-
多氯联苯(PCBs)、有机氯农药(OCPs)、氯苯类(CBs)、多环芳烃(PAHs)和邻苯二甲酸酯(PAEs)是典型的持久性有机污染物(POPs),广泛存在于环境中。土壤中的POPs可以通过挥发、扩散等方式在大气、地表水和地下水中相互迁移转换,并会通过生物积累最终会进入食物链,对生态环境和人类健康造成威胁[1-2]。因此,土壤中持久性有机污染物的研究历来是国内外关注的焦点。测定土壤中的POPs主要包括提取、浓缩、净化以及仪器测定等步骤,分析周期长,试剂和耗材消耗大,劳动投入强。国内外针对单一类有机污染物的检测方法比较成熟,近年来研究学者倾向多组分化合物的同步分析趋势 [3-7],但目前针对土壤中多种持久性有机污染物同时预处理和仪器测定的高通量分析方法报道尚少。国内现有的标准分析方法大都是针对某类化合物的分析[8-11],且土壤样品采集后一般要求6—10 d完成萃取,时效性要求高。随着国家对土壤环境管控越来越严,对土壤监测要求日渐增大,迫切需要开发土壤中多种POPs同时测定的高通量分析方法。
传统的提取方式存在试剂用量大、萃取时间长、萃取提取效率低以及稳定性差等缺点,目前研究学者更倾向于使用快速、高效的方法萃取土壤中的有机污染物,微波辅助萃取技术试剂消耗低,仪器管道少,实验操作简单,并可同时处理多个样品,具批量处理优势,常用于土壤中的POPs的提取[12-17]。测定有机污染物常用的净化方式有酸洗、复合硅胶层析柱、凝胶渗透色谱、固相萃取等,酸洗或酸性硅胶净化效果好,但OCPs、PAHs和PAEs等化合物会被浓硫酸氧化,而凝胶渗透色谱仪设备投入高,且仪器管道较多,容易引入PAEs的污染;硅酸镁小柱具有普适性强、操作简便的优点,但是具有柱容量小的缺点[18-20]。低温分配技术(low-temperature partition extraction,LTPE)近年来被证明是性能优越的前处理手段[21],并在多种环境样品有机污染物的前处理中得到应用 [17,22-24]。
本文建立的微波辅助萃取-低温分配净化-气相色谱-质谱法,同时实验处理和检测土壤中的18种多氯联苯、23种有机氯农药(包括五氯苯和六氯苯)、16种多环芳烃和6种邻苯二甲酸酯。实验结果表明,该方法回收率高、平行性好,能满足土壤中63种POPs的检测分析要求,在分析大批量样品时,具批处理优势,显著提高工作效率。
微波辅助萃取-低温分配净化-气相色谱/质谱法同时检测土壤中63种持久性有机污染物
Simultaneous determination of 63 persistent organic pollutants in soil by GC/MS with microwave-assisted extraction and low-temperature partition extraction purification
-
摘要: 建立了土壤中18种多氯联苯、23种有机氯农药、16种多环芳烃和6种邻苯二甲酸酯同时实验处理和仪器测定的分析方法。10.0 g土壤样品经30 mL正己烷+丙酮(1+1)试剂于110 ℃微波萃取15 min,萃取液氮吹浓缩到0.5 mL后于−20 ℃保持4 h进行低温分配净化,使用气相色谱-质谱法进行测定。结果显示,63种化合物的方法检出限在0.1—2.2 μg·kg−1之间,测定下限在0.4—8.8 μg·kg−1之间;对两个浓度水平的土壤基质加标样品分别进行6次平行分析,测定结果的回收率在76%—119%之间,相对标准偏差在0.4%—10.6%之间。对相关土壤标准物质进行分析,测定结果均在化合物质控范围内。研究表明本方法快速简便,回收率高,重现性好,能满足土壤中63种POPs的检测要求。与常规的前处理净化相比,该方法操作简单,具备批处理优势,在分析大批量样品时,可提高工作效率,节省监测成本。Abstract: A method for simultaneous determination of 18 PCBs, 23 OCPs, 16 PAHs and 6 PAEs in soils by gas chromatography-mass spectrometry (GC-MS), with microwave extraction and low-temperature partition extraction purification was developed. Microwave-assisted extraction conditions involved the use of 30 mL n-hexane+acetone(1+1)at 115 ℃ for 5 min, the collected extraction liquid was concentrated to 0.5 mL by nitrogen, and subsequently in a freezer at −20 ℃ for 4 h. After the water phase was iced, the upper organic phase was taken out and analyzed by GC-MS. The result shows that, detection limits of this method were 0.1—2.2 μg·kg−1, quantitative lower limits were 0.4—8.8 μg·kg−1, and average recoveries of spiked samples ranged from 76% to 119% with relative standard deviations between 0.4% and 10.6%. The determination results of soils standard reference materials were all in the acceptance limits. The method shows high accuracy and precision, fast simple operation, high throughput and suitable for the simultaneous determination of 63 persistent organic pollutants (POPs) in the soil.
