-
二氧化碳(CO2)和甲烷(CH4)是大气中最重要的两种温室气体,对全球总辐射强迫的贡献占所有长寿命温室气体的80%以上[1-2]。工业革命以来,受人为活动持续影响,大气中CO2和CH4含量迅速上升。世界气象组织全球大气观测网(World Meteorological Organization, Global Atmospheric Watch, WMO/GAW)的公报显示,2019年全球大气中CO2和CH4物质的量比年均值分别达410.50×10−6和1877.0×10−9,比工业革命前(1750年)分别增长了48%和160%[2]。大气中温室气体含量的持续上升导致全球变暖、海洋酸化和海平面上升等一系列气候与环境问题[3]。国内外众多学者对大气CO2和CH4等温室气体含量进行了大量观测研究[4-7],为探究温室气体源汇过程,评估和预测全球及区域尺度气候与环境变化提供了基础数据。
由于源汇和输送过程的复杂多样化,大气CO2和CH4呈明显的时空分布差异[5]。高精度的定点观测是掌握其特征的最有效、最直接的方式之一。全球最早的地面大气CO2观测始于1957年的美国夏威夷莫纳罗亚(Mauna Loa)站,迄今已持续60多年[8-9]。目前WMO/GAW已基于全球100多个国家的400多个大气本底站构建了可代表不同区域特征的温室气体观测网,为解析全球温室气体时空分布特征和源汇格局提供了数据支持[6,10-12]。
1991年起,我国青海瓦里关、北京上甸子、浙江临安和黑龙江龙凤山本底站先后加入WMO/GAW观测网,并陆续开展温室气体含量的高精度观测[13]。随着技术发展,大气CO2和CH4观测技术已由传统的气相色谱法或非色散红外法升级为以腔增强技术为基础的光学探测方法[14],其中具有代表性的包括波长扫描光腔衰荡光谱分析技术(wave scan cavity ring-down spectroscopy, WS-CRDS)和离轴积分腔输出光谱技术(off-axis integrated cell output spectroscopy,OA-ICOS)。为满足 “碳达峰,碳中和”国家战略实施需求,除WMO/GAW本底站外,我国各地正陆续开展基于光学技术的温室气体高精度在线连续观测,但所用仪器几乎完全依赖从美国Picarro公司或Los Gatos Research公司进口[15-18]。
为突破我国温室气体观测卡脖子核心技术,国内相关团队已基于OA-ICOS技术研发出商业化的高精度温室气体分析仪(由北京唯思德科技有限公司推广,GGA-311 CO2/CH4/H2O分析仪)[19-20]。本研究利用该国产设备,与目前国内外广泛使用的美国Picarro公司G-2401型高精度CO2/CH4/CO/H2O分析仪[15]和Agilent公司7890B型气相色谱仪[21-22]进行比对测试,通过精密度和线性等关键性能的针对性分析及野外站点(青海瓦里关全球大气本底站)试运行比对观测,结合WMO/GAW对本底温室气体观测质控要求,评估该国产高精度温室气体分析仪的基本性能指标,为我国建立大范围温室气体监测网络提供支撑。
国产高精度温室气体分析仪性能评估
Evaluation on the domestic invented high precision greenhouse gas analyzer
-
摘要: 在国家碳中和战略实施背景下,我国将大范围开展温室气体高精度监测,而目前国内温室气体高精度分析仪几乎完全依赖进口。本研究针对国产GGA-311型高精度温室气体分析仪开展综合性能评估研究。结果显示,该分析仪对CO2和CH4的分析精密度分别达0.15×10−6(物质的量比)和1.2×10−9,达到WMO/GAW实验室间比对分析质控标准的扩展目标(CO2: ±0.2×10−6; CH4: ±4.0×10−9);其线性拟合相关系数(R2)分别为0.999993和0.99996。实验室和青海瓦里关全球大气本底站比对测试结果显示,该分析仪与进口Picarro G-2401型分析仪均能较好地捕捉本底CO2和CH4变化特征,但受水汽等因素影响,两套系统CO2和CH4偏差分别处于±0.2×10−6和±4.0×10−9范围内的数据占总数据的51.79%和79.76%,因此国产高精度温室气体分析仪在应用过程中,必须针对样气进行严格干燥,方能保证观测结果的可靠性。
-
关键词:
- 二氧化碳 /
- 甲烷 /
- 离轴积分腔输出光谱 /
- 波长扫描光腔衰荡光谱 /
- 观测
Abstract: In the context of the implementation of the national carbon neutral strategy, China will build up high-density greenhouse gases monitoring network at a large scale, while the current domestic high-precision greenhouse gas analyzers were dependent on imports. In this study, a systematic test was carried out for the domestic invented GGA-311 greenhouse gas high-precision analyzer and its applicability was evaluated. The results showed that the precision of the analyzer for CO2 and CH4 reached 0.15×10−6 (molar ratio) and 1.2×10−9, respectively, meeting the extended goals of WMO/GAW laboratory comparability goals (CO2: ±0.2×10−6; CH4: ± 4.0×10−9); The linear correlation coefficients (R2) were 