[1] LI X F, HOU L J, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland [J]. Environmental Science & Technology, 2015, 49(19): 11560-11568.
[2] DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence [J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.
[3] 罗文齐, 徐梦珊, 李丹丹, 等. 蓝藻暴发对太湖梅梁湾底泥中铁氨氧化速率的影响 [J]. 环境科学学报, 2020, 40(8): 2828-2833. doi: 10.13671/j.hjkxxb.2020.0090 LUO W Q, XU M S, LI D D, et al. Effect of cyanobacteria outbreak on Feammox rates in the sediments of Meiliang Bay, Taihu Lake [J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2828-2833(in Chinese). doi: 10.13671/j.hjkxxb.2020.0090
[4] YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction [J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530
[5] HUANG S, JAFFÉ P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions [J]. Biogeosciences, 2015, 12(3): 769-779. doi: 10.5194/bg-12-769-2015
[6] HUANG S, JAFFÉ P R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6 [J]. PLoS One, 2018, 13(4): e0194007. doi: 10.1371/journal.pone.0194007
[7] GILSON E R, HUANG S, JAFFÉ P R. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions [J]. Biodegradation, 2015, 26(6): 475-482. doi: 10.1007/s10532-015-9749-y
[8] REN Y, HAO NGO H, GUO W S, et al. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems [J]. Bioresource Technology, 2020, 297: 122491. doi: 10.1016/j.biortech.2019.122491
[9] CLÉMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils [J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328. doi: 10.1016/j.soilbio.2005.03.027
[10] SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation [J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72. doi: 10.1263/jbb.101.70
[11] YANG Y F, ZHANG Y B, LI Y, et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(III) compounds [J]. Chemical Engineering Journal, 2018, 332: 711-716. doi: 10.1016/j.cej.2017.09.133
[12] JIA W L, WANG Q, ZHANG J, et al. Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process: Effect of iron [J]. Environmental Science and Pollution Research, 2016, 23(15): 15657-15664. doi: 10.1007/s11356-016-6758-2
[13] GE J Y, HUANG S, HAN I, et al. Degradation of Tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6 [J]. Environmental Pollution, 2019, 247: 248-255. doi: 10.1016/j.envpol.2019.01.066
[14] 钟小娟, 王亚军, 唐家桓, 等. 铁氨氧化: 新型的厌氧氨氧化过程及其生态意义 [J]. 福建农林大学学报(自然科学版), 2018, 47(1): 1-7. ZHONG X J, WANG Y J, TANG J H, et al. Feammox: a novel anammox process and ecological significance [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(1): 1-7(in Chinese).
[15] ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction [J]. Environmental Science & Technology, 2016, 50(17): 9298-9307.
[16] SHRESTHA J, RICH J J, EHRENFELD J G, et al. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils [J]. Soil Science, 2009, 174(3): 156-164. doi: 10.1097/SS.0b013e3181988fbf
[17] 陈丹丹, 罗小波, 李芳柏. 穿梭体影响微生物群落胞外电子传递过程的研究 [J]. 生态环境学报, 2017, 26(8): 1419-1425. doi: 10.16258/j.cnki.1674-5906.2017.08.018 CHEN D D, LUO X B, LI F B. Effects of shuttles on extracellular electron transfer of microbial community [J]. Ecology and Environmental Sciences, 2017, 26(8): 1419-1425(in Chinese). doi: 10.16258/j.cnki.1674-5906.2017.08.018
[18] 张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展 [J]. 生态环境学报, 2021, 30(1): 213-222. ZHANG Y L, CHEN X L, WU Y D. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications [J]. Ecology and Environmental Sciences, 2021, 30(1): 213-222(in Chinese).
[19] 李诗阳. 铁氧化物强化厌氧生物处理过程中胞外电子传递及其调控[D]. 大连: 大连理工大学, 2019. LI S Y. Enhancement and regulation of extracellular electron transfer in anaerobic biological treatment by iron oxides[D]. Dalian, China: Dalian University of Technology, 2019(in Chinese).