-
表 1 化合物的保留时间、定量离子、定性离子和定量内标
Table 1. Retention time, quantitative ions, qualitative ions and quantitative internal standard of compounds
序号
Number化合物
名称
Compound保留
时间/
min
RT定量离子
Quantitative
ion定性离子
Qualitative
ion定量内标
Quantitative
internal
standard序号
Number化合物
名称
Compound保留
时间/
min
RT定量离子
Quantitative
ion定性离子
Qualitative
ion定量内标
Quantitative
internal
standard1 萘 6.98 128 127 D8-萘 42 PCB123 25.86 325.8 255.9 13C-PCB101 2 D8-萘 7.02 136 108 D10-芘 43 o,p'-DDT 26.00 236.8 235 13C-p,p'-DDD 3 邻苯二甲酸二甲酯 9.42 163 77 D10-苊 44 PCB118 26.09 325.8 255.9 13C-PCB101 4 苊烯 9.72 152 151 D10-苊 45 PCB114 26.52 325.8 255.9 13C-PCB101 5 D10-苊 10.05 164 163 D10-芘 46 13C-p,p'-DDD 26.61 247.1 177.2 13C-p,p'-DDE 6 苊 10.14 154 153 D10-苊 47 p,p'-DDD 26.62 236.8 235 13C-p,p'-DDD 7 邻苯二甲酸二乙酯 11.19 177 149 D10-苊 48 硫丹2 26.72 241 195 13C-p,p'-DDT 8 芴 11.77 166. 165 D10-苊 49 13C-PCB153 26.74 371.9 301.9 13C-PCB138 9 13C-α-六六六 14.08 225 189 13C-p,p'-DDE 50 PCB153 26.75 359.8 289.8 13C-PCB153 10 α-六六六 14.11 218.8 182.8 13C-α-六六六 51 PCB105 27.19 325.8 255.9 13C-PCB101 11 六氯苯 14.42 283.8 248.8 13C-α-六六六 52 异狄氏剂醛 27.20 345 279 13C-p,p'-DDT 12 γ-六六六 15.50 218.7 180.9 13C-α-六六六 53 邻苯二甲酸丁基卞基酯 27.32 206 149 D12-䓛 13 D10-菲 15.92 188 184 D10-芘 54 13C-p,p'-DDT 27.88 247.1 177.2 13C-p,p'-DDE 14 菲 16.04 178. 176 D10-菲 55 p,p'-DDT 27.89 236.8 235 13C-p,p'-DDT 15 蒽 16.31 178 176 D10-菲 56 13C-PCB138 27.90 371.9 301.9 13C-PCB138 16 β-六六六 16.77 218.7 180.9 13C-α-六六六 57 PCB138 27.92 359.8 289.8 13C-PCB153 17 13C-PCB28 17.55 270 198 13C-PCB138 58 PCB126 28.83 325.8 255.9 13C-PCB101 18 PCB28 17.57 257.8 186.1 13C-PCB28 59 PCB167 29.37 359.8 289.8 13C-PCB153 19 δ-六六六 17.65 218.8 182.8 13C-α-六六六 60 甲氧滴滴涕 29.97 227.1 212 13C-p,p'-DDT 20 七氯 17.73 271.8 100 13C-α-六六六 61 异狄氏剂酮 30.01 316.9 281 13C-p,p'-DDT 21 邻苯二甲酸二丁酯 18.42 205 149 D10-菲 62 PCB156 30.27 359.8 289.8 13C-PCB153 22 13C-PCB52 18.71 304 232.1 13C-PCB138 63 邻苯二甲酸二(2-乙基)己酯 30.30 167 149 D12-䓛 23 PCB52 18.72 291.8 221.9 13C-PCB52 64 PCB157 30.42 359.8 289.8 13C-PCB153 24 艾氏剂 