0.999993 and 0.99996, respectively. Parallel observations at the laboratory and Waliguan atmospheric background station showed that GGA-311 analyzer and imported Picarro G-2401 can both well capture the characteristics of background CO2 and CH4 changes. However, due to the influence of factors such as water vapor, the deviations of CO2 and CH4 in the range of ±0.2×10−6 and ±4.0×10−9 for the two systems accounted for 51.79% and 79.76% of the total data, respectively. Therefore, the sample must be strictly dried to ensure the measurement quality when using the domestic invented GGA-311 greenhouse gas high-precision analyzer. -
表 1 测试标气及标称值
Table 1. Molar ratio of standard gases for the system test
序号
Serial number标气编号
Standard gas numberCO2(×10−6) CH4(×10−9) ① CC738035 405.63 1988.9 ② CC738026 406.01 1988.7 ③ CC738076 414.38 2075.8 ④ CC738025 448.00 2249.9 ⑤ CC738082 507.11 2421.1 ⑥ CC738039 379.43 1921.4 表 2 标气CO2精密度测试结果
Table 2. CO2 precision test results of standard gases
序号
Serial numberCO2标称值(×10−6)
CO2 nominal value标准偏差(1σ)(×10−6)
Standard deviationPicarro G-2401 GGA-311 气相色谱
Gas chromatography③ 414.38 0.02 0.18 0.30 ④ 448.00 0.02 0.16 0.64 ⑤ 507.11 0.02 0.10 0.34 表 3 标气CH4精密度测试结果
Table 3. CH4 precision test results of standard gases
序号
Serial numberCH4标称值(×10−9)
CH4 nominal value标准偏差(1σ)(×10−9)
Standard deviationPicarro G-2401 GGA-311 气相色谱
Gas chromatography③ 2075.8 0.1 1.2 3.3 ④ 2249.9 0.1 1.3 3.0 ⑤ 2421.1 0.1 1.2 3.4 -
[1] HOFMANN D, BUTLER J, CONWAY T, et al. The NOAA Annual Greenhouse Gas Index (AGGI)[R]. Agu general assembly, 2014. [2] WMO. Greenhouse Gas Bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2019[R]. 2020, [3] DANIEL J, SOLOMON S. On the climate forcing of carbon monoxide [J]. Journal of Glaciology and Geocrylogy, 1998, 103(D11): 13249-13260. [4] SATAR E, BERHANU T A, BRUNNER D, et al. Continuous CO2/CH4/CO measurements (2012—2014) at Beromünster tall tower station in Switzerland [J]. Biogeosciences, 2016, 13(9): 2623-2635. doi: 10.5194/bg-13-2623-2016 [5] TIEMOKO T D, RAMONET M, YOROBA F, et al. Analysis of the temporal variability of CO2, CH4 and CO concentrations at Lamto, West Africa [J]. Tellus B:Chemical and Physical Meteorology, 2021, 73(1): 1-24. [6] YAZIDI A E, RAMONET M, CIAIS P, et al. Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4 [J]. Atmospheric Measurement Techniques, 2018, 11(3): 1599-1614. doi: 10.5194/amt-11-1599-2018 [7] 唐孝炎, 张远航, 邵敏. 大气环境化学 (第 2 版)[M]. 北京: 高等教育出版社, 2006: 55-90. TANG J Y, ZHANG Y H, SHAO M. Atmospheric Environmental Chemistry (Version 2)[M]. Beijing: Higher Education Press, 2006: 55-90 (in Chinese).
