6120-6131. doi: 10.1128/AEM.01570-16 [50] 覃云斌. 农业氮污染迁移过程中铁氨氧化脱氮机理与应用研究[D]. 南京: 南京大学, 2020. QIN Y B. Mechanism and application of feammox to nitrogen removal in the process of agricultural nitrogen pollution migration[D]. Nanjing: Nanjing University, 2020(in Chinese).
[51] 王彤, 汪涵, 周明达, 等. 污水脱氮功能微生物的组学研究进展 [J]. 微生物学通报, 2021, 48(12): 4844-4870. doi: 10.13344/j.microbiol.china.210386 WANG T, WANG H, ZHOU M D, et al. Advances in omics of functional microorganisms for nitrogen removal in wastewater [J]. Microbiology China, 2021, 48(12): 4844-4870(in Chinese). doi: 10.13344/j.microbiol.china.210386
[52] LI X, HUANG Y, LIU H W, et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge [J]. Journal of Environmental Sciences, 2018, 64: 42-50. doi: 10.1016/j.jes.2017.01.002 [53] PARK W, NAM Y K, LEE M J, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3+ medium [J]. Biotechnology and Bioprocess Engineering, 2009, 14(5): 680-685. doi: 10.1007/s12257-009-0026-y [54] 刘恒蔚, 毕玮, 李祥, 等. 厌氧氨氧化与铁氨氧化反应器功能微生物对比研究 [J]. 环境科学与技术, 2020, 43(6): 39-45. doi: 10.19672/j.cnki.1003-6504.2020.06.005 LIU H W, BI W, LI X, et al. Comparative analysis of functional bacteria communities in feammox and anammox reactors [J]. Environmental Science & Technology, 2020, 43(6): 39-45(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.06.005
[55] 杨朋兵. Feammox反应机理及功能微生物[D]. 苏州: 苏州科技大学, 2016. YANG P B. Study on reaction mechanism of feammox and the functional microbial community[D]. Suzhou, China: Suzhou University of Science and Technology, 2016(in Chinese).
[56] 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究 [J]. 化工学报, 2020, 71(5): 2265-2272,1935. WU Y X, ZENG W, LIU H, et al. Exploration of nitrogen transformation pathway in Feammox [J]. CIESC Journal, 2020, 71(5): 2265-2272,1935(in Chinese).
[57] ZHAO R, ZHANG H M, LI Y F, et al. Research of iron reduction and the iron reductase localization of anammox bacteria [J]. Current Microbiology, 2014, 69(6): 880-887. doi: 10.1007/s00284-014-0668-7 [58] LIU Y W, NI B J. Appropriate Fe (II) addition significantly enhances anaerobic ammonium oxidation (anammox) activity through improving the bacterial growth rate [J]. Scientific Reports, 2015, 5: 8204. doi: 10.1038/srep08204 [59] DING J, SEOW W, ZHOU J Z, et al. Effects of Fe(II) on anammox community activity and physiologic response [J]. Frontiers of Environmental Science & Engineering, 2020, 15(1): 1-11. [60] BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration [J]. Bioresource Technology, 2014, 170: 506-512. doi: 10.1016/j.biortech.2014.07.106 [61] BI Z, ZHANG W J, SONG G, et al. Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: A novel prospective scheme for autotrophic nitrogen removal [J]. Science of the Total Environment, 2019, 692: 582-588. doi: 10.1016/j.scitotenv.2019.07.078 [62] QIAO S, BI Z, ZHOU J T, et al. Long term effects of divalent ferrous ion on the activity of anammox biomass [J]. Bioresource Technology, 2013, 142: 490-497. doi: 10.1016/j.biortech.2013.05.062 [63] 王海月, 彭玲, 毛念佳, 等. 三价铁对有机物存在下厌氧氨氧化脱氮的影响 [J]. 中国环境科学, 2021, 41(4): 1672-1680. doi: 10.3969/j.issn.1000-6923.2021.04.020 WANG H Y, PENG L, MAO N J, et al. Effect of Fe3+ on nitrogen removal of Anammox in the presence of organic matter [J]. China Environmental Science, 2021, 41(4): 1672-1680(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.04.020