19.07 293 262.7 13C-α-六六六 65 苯并(a)蒽 30.48 228 226 D12-䓛 25 环氧七氯 21.35 352.8 262.9 13C-γ-氯丹 66 D12-苝 30.54 240 236 D10-芘 26 荧蒽 22.40 202 101 D10-菲 67 硫丹硫酸酯 30.55 271.7 238.7 13C-p,p'-DDT 27 13C-o,p'-DDE 22.48 330 258.1 13C-p,p'-DDE 68 13C-PCB180 30.59 405.9 335.9 13C-PCB138 28 13C-PCB101 22.93 337.9 267.9 13C-PCB138 69 PCB180 30.60 393.8 323.8 13C-PCB180 29 PCB101 22.94 325.8 255.9 13C-PCB101 70 䓛 30.70 228 226 D12-䓛 30 13C-γ-氯丹 22.96 382.9 276.9 13C-p,p'-DDE 71 灭蚁灵 31.87 272 236.8 13C-p,p'-DDT 31 γ-氯丹 22.98 374.7 271.7 13C-γ-氯丹 72 PCB169 32.01 359.8 289.8 13C-PCB153 32 α-氯丹 23.18 374.7 372.8 13C-γ-氯丹 73 PCB189 33.01 393.8 323.8 13C-PCB180 33 硫丹1 23.24 240.9 195 13C-o,p'-DDE 74 邻苯二甲酸二辛酯 33.33 279 149 D12-䓛 34 D12-䓛 23.54 212 106 D10-芘 75 苯并(b)荧蒽 34.88 252 126 D12-䓛 35 芘 23.67 202 101 D10-菲 76 苯并(k)荧蒽 34.94 252 126 D12-䓛 36 13C-p,p'-DDE 24.28 330 258.1 13C-p,p'-DDE 77 苯并(a)芘 35.72 252 126 D12-䓛 37 p,p'-DDE 24.29 317.8 246 13C-o,p'-DDE 78 D10-芘 35.84 264 260 D10-芘 38 狄氏剂 24.45 276.9 262.9 13C-p,p'-DDD 79 茚并(1,2,3-cd)芘 38.87 276 138 D12-苝 39 PCB81 24.73 291.8 221.9 13C-PCB52 80 二苯并(a,h)蒽 38.90 278 139 D12-苝 40 PCB77 25.22 291.8 221.9 13C-PCB52 81 苯并(g,h,i)苝 39.79 276 138 D12-苝 41 异狄氏剂 25.41 281 262.9 13C-p,p'-DDD 表 2 63 POPs的方法性能参数
Table 2. Method performance parameters of 63 POPs
化合物
Compound标准曲线相对
相应因子的相
对标准偏差/%
RSD of RRF方法检出限/
(μg·kg−1)
Detection
limit测定下限/
(μg·kg−1)
Quantitative
lower limit低浓度
Low concentration(n=6)高浓度
High concentration(n=6)加标量/(μg·kg−1)
Adding standard
value回收率/%
RecoveryRSD/% 加标量/(μg·kg−1)
Adding standard
value回收率/%
RecoveryRSD/% PCB28 7.0 0.1 0.4 2.0 100—107 2.4 5.0 102—106 1.0 PCB52 6.3 0.1 0.4 2.0 103— 106 1.4 5.0 102—107 2.0 PCB101 6.9 0.1 0.4 2.0 102— 109 2.6 5.0 100—102 0.9 PCB81 6.0 0.1 0.4 2.0 102— 109 3.2 5.0 104—113 3.1 PCB77 7.3 0.2 0.8 2.0 98— 106 3.1 5.0 100—109 3.2 PCB123 4.4 0.1 0.4 2.0 96— 107 4.1 5.0 98—105 2.5 PCB118 5.6 0.1 0.4 2.0 102— 105 1.2 5.0 99—104 2.2 PCB114 6.4 0.1 0.4 2.0 100— 106 2.6 5.0 100—106 2.2 PCB153 7.0 0.1 0.4 2.0 104— 