-
土壤是陆地生态系统物质循环和能量传递的主要介质[1],也是人类生存和农业生产的重要资源。近年来,农田土壤重金属污染受到环境研究者的高度关注[2]。农田土壤重金属污染一方面是由于城市化、工业化和集约化农业的快速发展,重金属由工业“三废”、交通尾气、污水灌溉、化肥及农药使用等途径进入土壤环境,导致农田土壤重金属污染问题日益突出[3],中国农田土壤重金属点位超标率达19.4%,主要重金属污染元素为镉(Cd)、汞(Hg)、砷(As)、铅(Pb)和铬(Cr)等[4]。另一方面,土壤类型、地貌地形等自然因素也影响土壤环境质量,如喀斯特地区土壤重金属元素主要来源于区域高地质背景值和成土作用[5]。自然因素和人为活动共同增加了表层土壤中重金属的累积效应,而重金属的赋存形态与土壤环境生态风险又存在复杂的关系[6],因此,在评估土壤重金属环境质量时必须综合关注人为因素、自然因素(地形地貌、土壤类型)以及重金属赋存形态等。
目前国内外学者针对土壤重金属污染所开展的研究,多是综合统计学、地理学、地质学、生态学等学科知识,以工业区[7]、农业区[8]、矿区[9]、公园[10]等作为研究区域,采用统计学方法、数学模型、地理信息系统空间分析技术等分析重金属空间分布规律、污染程度、富集程度和生态风险评估,采用定性和定量方法确定污染来源,探究重金属的有效防治措施[11]。
银川平原地处我国西北干旱地区,位于贺兰山与鄂尔多斯高原之间[12],自东向西包括河漫滩、一级阶地、二级阶地、山前洪积扇等多个地貌类型,土地的利用方式多为农业耕地。由于长期的农业耕作与灌溉,大量的化肥、农药以及水体中的污染物被带入土壤,致使多种重金属在土壤中富集。因此,本文对银川平原按地貌单元对土壤进行采样,分析土壤中8种重金属5种赋存形态及其空间分布,探索可能的污染来源,从潜在生态风险、生物有效指数以及土壤RAC(risk assessment code)风险等方面对其评价,探明土壤重金属生态风险与地貌类型的空间关系,以期为银川平原重金属污染防控提供科学依据。
银川平原不同地貌单元土壤重金属的分布特征及其风险评价
Distribution characteristics and risk assessment of soil heavy metals in different geomorphological units of Yinchuan Plain
-
摘要: 为了解银川平原不同地貌单元土壤重金属不同形态分布特征及生态风险状况,按一级阶地、二级阶地和山前洪积扇的3种类型进行采样. 利用X射线衍射仪(XRD)分析土壤的矿物组成,采用Tessier法分析As、Cd、Cr、Cu、Hg、Ni、Pb 和 Zn总量及赋存形态特征,利用潜在生态风险指数法、生物有效指数法和风险评估编码法对土壤生态风险进行评价,并采用主成分分析对重金属来源解析. 结果表明,Cr、Zn、Hg的含量一级阶地>二级阶地>山前洪积扇,Ni、Cu、Cd的含量山前洪积扇>二级阶地>一级阶地,Pb和As的含量山前洪积扇>一级阶地>二级阶地. 不同形态重金属的含量规律为,Ni、Pb、Cu可交换态和铁锰态均为山前洪积扇>二级阶地>一级阶地,Zn和Pb碳酸盐态与有机结合态为一级阶地>二级阶地>山前洪积扇,Cr、Ni、Pb和Cu残渣态为二级阶地>一级阶地>山前洪积扇. 潜在生态风险评价法结果表明Hg和Cd分别处在高度和中度生态危害水平,其余各金属均处于轻度危害水平,依次为As、Pb、Zn、Cu、Ni、Cr. 生态有效指数法和风险评估编码法分析结果相同:Cd为中等风险,其他各元素均为低风险或无风险状态. 评价结果表明应重点关注Hg和Cd引起的污染. 主成分分析结果表明,土壤中的Cu、Pb、Cd、As可能与农业施肥、施药等人为活动有关,而Cr、Ni、Zn可能与岩石风化等自然过程有关.Abstract: In order to understand the distribution characteristics and ecological risk of heavy metals in different geomorphic units of Yinchuan Plain, the samples were taken according to three types of first terrace, second terrace and piedmont alluvial fan. The mineral composition of soil was analyzed by X-ray diffraction (XRD). The total amount and speciation of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were analyzed by Tessier method. The potential ecological risk index,biological effectiveness index and risk assessment coding method were used to evaluate the soil ecological risk, and principal component analysis was used to analyze the sources of heavy metals. The results showed that the order of the content of Cr, Zn, and Hg was: first terrace> second