[64] KLUEGLEIN N, KAPPLER A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation [J]. Geobiology, 2013, 11(2): 180-190. doi: 10.1111/gbi.12019 [65] OSHIKI M, ISHII S, YOSHIDA K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria [J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093. doi: 10.1128/AEM.00743-13 [66] LI X, YUAN Y, HUANG Y, et al. A novel method of simultaneous NH4+ and NO3− removal using Fe cycling as a catalyst: Feammox coupled with NAFO [J]. Science of the Total Environment, 2018, 631/632: 153-157. doi: 10.1016/j.scitotenv.2018.03.018 [67] YANG Y F, XIAO C C, LU J H, et al. Fe(III)/Fe(II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor [J]. Water Research, 2020, 172: 115528. doi: 10.1016/j.watres.2020.115528 [68] ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter [J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. doi: 10.1007/s00449-015-1511-7 [69] COBY A J, PICARDAL F W. Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: Evidence of a reaction between NO2- and cell surface-bound Fe2+ [J]. Applied and Environmental Microbiology, 2005, 71(9): 5267-5274. doi: 10.1128/AEM.71.9.5267-5274.2005 [70] CHAKRABORTY A, PICARDAL F. Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species [J]. World Journal of Microbiology and Biotechnology, 2013, 29(4): 617-623. doi: 10.1007/s11274-012-1217-9 [71] YANG Y F, XIAO C C, YU Q, et al. Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria [J]. Water Research, 2021, 189: 116626. doi: 10.1016/j.watres.2020.116626 [72] 李冠恒, 王宇佳, 史超, 等. 厌氧铁氨氧化工艺特性与控制策略的研究进展 [J]. 工业水处理, 2021, 41(8): 34-40. doi: 10.19965/j.cnki.iwt.2020-0994 LI G H, WANG Y J, SHI C, et al. Research progress of Feammox's processing characteristics and control strategies [J]. Industrial Water Treatment, 2021, 41(8): 34-40(in Chinese). doi: 10.19965/j.cnki.iwt.2020-0994
[73] 姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究 [J]. 环境科学学报, 2019, 39(9): 2953-2963. doi: 10.13671/j.hjkxxb.2019.0201 YAO H N, ZHANG L Q, LI S G, et al. Study on the factors affecting simulated landfill leachate treatment by anaerobic ferric ammonia oxidation [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2953-2963(in Chinese). doi: 10.13671/j.hjkxxb.2019.0201
[74] 吴胤, 陈琛, 毛小云, 等. 基于feammox的生物膜反应器性能研究 [J]. 中国环境科学, 2017, 37(9): 3353-3362. doi: 10.3969/j.issn.1000-6923.2017.09.019 WU Y, CHEN C, MAO X Y, et al. Study on performance of the Feammox biofilm-reactor [J]. China Environmental Science, 2017, 37(9): 3353-3362(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.019
[75] 李海晖. 厌氧铁氨氧化反应在三类污水中对氨去除的探索[D]. 长沙: 湖南农业大学, 2017. LI H H. Ammonium oxidation under iron-reducing conditions in three different wastewaters[D]. Changsha: Hunan Agricultural University, 2017(in Chinese).
[76] WANG B, SUN B, LIU Y L, et al. Effect of feammox on landfill leachate treatment and its influence on pH [J]. IOP Conference Series:Earth and Environmental Science, 2021, 770(1): 012007. doi: 10.1088/1755-1315/770/1/012007 [77] 刘志文, 陈琛, 彭晓春, 等. 磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响 [J]. 环境科学, 2018, 39(10): 4601-4611. doi: 10.13227/j.hjkx.201801156 LIU Z W, CHEN C, PENG X C, et al. Effect of magnetic chitosan hydrogel beads with immobilized feammox bacteria on the removal of ammonium from wastewater [J]. Environmental Science, 2018, 39(10): 4601-4611(in Chinese). doi: 10.13227/j.hjkx.201801156
[78] YANG Y F, ZHAO Z Q, ZHANG Y B. Anaerobic ammonium removal pathway driven by the Fe(II)/Fe(III) cycle through intermittent aeration [J]. Environmental Science & Technology, 2021, 55(11): 7615-7623. [79] LE C P, NGUYEN H T, NGUYEN T D, et al. Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment [J]. Scientific Reports, 2021, 11: 784. doi: 10.1038/s41598-020-80057-y [80] ZHU T T, LAI W X, ZHANG Y B, et al. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds [J]. Science of the Total Environment, 2022, 804: 149965. doi: 10.1016/j.scitotenv.2021.149965 [81] ZHU J X, LI T, LIAO C M, et al. A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment [J]. Science of the Total Environment, 2021, 790: 148038. doi: 10.1016/j.scitotenv.2021.148038 [82] ZHU T T, ZHANG Y B, LIU Y W, et al. Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process [J]. Science of the Total Environment, 2021, 751: 141703. doi: 10.1016/j.scitotenv.2020.141703 [83] CHAN-PACHECO C R, VALENZUELA E I, CERVANTES F J, et al. Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities [J]. Science of the Total Environment, 2021, 797: 149228. doi: 10.1016/j.scitotenv.2021.149228