113 3.4 5.0 101—108 2.3 PCB105 10.9 0.1 0.4 2.0 100— 105 1.9 5.0 100—104 1.7 PCB138 7.0 0.1 0.4 2.0 101— 110 3.2 5.0 105—109 1.2 PCB126 7.1 0.1 0.4 2.0 98— 106 2.9 5.0 108—112 1.6 PCB167 7.8 0.1 0.4 2.0 104— 113 3.4 5.0 103—112 2.8 PCB156 6.0 0.1 0.4 2.0 105— 113 2.5 5.0 107—113 2.0 PCB157 6.0 0.1 0.4 2.0 98— 104 2.5 5.0 101—109 2.8 PCB180 6.8 0.2 0.8 2.0 101— 108 2.8 5.0 110—113 0.9 PCB169 5.9 0.2 0.8 2.0 97— 106 3.5 5.0 104—114 3.1 PCB189 7.3 0.2 0.8 2.0 97— 102 1.8 5.0 101—105 1.4 α−六六六 3.8 0.4 1.6 10.0 84— 91 3.3 50.0 91—104 5.0 六氯苯 3.5 0.6 2.4 10.0 89— 92 1.2 50.0 94—101 2.7 γ−六六六 2.3 0.4 1.6 10.0 89— 96 2.7 50.0 98—103 1.8 β−六六六 2.7 0.4 1.6 10.0 95— 98 1.3 50.0 99—102 1.0 δ−六六六 2.5 0.5 2.0 10.0 94— 98 1.6 50.0 99—102 1.3 七氯 3.0 0.6 2.4 10.0 93— 106 4.5 50.0 98—104 2.4 艾氏剂 16.7 0.5 2.0 10.0 105— 115 3.1 50.0 96—117 7.7 环氧七氯 2.1 0.3 1.2 10.0 84— 98 5.4 50.0 98—101 1.2 γ−氯丹 3.4 0.3 1.2 10.0 98— 100 1.0 50.0 96—103 2.7 α−氯丹 3.1 0.3 1.2 10.0 92— 95 1.3 50.0 94—102 3.4 硫丹1 3.7 0.4 1.6 10.0 95— 100 1.8 50.0 98—102 1.6 p,p'−DDE 2.9 0.3 1.2 10.0 87— 91 1.8 50.0 88—102 6.0 狄氏剂 4.5 0.5 2.0 10.0 80—85 2.3 50.0 93—102 3.6 异狄氏剂 1.4 0.7 2.8 10.0 87—92 2.0 50.0 97—103 2.1 o,p'−DDT 15.7 1.5 6.0 10.0 112—119 2.3 50.0 94—101 2.9 p,p'−DDD 8.1 0.6 2.4 10.0 94—114 7.9 50.0 89—101 5.0 硫丹2 5.7 0.4 1.6 10.0 87—94 2.9 50.0 81—105 9.3 异狄氏剂醛 1.8 1.2 4.8 10.0 89—94 1.9 50.0 81—101 8.5 p,p'−DDT 8.0 1.0 4.0 10.0 89—98 4.5 50.0 94—123 10.2 硫丹硫酸酯 14.7 0.4 1.6 10.0 85—100 5.4 50.0 94—116 10.0 甲氧滴滴涕 6.5 0.6 2.4 10.0 92—97 2.0 50.0 91—103 4.4 异狄氏剂酮 16.3 0.4 1.6 10.0 101—110 3.3 50.0 78—104 10.6 灭蚁灵 8.9 0.3 1.2 10.0 81—84 1.6 50.0 87—102 6.0 萘 8.3 1.5 6.0 20.0 95—102 2.9 200 105—111 2.0 苊烯 5.9 0.9 3.6 20.0 88—95 2.6 200 98—99 0.4 苊 7.1 0.4 1.6 20.0 90—93 1.3 200 97—99 0.8 芴 7.2 0.7 2.8 20.0 89—94 2.4 200 101—103 1.0 菲 7.2 1.0 4.0 20.0 92—100 3.3 200 97—102 2.0 蒽 7.8 0.9 3.6 20.0 88—94 2.8 200 108—110 0.6 荧蒽 7.6 0.8 3.2 20.0 101—108 2.7 200 101—108 2.3 芘 6.9 0.7 2.8 20.0 103—108 2.0 200 106—109 0.9 苯并(a)蒽 7.2 