terrace> piedmont alluvial fan. The content of Ni, Cu, and Cd was: piedmont alluvial fan> second terrace> first terrace. The order of Pb and As content was: piedmont alluvial fan>first terrace>second terrace. Different forms of heavy metals have different content rules. The contents of Ni, Pb, Cu exchangeable states and iron-manganese states were all piedmont alluvial fan>second terrace>first terrace. The carbonate and organic bound content of Zn and Pb are first terrace> second terrace> piedmont alluvial fan, the content of Cr, Ni, Pb and Cu residue states was second terrace> first terrace> piedmont alluvial fan. The potential ecological risk assessment method showed that Hg and Cd were at high and moderate ecological risk levels, respectively, and the other metals were at mild risk levels, followed by As, Pb, Zn, Cu, Ni, Cr. Both the ecological effective index method and risk assessment coding method showed that Cd was medium risk, and other elements were low risk or no risk. The evaluation results suggested that the pollution caused by Hg and Cd should be paid more attention. The principal component analysis results showed that Cu, Pb, Cd and As in soil might be related to human activities, such as agricultural fertilization and pesticide application, while Cr, Ni and Zn might be related to natural processes such as rock weathering.
-
表 1 富集因子和污染等级
Table 1. Enrichment factor and pollution level
富集因子
Enrichment factorEF≤1.5 1.5<EF≤5 5<EF≤20 20<EF≤40 富集程度 无或低富集 中度富集 偏高富集 高富集 污染程度 无或低 中度 偏高 高 表 2 银川平原不同地貌单元矿物组成(%)、pH及TOC含量(%)
Table 2. Statistic results of mineral composition (%),pH value and TOC content (%) of different geomorphic units in Yinchuan Plain
地貌单元
Geomorphological unit石英
Quartz方解石
Calcite钠长石
Albite白云母
Muscovite伊利石
Illite绿泥石
ChloritepH TOC 一级阶地 32.26 8.16 12.06 31.26 7.96 8.32 8.39 29.00 二级阶地 32.52 8.96 14.32 24.02 8.49 7.07 8.07 21.74 山前洪积扇 39.16 11.18 19.58 18.38 6.50 3.62 8.17 7.00 银川平原 34.65 9.43 15.32 24.55 7.65 6.34 8.21 19.23 表 3 土壤主要氧化物含量统计结果(%)
Table 3. Statistic results of major oxide concentration (%)
地貌单元
Geomorphological unitSiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O 一级阶地 60.46 15.14 4.55 10.32 3.25 3.02 1.71 二级阶地 59.23 14.58 4.69 11.14 3.89 3.1 1.75 山前洪积扇 59.39 13.56 4.28 13.43 3.55 2.9 1.59 银川平原 59.58 14.46 11.51 4.49 3.70 3.01 1.72 CV 8 8 29 19 18 10 26 CS[24] 65.00 12.60 4.60 3.20 1.80 2.50 1.60 注:CS:中国平均土壤,CV:变异系数.