[20] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0
[21] NEVIN K P, LOVLEY D R. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments [J]. Environmental Science & Technology, 2000, 34(12): 2472-2478.
[22] KADEN J, ALEXANDER S G, SCHINK B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes [J]. Archives of Microbiology, 2002, 178(1): 53-58. doi: 10.1007/s00203-002-0425-3
[23] 马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递: 机制及应用 [J]. 化学进展, 2015, 27(12): 1833-1840. doi: 10.7536/PC150533 MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840(in Chinese). doi: 10.7536/PC150533
[24] 吴彦成, 顾鑫, 朱继涛, 等. 铁氨氧化污水生物脱氮技术的研究进展 [J]. 中国给水排水, 2020, 36(18): 38-44. WU Y C, GU X, ZHU J T, et al. Research advances of biological nitrogen removal from wastewater via Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation(feammox)process [J]. China Water & Wastewater, 2020, 36(18): 38-44(in Chinese).
[25] YANG Y F, PENG H, NIU J F, et al. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2, 6-disulfonate (AQDS) [J]. Environmental Pollution, 2019, 247: 973-979. doi: 10.1016/j.envpol.2019.02.008
[26] 廖宏燕, 宋诚, 万柳杨, 等. 螯合铁对厌氧铁氨氧化脱氮效能及微生物群落的影响 [J]. 环境科学, 2021, 42(9): 4366-4373. LIAO H Y, SONG C, WAN L Y, et al. Effect of chelated iron on nitrogen removal efficiency and microbial community structure in the anaerobic ferric ammonium oxidation [J]. Environmental Science, 2021, 42(9): 4366-4373(in Chinese).
[27] 柳广飞, 朱佳琪, 于华莉, 等. 电子穿梭体介导微生物还原铁氧化物的研究进展[J]. 地球科学, 2018, 43(增刊1): 157-170. LIU G F, ZHU J Q, YU H L, et al. Review on electron-shuttle-mediated microbial reduction of iron oxides minerals[J]. Earth Science, 2018, 43(Sup 1): 157-170(in Chinese).
[28] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms [J]. Environmental Science & Technology, 1999, 33(2): 372.
[29] CHEN S S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar [J]. Scientific Reports, 2014, 4: 5019.
[30] ZHOU G W, YANG X R, MARSHALL C W, et al. Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite enrichments [J]. Frontiers in Microbiology, 2017, 8: 589.
[31] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals [J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344.
[32] WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite [J]. Environmental Science & Technology, 2017, 51(17): 9709-9717.
[33] GUAN Q S, ZHANG Y L, TAO Y R, et al. Graphene functions as a conductive bridge to promote anaerobic ammonium oxidation coupled with iron reduction in mangrove sediment slurries [J]. Geoderma, 2019, 352: 181-184. doi: 10.1016/j.geoderma.2019.05.044
[34] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle [J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120
[35] TAN X, XIE G J, NIE W B, et al. Fe(III)-mediated anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and potential applications [J]. Critical Reviews in Environmental Science and Technology, 2021: 1-33.
[36] DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region [J]. Science of the Total Environment, 2019, 662: 600-606. doi: 10.1016/j.scitotenv.2019.01.231
[37] DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone [J]. Environmental Pollution, 2017, 231: 379-386. doi: 10.1016/j.envpol.2017.08.027
[38] DING B J, QIN Y B, LUO W Q, et al. Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China [J]. Chemosphere, 2020, 239: 124742. doi: 10.1016/j.chemosphere.2019.124742
[39] LI H, SU J Q, YANG X R, et al. RNA stable isotope probing of potential feammox population in paddy soil [J]. Environmental Science & Technology, 2019, 53(9): 4841-4849.