1.6 6.4 20.0 100—107 2.7 200 100—103 1.0 䓛 7.6 1.3 5.2 20.0 81—89 3.7 200 96—101 1.7 苯并(b)荧蒽 7.1 1.9 7.6 20.0 98—107 3.8 200 92—97 1.8 苯并(k)荧蒽 6.2 0.7 2.8 20.0 76—80 2.0 200 95—100 1.6 苯并(a)芘 5.3 1.0 4.0 20.0 99—106 2.4 200 96—100 1.5 茚并(1,2,3-c,d)芘 6.4 0.8 3.2 20.0 92—99 3.0 200 100—104 1.6 二苯并(a,h)蒽 5.3 0.8 3.2 20.0 93—99 2.7 200 100—107 2.3 苯并(g,h,i)苝 8.3 1.1 4.4 20.0 94—101 2.7 200 100—103 1.1 邻苯二甲酸二甲酯 11.6 1.4 5.6 20.0 92—104 4.3 200 94—103 3.0 邻苯二甲酸二乙酯 6 2.2 8.8 20.0 99—106 2.3 200 102—108 2.0 邻苯二甲酸二丁酯 13.2 1.2 4.8 20.0 107—116 3.6 200 98—106 2.6 邻苯二甲酸丁基卞基酯 8.1 1 4.0 20.0 97—108 4.8 200 91—96 1.7 邻苯二甲酸二(2-乙基)己酯 6.6 1.2 4.8 20.0 101—107 2.5 200 106—113 2.2 邻苯二甲酸二辛酯 7.5 1.5 6.0 20.0 99—110 3.8 200 99—107 3.4 表 3 土壤中PCBs、OCPs和PAHs标准物质测定结果(μg·kg-1)
Table 3. Determination results of Certified reference materials(PCBs, OCPs and PAHs)
化合物
Compound标准值
Certified value测定值
Determined value合格区间
Prediction interval化合物
Compound标准值
Certified value测定值
Determined value合格区间
Prediction intervalPCB28 178 172 101—255 p,p'-DDE 238 224 117—273 PCB52 186 207 97.4—274 狄氏剂 478 382 231—527 PCB101 42.2 42 24.5—60 异狄氏剂 230 178 106—283 PCB81 194 206 140—248 o,p'-DDT 199 118 89.2—232 PCB77 214 241 146—283 p,p'-DDD 324 248 145—379 PCB123 141 136 96.7—186 硫丹2 60.5 59 15.4—54.0 PCB118 219 201 156—281 异狄氏剂醛 481 312 126—468 PCB114 145 132 107—183 p,p'-DDT 78.6 72 32.1—92.9 PCB153 87 99 63—111 硫丹硫酸酯 275 247 112—319 PCB105 246 232 174—319 甲氧滴滴涕 392 358 148—511 PCB138 92.1 104 63.4—121 异狄氏剂酮 370 291 153—414 PCB126 76.2 83 54.7—98 灭蚁灵 127 70 51.2—140 PCB167 277 279 204—351 萘 400 387 40.0—461 PCB156 145 156 112—177 苊烯 391 265 39.1—501 PCB157 85.8 60 66.5—105 苊 269 261 50.9—309 PCB180 232 232 176—288 芴 166 179 33.6—197 PCB169 289 328 208—369 菲 217 232 64.8—244 PCB189 305 347 242—368 蒽 302 233 73.8—332 α-六六六 319 312 120—346 荧蒽 263 292 99.9—313 六氯苯 407 306 193—448 芘 327 360 103—376 γ-六六六 234 228 89—256 苯并(a)蒽 306 247 108—337 β-六六六 265 223 104—291 䓛 455 449 142—513 δ-六六六 365 323 145—412 苯并(b)荧蒽 245 263 95.8—270 七氯 472 333 204—535 苯并(k)荧蒽 222 249 84.4—246 艾氏剂 277 236 123—301 苯并(a)芘 54.2 52 6.78—70.5 环氧七氯 299 298 139—326 并(1,2,3-c,d)芘 106 102 31.8—136 γ-氯丹 194 159 93—213 147 146 47.0—163 α-氯丹 90.7 82 42—100 苯并(g,h,i)苝 401 313 115—441 硫丹1 339 242 75—275 表 4 土壤中PAEs标准物质测定结果