Note:CS:China average soil,CV:Coefficient of variation.表 4 银川平原土壤重金属全量统计分析(mg·kg-1)
Table 4. Statistical analysis of total heavy metals in soils in Yinchuan Plain(mg·kg-1)
地貌单元
Geomorphological unitCr Ni Cu Zn Cd Pb Hg As 一级阶地 Min 56.82 26.94 22.59 77.24 0.10 29.94 0.05 9.34 Max 101.28 38.11 32.34 106.60 0.16 34.40 0.10 16.60 Mean 83.87 34.49 28.91 93.50 0.13 32.13 0.08 14.78 CV 19.96% 13.02% 13.57% 13.80% 17.91% 5.05% 25.29% 20.68% 二级阶地 Min 44.02 23.75 22.23 78.35 0.13 26.35 0.05 11.70 Max 106.74 49.59 38.21 102.45 0.24 36.21 0.21 18.04 Mean 80.33 39.62 29.08 90.08 0.17 31.78 0.08 14.38 CV 23.57% 21.29% 16.55% 7.46% 20.18% 12.20% 62.68% 17.10% 山前洪积扇 Min 71.24 26.43 26.06 76.57 0.12 25.36 0.05 14.04 Max 92.80 74.71 43.25 96.01 0.28 43.79 0.07 30.94 Mean 82.31 43.76 31.86 87.56 0.18 35.25 0.06 20.37 CV 13.70% 48.50% 24.70% 10.67% 38.12% 22.48% 14.32% 36.04% 银川平原 Min 44.02 23.75 22.23 76.57 0.10 25.36 0.05 9.34 Max 106.74 74.71 43.25 106.60 0.28 43.79 0.21 30.94 Mean 81.84 39.08 29.69 90.49 0.16 32.70 0.08 15.91 CV 19.44% 29.49% 17.55% 10.06% 27.77% 14.06% 48.73% 29.23% 参考体 中国背景值[26] 60 36.5 22.1 58.8 0.11 20.6 0.021 11.8 宁夏背景值[19] 54.46 21.74 16.08 44.19 0.10 17.25 0.013 9.11 风险筛选值[27] 250 190 100 300 0.6 170 3.4 25 天津[28] 51.0 39 33 148 0.18 45 0.43 11 北京[29] 52.1 22.9 — 68.3 0.153 23.8 0.046 8.3 珠江平原[30] 44.18 14.26 21.27 64.57 0.15 42.29 0.13 14.6 陕西[31] 71.00 32.00 — 83.00 0.20 24.00 0.13 14.00 松嫩平原[32] 53.62 23.34 18.59 55.96 0.1 22.00 0.03 8.69 表 5 不同地貌单元潜在生态风险评价
Table 5. Potential ecological risk assessment of different geomorphic units
地貌单元
Geomorphological unitCr Ni Cu Zn Cd Pb Hg As RI 一级阶地 Min 1.89 3.69 5.11 6.57 27.24 7.27 89.71 7.92 167.70 Max 3.38 5.22 7.32 9.06 42.38 8.35 194.95 14.07 275.89 Mean 2.80 4.72 6.54 7.95 34.45 7.80 152.76 12.52 229.54 二级阶地 Min 1.47 3.25 5.03 6.66 35.08 6.40 95.43 9.92 165.09 Max 3.56 6.79 8.64 8.71 64.91 8.79 394.48 15.29 485.00 Mean 2.68 5.43 6.58 7.66 45.77 7.71 158.82 12.19 246.83 山前洪积扇 Min 2.37 3.62 5.89 6.51 32.06 6.16 99.24 11.90 177.34 Max 3.09 10.23 9.79 8.16 73.83 10.63 137.33 26.22 233.74 Mean 2.74 5.99 7.21 7.45 47.95 8.55 114.48 17.26 211.63 银川平原 Min 1.47 3.25 5.03 6.51 27.24 6.16 89.71 7.92 165.09 Max 3.56 10.23 9.79 9.06 73.83 10.63 394.48 26.22 485.00 Mean 2.74 5.38 6.78 7.69 42.72 8.02 142.02 13.99 229.33 表 6 生态有效指数法评价结果
Table 6. Ecological effectiveness index method evaluation results
地貌单元
Geomorphological unitCr Ni Cu Zn Cd Pb As 一级阶地 Min 0.25 0.23 0.45 0.61 0.72 0.83 0.11 Max 0.44 0.49 0.66 0.76 1.12 1.19 0.26 Mean 0.34 0.35 0.54 0.71 0.91 0.97 0.21 二级阶地 Min 0.19 0.18 0.42 0.75 1.02 0.80 0.13 Max 0.46 0.67 0.72 0.91 1.55 1.07 0.22 Mean 0.30 0.48 0.53 0.81 1.28 0.97 0.17 山前洪积扇 Min 0.23 0.27 0.40 0.58 0.82 0.74 0.17 Max 0.39 1.04 0.96 0.87 1.66 1.27 0.32 Mean 0.29 0.56 0.61 0.75 1.20 1.01 0.21 银川平原 Min 0.19 0.18 0.40 0.58 0.72 0.74 0.11 Max 0.46 1.04 0.96 0.91 1.66 1.27 0.32 Mean 0.31 0.46 0.56 0.76 1.13 0.98 0.20 -