[8] KEELING C D. The concentration and isotopic abundances of carbon dioxide in the atmosphere [J]. Tellus, 1960, 12(2): 200-203. doi: 10.3402/tellusa.v12i2.9366 [9] KEELING C D, BACASTOW R B, BAINBRIDGE A E, et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii [J]. Tellus, 1976, 28(6): 538-551. doi: 10.3402/tellusa.v28i6.11322 [10] CONIL S, HELLE J, LANGRENE L, et al. Continuous atmospheric CO2, CH4 and CO measurements at the Observatoire Pérenne de l'Environnement (OPE) station in France from 2011 to 2018 [J]. Atmospheric Measurement Techniques, 2019, 12(6): 6361-6383. [11] CUNNOLD M D, STEELE P L, FRASER J P, et al. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences [J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D14): 1-20. [12] DERWENT R, RYALL D, MANNING A, et al. Continuous observations of carbon dioxide at Mace Head, Ireland from 1995 to 1999 and its net European ecosystem exchange [J]. Atmospheric environment, 2002, 36(17): 2799-2807. doi: 10.1016/S1352-2310(02)00203-0 [13] ZHOU L X, LIU L X, ZHANG X C, et al. Preliminary results on network observation of greenhouse gases at China GAW station [J]. Journal of Applied Meteorolgical Science, 2008, 19(6): 641-645. [14] 方双喜, 周凌晞, 张芳, 等. 双通道气相色谱法观测本底大气中的CH4、CO、N2O和SF6 [J]. 环境科学学报, 2010, 30(1): 363-371. FANG S X, ZHOU L X, ZHANG F, et al. Dual channel GC system for measuring background atmospheric CH4, CO, N2O and SF6 [J]. Acta Scientiae Circumstantiae, 2010, 30(1): 363-371(in Chinese).
[15] CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor [J]. Applied Physics B, 2008, 92: 403-408. doi: 10.1007/s00340-008-3135-y [16] WELP L R, KEELING R E, WEISS R F, et al. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites [J]. Atmospheric Measurement Techniques, 2013, 6(5): 1217-1226. doi: 10.5194/amt-6-1217-2013 [17] FANG S X, TANS P P, BO Y, et al. Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: the variations, trends, influence of local sources/sinks, and transport [J]. Science China Earth Sciences, 2017, 60: 1886-1895. doi: 10.1007/s11430-016-9066-3 [18] MAHESH P, SREENIVAS G, RAO P, et al. High-precision surface-level CO2 and CH4 using off-axis integrated cavity output spectroscopy (OA-ICOS) over Shadnagar, India [J]. International Journal of Remote Sensing, 2015, 36(22): 5754-5765. doi: 10.1080/01431161.2015.1104744 [19] WANG J J, TIAN X, DONG Y, et al. High-sensitivity off-axis integrated cavity output spectroscopy implementing wavelength modulation and white noise perturbation [J]. Optics Letters, 2019, 44(22): 3298-3301. [20] 田兴, 曹渊, 王静静, 等. 基于离轴腔增强吸收光谱双组分CH4/H2O高灵敏度探测研究 [J]. 光谱学与光谱分析, 2019, 39(10): 3078-3083. TIAN X, CAO Y, WANG J J, et al. High sensitivity detection of two-component CH4/H2O based on off-axis cavity enhanced absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3078-3083(in Chinese).
[21] CHRISTIANSEN J R, OUTHWAITE J, SMUKLER S M. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography [J]. Agricultural and forest meteorology, 2015, 211-212: 48-57. doi: 10.1016/j.agrformet.2015.06.004 [22] 顾帅, 周凌晞, 刘立新, 等. 静态箱-气相色谱法CO2和CH4通量观测的质控方法研究 [J]. 气象, 2010, 36(8): 87-101. doi: 10.7519/j.issn.1000-0526.2010.08.012 GU S, ZHOU L X, LIU L X, et al. Research of quality control measures in greenhouse gases flux observation using static closed chamber-GC technique [J]. Meteorological Monthly, 2010, 36(8): 87-101(in Chinese). doi: 10.7519/j.issn.1000-0526.2010.08.012
[23] ZHENG K Y, ZHENG C T, HE Q X, et al. Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes [J]. Optics Express, 2018, 26(20): 26205-26216. doi: 10.1364/OE.26.026205 [24] WANG K Y, SHAO L G, CHEN J J, et al. A dual-laser sensor based on off-axis integrated cavity output spectroscopy and time-division multiplexing method [J]. Sensors, 2020, 20(21): 6192. doi: 10.3390/s20216192 [25] 臧昆鹏, 周凌晞, 方双喜, 等. 新型CO2和CH4混合标气标校流程及方法 [J]. 环境化学, 2011, 30(2): 511-516. ZANG K P, ZHOU L X, FANG S X, et al. A new system for calibration and propagation of mixed CO2 and CH4 standards [J]. Environmental Chemistry, 2011, 30(2): 511-516(in Chinese).