[40] QIN Y B, DING B J, LI Z K, et al. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China [J]. Environmental Pollution, 2019, 252: 119-127. doi: 10.1016/j.envpol.2019.05.055
[41] YI B, WANG H H, ZHANG Q C, et al. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China [J]. Science of the Total Environment, 2019, 652: 1139-1147. doi: 10.1016/j.scitotenv.2018.10.195
[42] 邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响 [J]. 植物营养与肥料学报, 2020, 26(12): 2158-2167. ZOU X, YI B, ZHANG Q C, et al. Effects of long-term fertilization on the microbial community structure and the population of N cycle-related functional microorganism in paddy soil [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2158-2167(in Chinese).
[43] LIU D M, ZHANG S R, FEI C, et al. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils [J]. Applied Soil Ecology, 2021, 168: 104115. doi: 10.1016/j.apsoil.2021.104115
[44] 丁帮璟, 徐梦珊, 李丹丹, 等. 不同菜地土壤的铁氨氧化脱氮过程探究 [J]. 中国环境科学, 2020, 40(8): 3506-3511. doi: 10.3969/j.issn.1000-6923.2020.08.030 DING B J, XU M S, LI D D, et al. Investigation of nitrogen removal by feammox in soils from different vegetable fields [J]. China Environmental Science, 2020, 40(8): 3506-3511(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.030
[45] LI T, WANG H J, DONG W Y, et al. Performance of an anoxic reactor proposed before BAF: Effect of ferrous sulfate on enhancing denitrification during simultaneous phosphorous removal [J]. Chemical Engineering Journal, 2014, 248: 41-48. doi: 10.1016/j.cej.2014.03.033
[46] 张日钊, 李斐然, 袁倩倩, 等. 海洋氮循环过程及基于基因组代谢网络模型的预测 [J]. 微生物学报, 2020, 60(6): 1130-1147. ZHANG R Z, LI F R, YUAN Q Q, et al. Marine nitrogen cycle and prediction based on genome-scale metabolic network model [J]. Acta Microbiologica Sinica, 2020, 60(6): 1130-1147(in Chinese).
[47] RIOS-DEL TORO E E, CERVANTES F J. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments [J]. Biodegradation, 2016, 27(2/3): 107-118.
[48] RIOS-DEL TORO E E, VALENZUELA E I, LÓPEZ-LOZANO N E, et al. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments [J]. Biodegradation, 2018, 29(5): 429-442. doi: 10.1007/s10532-018-9839-8
[49] LAUFER K, RØY H, JØRGENSEN B B, et al. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment [J]. Applied and Environmental Microbiology, 2016, 82(20): 6120-6131. doi: 10.1128/AEM.01570-16
[50] 覃云斌. 农业氮污染迁移过程中铁氨氧化脱氮机理与应用研究[D]. 南京: 南京大学, 2020. QIN Y B. Mechanism and application of feammox to nitrogen removal in the process of agricultural nitrogen pollution migration[D]. Nanjing: Nanjing University, 2020(in Chinese).
[51] 王彤, 汪涵, 周明达, 等. 污水脱氮功能微生物的组学研究进展 [J]. 微生物学通报, 2021, 48(12): 4844-4870. doi: 10.13344/j.microbiol.china.210386 WANG T, WANG H, ZHOU M D, et al. Advances in omics of functional microorganisms for nitrogen removal in wastewater [J]. Microbiology China, 2021, 48(12): 4844-4870(in Chinese). doi: 10.13344/j.microbiol.china.210386
[52] LI X, HUANG Y, LIU H W, et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge [J]. Journal of Environmental Sciences, 2018, 64: 42-50. doi: 10.1016/j.jes.2017.01.002
[53] PARK W, NAM Y K, LEE M J, et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3+ medium [J]. Biotechnology and Bioprocess Engineering, 2009, 14(5): 680-685. doi: 10.1007/s12257-009-0026-y
[54] 刘恒蔚, 毕玮, 李祥, 等. 厌氧氨氧化与铁氨氧化反应器功能微生物对比研究 [J]. 环境科学与技术, 2020, 43(6): 39-45. doi: 10.19672/j.cnki.1003-6504.2020.06.005 LIU H W, BI W, LI X, et al. Comparative analysis of functional bacteria communities in feammox and anammox reactors [J]. Environmental Science & Technology, 2020, 43(6): 39-45(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.06.005
[55] 杨朋兵. Feammox反应机理及功能微生物[D]. 苏州: 苏州科技大学, 2016. YANG P B. Study on reaction mechanism of feammox and the functional microbial community[D]. Suzhou, China: Suzhou University of Science and Technology, 2016(in Chinese).