[1] ZHANG P Y, QIN C Z, HONG X, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China [J]. Science of the Total Environment, 2018, 633: 1136-1147. doi: 10.1016/j.scitotenv.2018.03.228 [2] CHEN H Y, TENG Y G, LU S J, et al. Contamination features and health risk of soil heavy metals in China [J]. Science of the Total Environment, 2015, 512/513: 143-153. doi: 10.1016/j.scitotenv.2015.01.025 [3] HUANG Y, WANG L Y, WANG W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis [J]. Science of the Total Environment, 2019, 651: 3034-3042. doi: 10.1016/j.scitotenv.2018.10.185 [4] LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite [J]. Geoderma, 2014, 235/236: 9-18. doi: 10.1016/j.geoderma.2014.06.029 [5] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价 [J]. 环境科学, 2020, 41(9): 4197-4209. doi: 10.13227/j.hjkx.201912241 ZHANG F G, PENG M, WANG H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China [J]. Environmental Science, 2020, 41(9): 4197-4209(in Chinese). doi: 10.13227/j.hjkx.201912241
[6] BHATTI S S, KUMAR V, SAMBYAL V, et al. Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: A field experiment [J]. CATENA, 2018, 160: 185-193. doi: 10.1016/j.catena.2017.09.015 [7] 钟萍, 张家泉, 占长林, 等. 华中冶金工业走廊表层土壤、道路尘重金属污染特征及健康风险 [J]. 环境化学, 2019, 38(1): 87-96. doi: 10.7524/j.issn.0254-6108.2018020103 ZHONG P, ZHANG J Q, ZHAN C L, et al. Heavy metal pollution characteristics and health risks of topsoil and road dust in Central China Metallurgical Industry Corridor [J]. Environmental Chemistry, 2019, 38(1): 87-96(in Chinese). doi: 10.7524/j.issn.0254-6108.2018020103
[8] 孙彤, 纪艺凝, 李可, 等. 弱碱性玉米地土壤重金属赋存形态及生态风险评价 [J]. 环境化学, 2020, 39(9): 2469-2478. doi: 10.7524/j.issn.0254-6108.2019061701 SUN T, JI Y N, LI K, et al. The speciation distributions of heavy metals in weakly alkaline maize soils and its potential ecological risk [J]. Environmental Chemistry, 2020, 39(9): 2469-2478(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061701
[9] 张成丽, 张伟平, 程红丹, 等. 禹州市煤矿区周边土壤和农作物重金属污染状况及健康风险评价 [J]. 环境化学, 2019, 38(4): 805-812. doi: 10.7524/j.issn.0254-6108.2018060502 ZHANG C L, ZHANG W P, CHENG H D, et al. Heavy metal contamination and health risk assessment of farmland soil around coal mines in Yuzhou City [J]. Environmental Chemistry, 2019, 38(4): 805-812(in Chinese). doi: 10.7524/j.issn.0254-6108.2018060502
[10] 范刘丹, 王明仕, 宋党育, 等. 部分中国城市公园重金属生态风险及健康风险评价 [J]. 环境化学, 2019, 38(4): 793-804. doi: 10.7524/j.issn.0254-6108.2018061701 FAN L D, WANG M S, SONG D Y, et al. Ecological risk assessment and health risk assessment of heavy metals in some China urban Parks [J]. Environmental Chemistry, 2019, 38(4): 793-804(in Chinese). doi: 10.7524/j.issn.0254-6108.2018061701
[11] 姬超, 侯大伟, 李发志, 等. 耕地土壤重金属健康风险空间分布特征 [J]. 环境科学, 2020, 41(3): 1440-1448. doi: 10.13227/j.hjkx.201908163 JI C, HOU D W, LI F Z, et al. Assessment and spatial characteristics analysis of human health risk of heavy metals in cultivated soil [J]. Environmental Science, 2020, 41(3): 1440-1448(in Chinese). doi: 10.13227/j.hjkx.201908163
[12] 周勤利, 王学东, 李志涛, 等. 宁夏贺兰县土壤重金属分布特征及其生态风险评价 [J]. 农业资源与环境学报, 2019, 36(4): 513-521. ZHOU Q L, WANG X D, LI Z T, et al. Distribution characteristics and ecological risk assessment of soil heavy metal in Helan County of Ningxia, China [J]. Journal of Agricultural Resources and Environment, 2019, 36(4): 513-521(in Chinese).