[26] 周凌晞, 汤洁, 张晓春, 等. 气相色谱法观测本底大气中的甲烷和二氧化碳 [J]. 环境科学学报, 1998, 18(2): 356-361. doi: 10.13671/j.hjkxxb.1998.04.004 ZHOU L X, TANG J, ZHANG X C, et al. In-situ gas chromatographic measurement of atmospheric methane and carbon dioxide [J]. Acta Scientiae Circumstantiae, 1998, 18(2): 356-361(in Chinese). doi: 10.13671/j.hjkxxb.1998.04.004
[27] LIU S, FANG S X, LIU P, et al. Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: records from 1994 to 2019 at the Mount Waliguan station [J]. Atmospheric Chemistry and Physics, 2021, 21(1): 393-413. doi: 10.5194/acp-21-393-2021 [28] ZHANG F, ZHOU L X, NOVELLI P C, et al. Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China [J]. Atmospheric Chemistry and Physics, 2011, 11(11): 5195-5206. doi: 10.5194/acp-11-5195-2011 [29] 王剑琼, 薛丽梅, 张国庆, 等. 不同方法测量大气二氧化碳浓度的特征分析 [J]. 青海环境, 2015, 25(2): 75-78. doi: 10.3969/j.issn.1007-2454.2015.02.007 WANG J Q, XUE L M, ZHANG G Q, et al. Analysis of characteristics of atmospheric carbon dioxide concentration measured by different methods [J]. Journal of Qinghai Environment, 2015, 25(2): 75-78(in Chinese). doi: 10.3969/j.issn.1007-2454.2015.02.007
[30] KWOK Y C, LAURENT O, GUEMRI A, et al. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO [J]. Atmospheric Measurement Techniques, 2015, 8(9): 3867-3892. doi: 10.5194/amt-8-3867-2015 [31] ANNETTE F, CHRISTOPH G, HUILIN C, et al. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO [J]. Tellus B:Chemical and Physical Meteorology, 2015, 67(1): 1-19. [32] FLOWERS B A, POWERS H H, DUBEY M K, et al. Inter-comparison of two high-accuracy fast-response spectroscopic sensors of carbon dioxide: A case study [J]. Atmospheric Measurement Techniques, 2012, 5(5): 991-997. doi: 10.5194/amt-5-991-2012 [33] 崔俊富, 陈金伟, 崔伟. 残差在线性回归分析中的作用研究 [J]. 牡丹江大学学报, 2020, 29(10): 84-88. doi: 10.3969/j.issn.1008-8717.2020.10.018 CUI J F, CHEN J W, CUI W. Research about residuals in linear regression analysis [J]. Journal of Mudanjiang University, 2020, 29(10): 84-88(in Chinese). doi: 10.3969/j.issn.1008-8717.2020.10.018
[34] MAHATA K, PANDAY A, SINGH A, et al. Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas [J]. Atmospheric Measurement Techniques, 2017, 17(20): 12573-12596. [35] FANG S X, ZHOU L X, MASARIE K A, et al. Study of atmospheric CH4 mole fractions at three WMO/GAW stations in China [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(10): 4874-4886. doi: 10.1002/jgrd.50284 [36] CHEN H J, WINDERLICH J, GERBIG C, et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique [J]. Atmospheric Measurement Techniques, 2010, 3(2): 375-386. doi: 10.5194/amt-3-375-2010 [37] ZELLWEGER C, EMMENEGGER L, FIRDAUS M, et al. Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations [J]. Atmospheric Measurement Techniques, 2016, 9(9): 4737-4757. doi: 10.5194/amt-9-4737-2016 [38] MORGAN E J, LAVRIČ J V, SEIFERT T, et al. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory [J]. Atmospheric Measurement Techniques, 2015, 8(6): 2233-2250. doi: 10.5194/amt-8-2233-2015