[56] 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究 [J]. 化工学报, 2020, 71(5): 2265-2272,1935. WU Y X, ZENG W, LIU H, et al. Exploration of nitrogen transformation pathway in Feammox [J]. CIESC Journal, 2020, 71(5): 2265-2272,1935(in Chinese).
[57] ZHAO R, ZHANG H M, LI Y F, et al. Research of iron reduction and the iron reductase localization of anammox bacteria [J]. Current Microbiology, 2014, 69(6): 880-887. doi: 10.1007/s00284-014-0668-7
[58] LIU Y W, NI B J. Appropriate Fe (II) addition significantly enhances anaerobic ammonium oxidation (anammox) activity through improving the bacterial growth rate [J]. Scientific Reports, 2015, 5: 8204. doi: 10.1038/srep08204
[59] DING J, SEOW W, ZHOU J Z, et al. Effects of Fe(II) on anammox community activity and physiologic response [J]. Frontiers of Environmental Science & Engineering, 2020, 15(1): 1-11.
[60] BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration [J]. Bioresource Technology, 2014, 170: 506-512. doi: 10.1016/j.biortech.2014.07.106
[61] BI Z, ZHANG W J, SONG G, et al. Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: A novel prospective scheme for autotrophic nitrogen removal [J]. Science of the Total Environment, 2019, 692: 582-588. doi: 10.1016/j.scitotenv.2019.07.078
[62] QIAO S, BI Z, ZHOU J T, et al. Long term effects of divalent ferrous ion on the activity of anammox biomass [J]. Bioresource Technology, 2013, 142: 490-497. doi: 10.1016/j.biortech.2013.05.062
[63] 王海月, 彭玲, 毛念佳, 等. 三价铁对有机物存在下厌氧氨氧化脱氮的影响 [J]. 中国环境科学, 2021, 41(4): 1672-1680. doi: 10.3969/j.issn.1000-6923.2021.04.020 WANG H Y, PENG L, MAO N J, et al. Effect of Fe3+ on nitrogen removal of Anammox in the presence of organic matter [J]. China Environmental Science, 2021, 41(4): 1672-1680(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.04.020
[64] KLUEGLEIN N, KAPPLER A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation [J]. Geobiology, 2013, 11(2): 180-190. doi: 10.1111/gbi.12019
[65] OSHIKI M, ISHII S, YOSHIDA K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria [J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093. doi: 10.1128/AEM.00743-13
[66] LI X, YUAN Y, HUANG Y, et al. A novel method of simultaneous NH4+ and NO3removal using Fe cycling as a catalyst: Feammox coupled with NAFO [J]. Science of the Total Environment, 2018, 631/632: 153-157. doi: 10.1016/j.scitotenv.2018.03.018
[67] YANG Y F, XIAO C C, LU J H, et al. Fe(III)/Fe(II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor [J]. Water Research, 2020, 172: 115528. doi: 10.1016/j.watres.2020.115528
[68] ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter [J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. doi: 10.1007/s00449-015-1511-7
[69] COBY A J, PICARDAL F W. Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: Evidence of a reaction between NO2- and cell surface-bound Fe2+ [J]. Applied and Environmental Microbiology, 2005, 71(9): 5267-5274. doi: 10.1128/AEM.71.9.5267-5274.2005
[70] CHAKRABORTY A, PICARDAL F. Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species [J]. World Journal of Microbiology and Biotechnology, 2013, 29(4): 617-623. doi: 10.1007/s11274-012-1217-9