[13] 石天池, 王志强, 曹园园, 等. 农用地土壤中重金属水平及潜在生态风险评价: 以宁夏石嘴山地区为例 [J]. 宁夏大学学报(自然科学版), 2021, 42(2): 180-183. SHI T C, WANG Z Q, CAO Y Y, et al. Evaluation on heavy metal levels and potential ecological risks in agricultural soils—A case study of Shizuishan region of ningxia [J]. Journal of Ningxia University (Natural Science Edition), 2021, 42(2): 180-183(in Chinese).
[14] 张敏. 宁夏平原引黄灌区重金属污染特征及其两种土地利用类型源解析研究[D]. 北京: 中央民族大学, 2020. ZHANG M. Characteristics of heavy metal pollution and source analysis of two land use types in the Yellow River Irrigation Area of Ningxia Plain [D]. Beijing: Central University for Nationalities, 2020(in Chinese).
[15] 张松林. 西北工业园区盐土重金属污染的盐生植物生态修复研究 : 以宁夏石嘴山惠农区为例[D]. 重庆: 西南大学, 2020. ZHANG S L. Research on phytoremediation of halophytes for heavy metal pollution of saline soil in northwest industrial park —A case study of Huinong district, ningxia, China[D]. Chongqing: Southwest University, 2020(in Chinese).
[16] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [17] 严明书, 李武斌, 杨乐超, 等. 重庆渝北地区土壤重金属形态特征及其有效性评价 [J]. 环境科学研究, 2014, 27(1): 64-70. YAN M S, LI W B, YANG L C, et al. Speciation characteristics and effectiveness assessment of heavy metals in soils in Yubei district, Chongqing [J]. Research of Environmental Sciences, 2014, 27(1): 64-70(in Chinese).
[18] ZHANG H H, CHEN J J, ZHU L, et al. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China [J]. Journal of Geochemical Exploration, 2014, 144: 312-319. doi: 10.1016/j.gexplo.2014.01.031 [19] 高宇, 杨智敏. 银川平原土壤地球化学基准值研究 [J]. 农业科学研究, 2009, 30(1): 10-12. doi: 10.3969/j.issn.1673-0747.2009.01.003 GAO Y, YANG Z M. Datum values of soil geochemistry in Yinchuan Plain [J]. Journal of Agricultural Sciences, 2009, 30(1): 10-12(in Chinese). doi: 10.3969/j.issn.1673-0747.2009.01.003
[20] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J]. Environmental Geology, 2000, 39(6): 611-627. doi: 10.1007/s002540050473 [21] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [22] NEMEROW N L. Stream, lake, estuary, and ocean pollution [M]. New York: Van Nostrand Reinhold Publishing, 1985. [23] 杨新明, 庄涛, 韩磊, 等. 小清河污灌区农田土壤重金属形态分析及风险评价 [J]. 环境化学, 2019, 38(3): 644-652. doi: 10.7524/j.issn.0254-6108.2018051001 YANG X M, ZHUANG T, HAN L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River [J]. Environmental Chemistry, 2019, 38(3): 644-652(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051001
[24] 鄢明才, 迟清华. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社, 1997: 126-127. YAN M C, CHI Q H. The chemical compositions of crust and rocks in the eastern part of China[M]. Beijing: Science Press, 1997: 126-127(in Chinese).
[25] 曹宏杰, 王立民, 罗春雨, 等. 三江平原地区农田土壤中几种重金属空间分布状况 [J]. 生态与农村环境学报, 2014, 30(2): 155-161. doi: 10.3969/j.issn.1673-4831.2014.02.003 CAO H J, WANG L M, LUO C Y, et al. Spatial distribution of heavy metals in agricultural soil in Sanjiang plain [J]. Journal of Ecology and Rural Environment, 2014, 30(2): 155-161(in Chinese). doi: 10.3969/j.issn.1673-4831.2014.02.003
[26] 国家环境保护局主持中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 326-359. National Environmental Protection Agency, China Environmental Testing Center. Background values of soil elements in China[M]. Beijing: China Environment Science Press, 1990: 326-359(in Chinese).
[27] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618—2018[S]. Beijing: Standards Press of China, 2018 (in Chinese).
[28] ZHAO L, XU Y, HOU H, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China [J]. Science of the Total Environment, 2014, 468-469: 654-662. doi: 10.1016/j.scitotenv.2013.08.094 [29] 余洪慧. 北京市顺义区表层土壤重金属地球化学特征研究[D]. 北京: 中国地质大学(北京), 2019. YU H H. Geochemical characteristics of heavy metals in topsoil of Shunyi district in Beijing[D]. Beijing: China University of Geosciences, 2019(in Chinese).
[30] 宗庆霞, 窦磊, 侯青叶, 等. 基于土地利用类型的土壤重金属区域生态风险评价: 以珠江三角洲经济区为例 [J]. 地球科学进展, 2017, 32(8): 875-884. doi: 10.11867/j.issn.1001-8166.2017.08.0875 ZONG Q X, DOU L, HOU Q Y, et al. Regional ecological risk assessment of soil heavy metals in Pearl River Delta economic zone based on different land uses [J]. Advances in Earth Science, 2017, 32(8): 875-884(in Chinese). doi: 10.11867/j.issn.1001-8166.2017.08.0875
[31] PAN L B, MA J, WANG X L, et al. Heavy metals in soils from a typical County in Shanxi Province, China: Levels, sources and spatial distribution [J]. Chemosphere, 2016, 148: 248-254. doi: 10.1016/j.chemosphere.2015.12.049 [32] 张慧, 马鑫鹏, 苏航, 等. 松嫩平原黑龙江省南部土壤重金属背景值及污染程度分析 [J]. 干旱地区农业研究, 2018, 36(6): 230-236. doi: 10.7606/j.issn.1000-7601.2018.06.34 ZHANG H, MA X P, SU H, et al. Soil heavy metal background values and pollution degree in southern Songnen Plain of Heilongjiang Province [J]. Agricultural Research in the Arid Areas, 2018, 36(6): 230-236(in Chinese). doi: 10.7606/j.issn.1000-7601.2018.06.34
[33] 赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险 [J]. 中国环境科学, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028 ZHAO D J, WANG X Q. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the Karst area of Yunnan, Guizhou, Guangxi [J]. China Environmental Science, 2020, 40(4): 1609-1619(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.028
[34] 高太忠, 张昊, 周建伟. 溶解性有机物对土壤中重金属环境行为的影响 [J]. 生态环境学报, 2011, 20(4): 652-658. doi: 10.3969/j.issn.1674-5906.2011.04.011 GAO T Z, ZHANG H, ZHOU J W. Effect of dissolved organic matter on the environmental behaviors of heavy metals in soils [J]. Ecology and Environmental Sciences, 2011, 20(4): 652-658(in Chinese). doi: 10.3969/j.issn.1674-5906.2011.04.011
[35] 周亚龙, 杨志斌, 王乔林, 等. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析 [J]. 环境科学, 2021, 42(4): 2003-2015. ZHOU Y L, YANG Z B, WANG Q L, et al. Potential ecological risk assessment and source analysis of heavy metals in soil-crop system in Xiongan new district [J]. Environmental Science, 2021, 42(4): 2003-2015(in Chinese).
[36] ADAMO P, IAVAZZO P, ALBANESE S, et al. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils [J]. Science of the Total Environment, 2014, 500/501: 11-22. doi: 10.1016/j.scitotenv.2014.08.085 [37] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征 [J]. 环境科学, 2020, 41(1): 449-459. MA H H, PENG M, LIU F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China [J]. Environmental Science, 2020, 41(1): 449-459(in Chinese).
[38] 麻冰涓, 王海邻, 李小超, 等. 河南省武陟县大田土壤重金属形态分布及潜在生态风险评价 [J]. 安全与环境学报, 2015, 15(4): 363-367. MA B J, WANG H L, LI X C, et al. Fractional distribution and ecological risk assessment of heavy metals in farmland soil, Wuzhi, Henan [J]. Journal of Safety and Environment, 2015, 15(4): 363-367(in Chinese).
[39] 韦壮绵, 陈华清, 张煜, 等. 湘南柿竹园东河流域农田土壤重金属污染特征及风险评价 [J]. 环境化学, 2020, 39(10): 2753-2764. doi: 10.7524/j.issn.0254-6108.2019073103 WEI Z M, CHEN H Q, ZHANG Y, et al. Pollution characteristics and risk assessment of heavy metals in farmland soils at Shizhuyuan Donghe River basin of Southern Hunan [J]. Environmental Chemistry, 2020, 39(10): 2753-2764(in Chinese). doi: 10.7524/j.issn.0254-6108.2019073103
[40] 陈岩, 季宏兵, 朱先芳, 等. 北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J]. 农业环境科学学报, 2012, 31(11): 2142-2151. CHEN Y, JI H B, ZHU X F, et al. Fraction distribution and risk assessment of heavy metals in soils around the gold mine of detiangou-qifengcha, Beijing city, China[J]. Journal of Agro-Environment Science, 2012, 31(11): 2142-2151(in Chinese).