[71] YANG Y F, XIAO C C, YU Q, et al. Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria [J]. Water Research, 2021, 189: 116626. doi: 10.1016/j.watres.2020.116626
[72] 李冠恒, 王宇佳, 史超, 等. 厌氧铁氨氧化工艺特性与控制策略的研究进展 [J]. 工业水处理, 2021, 41(8): 34-40. doi: 10.19965/j.cnki.iwt.2020-0994 LI G H, WANG Y J, SHI C, et al. Research progress of Feammox's processing characteristics and control strategies [J]. Industrial Water Treatment, 2021, 41(8): 34-40(in Chinese). doi: 10.19965/j.cnki.iwt.2020-0994
[73] 姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究 [J]. 环境科学学报, 2019, 39(9): 2953-2963. doi: 10.13671/j.hjkxxb.2019.0201 YAO H N, ZHANG L Q, LI S G, et al. Study on the factors affecting simulated landfill leachate treatment by anaerobic ferric ammonia oxidation [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 2953-2963(in Chinese). doi: 10.13671/j.hjkxxb.2019.0201
[74] 吴胤, 陈琛, 毛小云, 等. 基于feammox的生物膜反应器性能研究 [J]. 中国环境科学, 2017, 37(9): 3353-3362. doi: 10.3969/j.issn.1000-6923.2017.09.019 WU Y, CHEN C, MAO X Y, et al. Study on performance of the Feammox biofilm-reactor [J]. China Environmental Science, 2017, 37(9): 3353-3362(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.019
[75] 李海晖. 厌氧铁氨氧化反应在三类污水中对氨去除的探索[D]. 长沙: 湖南农业大学, 2017. LI H H. Ammonium oxidation under iron-reducing conditions in three different wastewaters[D]. Changsha: Hunan Agricultural University, 2017(in Chinese).
[76] WANG B, SUN B, LIU Y L, et al. Effect of feammox on landfill leachate treatment and its influence on pH [J]. IOP Conference Series:Earth and Environmental Science, 2021, 770(1): 012007. doi: 10.1088/1755-1315/770/1/012007
[77] 刘志文, 陈琛, 彭晓春, 等. 磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响 [J]. 环境科学, 2018, 39(10): 4601-4611. doi: 10.13227/j.hjkx.201801156 LIU Z W, CHEN C, PENG X C, et al. Effect of magnetic chitosan hydrogel beads with immobilized feammox bacteria on the removal of ammonium from wastewater [J]. Environmental Science, 2018, 39(10): 4601-4611(in Chinese). doi: 10.13227/j.hjkx.201801156
[78] YANG Y F, ZHAO Z Q, ZHANG Y B. Anaerobic ammonium removal pathway driven by the Fe(II)/Fe(III) cycle through intermittent aeration [J]. Environmental Science & Technology, 2021, 55(11): 7615-7623.
[79] LE C P, NGUYEN H T, NGUYEN T D, et al. Ammonium and organic carbon co-removal under feammox-coupled-with-heterotrophy condition as an efficient approach for nitrogen treatment [J]. Scientific Reports, 2021, 11: 784. doi: 10.1038/s41598-020-80057-y
[80] ZHU T T, LAI W X, ZHANG Y B, et al. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds [J]. Science of the Total Environment, 2022, 804: 149965. doi: 10.1016/j.scitotenv.2021.149965
[81] ZHU J X, LI T, LIAO C M, et al. A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment [J]. Science of the Total Environment, 2021, 790: 148038. doi: 10.1016/j.scitotenv.2021.148038
[82] ZHU T T, ZHANG Y B, LIU Y W, et al. Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process [J]. Science of the Total Environment, 2021, 751: 141703. doi: 10.1016/j.scitotenv.2020.141703
[83] CHAN-PACHECO C R, VALENZUELA E I, CERVANTES F J, et al. Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities [J]. Science of the Total Environment, 2021, 797: 149228. doi: 10.1016/j.scitotenv.2021.149228