[41] 李月芬, 王冬艳, 汤洁, 等. 吉林西部土壤砷的形态分布及其与土壤性质的关系研究 [J]. 农业环境科学学报, 2012, 31(3): 516-522. LI Y F, WANG D Y, TANG J, et al. Speciation of soil arsenic and its correlation with soil properties in western Jilin Province, China [J]. Journal of Agro-Environment Science, 2012, 31(3): 516-522(in Chinese).
[42] 李小牛, 周长松, 杜斌, 等. 北方污灌区土壤重金属污染特征分析 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(6): 205-212. LI X N, ZHOU C S, DU B, et al. Pollution characteristics of heavy metals in sewage irrigated soil of Northern China [J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(6): 205-212(in Chinese).
[43] 孙变变, 赵银鑫, 常丹, 等. 银川市城市绿地土壤重金属分布特征及其生态风险评价 [J]. 水土保持研究, 2020, 27(6): 262-268,277. SUN B B, ZHAO Y X, CHANG D, et al. Distribution characteristics and ecological risk assessment of soil heavy metals in green spaces of Yinchuan city [J]. Research of Soil and Water Conservation, 2020, 27(6): 262-268,277(in Chinese).
[44] BAI J H, CUI B S, CHEN B, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China [J]. Ecological Modelling, 2011, 222(2): 301-306. doi: 10.1016/j.ecolmodel.2009.12.002 [45] LV J, LIU Y, ZHANG Z L, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach [J]. Journal of Soils and Sediments, 2015, 15(1): 163-178. doi: 10.1007/s11368-014-0937-x [46] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析 [J]. 环境科学, 2018, 39(9): 4317-4326. SONG B, ZHANG Y X, PANG R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang River Draining of Guangxi [J]. Environmental Science, 2018, 39(9): 4317-4326(in Chinese).
[47] 李有文, 莫治新, 薛江鹏, 等. 喀什地区土壤重金属污染评价及来源解析 [J]. 干旱区资源与环境, 2020, 34(8): 147-153. doi: 10.13448/j.cnki.jalre.2020.223 LI Y W, MO Z X, XUE J P, et al. Pollution evaluation and source apportionment of heavy metals in soils from Kashgar region, Xinjiang, China [J]. Journal of Arid Land Resources and Environment, 2020, 34(8): 147-153(in Chinese). doi: 10.13448/j.cnki.jalre.2020.223
[48] LU A X, WANG J H, QIN X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China [J]. Science of the Total Environment, 2012, 425: 66-74. doi: 10.1016/j.scitotenv.2012.03.003 [49] MICÓ C, RECATALÁ L, PERIS M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis [J]. Chemosphere, 2006, 65(5): 863-872. doi: 10.1016/j.chemosphere.2006.03.016 [50] 王美娥, 彭驰, 陈卫平. 宁夏干旱地区工业区对农田土壤重金属累积的影响 [J]. 环境科学, 2016, 37(9): 3532-3539. doi: 10.13227/j.hjkx.2016.09.035 WANG M E, PENG C, CHEN W P. Impacts of industrial zone in arid area in ningxia Province on the accumulation of heavy metals in agricultural soils [J]. Environmental Science, 2016, 37(9): 3532-3539(in Chinese). doi: 10.13227/j.hjkx.2016.09.035
[51] SHENG J J, WANG X P, GONG P, et al. Heavy metals of the Tibetan top soils [J]. Environmental Science and Pollution Research, 2012, 19(8): 3362-3370. doi: 10.1007/s11356-012-0857-5 [52] 纪冬丽, 曾琬晴, 张新波, 等. 天津近郊农田土壤重金属风险评价及空间主成分分析 [J]. 环境化学, 2019, 38(9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201 JI D L, ZENG W Q, ZHANG X B, et al. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin [J]. Environmental Chemistry, 2019, 38(9): 1955-1965(in Chinese). doi: 10.7524/j.issn.0254-6108.2018111201