Table 4. Determination results of standard samples(PAEs)
化合物
Compound标准值/ (mg·kg-1)
Certified value测定值/ (mg·kg-1)
Determined value回收率 /%
RecoveryRSD% 邻苯二甲酸二甲酯 71.5 39.8 56 2.6 邻苯二甲酸二乙酯 90.7 63.2 70 1.9 邻苯二甲酸二丁酯 166 97.6 59 1.6 邻苯二甲酸丁基苄酯 146 73.7 50 1.5 邻苯二甲酸二(2-乙基)己酯 157 110 70 2.0 邻苯二甲酸二正辛酯 134 119 89 2.8 表 5 三种净化方式化合物的回收率和相对标准偏差结果
Table 5. Recovery and RSD of compounds with different methods
化合物
Compound回收率(RSD)/%
Recovery化合物
Compound回收率 (RSD)/%
Recovery对照样
Control低温分配净化
LTPE固相萃取净化
SPE -Florisil对照样
Control低温分配净化
LTPE固相萃取净化
SPE -FlorisilPCB28 98(8.3) 96(6.4) 97(6.7) o,p'-DDT 62(11.7) 59(3.1) 49(9.0) PCB52 109(8.7) 111(6.6) 110(7.9) p,p'-DDD 76(6.2) 77(5.4) 70(7.8) PCB101 102(5.3) 99(3.6) 98(4.9) 硫丹2 86(12.7) 98(10.6) 81(14.2) PCB81 110(7.8) 106(2) 105(4.5) 异狄氏剂醛 64(7.1) 65(5.7) 62(13.2) PCB77 114(8.5) 113(3.1) 109(7.1) p,p'-DDT 97(12.6) 92(4.3) 85(3.7) PCB123 98(5.7) 96(4.8) 98(8.2) 硫丹硫酸酯 87(8.7) 90(8.7) 81(9.9) PCB118 91(6.1) 92(5.6) 93(7.6) 甲氧滴滴涕 93(5.9) 91(4.6) 72(2.5) PCB114 90(7.0) 91(4.7) 89(5.5) 异狄氏剂酮 80(4.9) 79(3.8) 78(4.3) PCB153 114(7.9) 114(4.4) 111(7.6) 灭蚁灵 56(9.9) 55(10.2) 52(2.1) PCB105 93(7.8) 94(5.1) 94(5.4) 萘 96(7.2) 97(3.6) 100(9.1) PCB138 113(7.8) 113(5.4) 112(8.9) 苊烯 65(8) 68(6.6) 65(7.8) PCB126 111(8.7) 108(5.8) 108(8.6) 苊 94(6.3) 97(2.3) 96(3.7) PCB167 103(6.8) 101(4.7) 99(6.5) 芴 108(4.9) 108(3.3) 104(4.8) PCB156 108(7.8) 108(5.3) 106(7.4) 菲 115(6.5) 107(1.8) 95(3.7) PCB157 74(7.6) 70(3.8) 70(7.2) 蒽 78(6) 77(3.3) 77(6.5) PCB180 105(6.0) 100(4.5) 101(6.9) 荧蒽 110(1.1) 111(0.8) 110(0.2) PCB169 119(4.1) 114(3.7) 110(7.1) 芘 109(4.3) 110(3.6) 109(4.2) PCB189 119(7.3) 110(1.9) 112(5.7) 苯并(a)蒽 84(9.4) 81(6.1) 80(7.5) α-六六六 94(5.4) 98(3.3) 91(8.6) 䓛 100(3.8) 99(2.6) 97(2.5) 六氯苯 74(5.6) 75(2.5) 69(7.8) 苯并(b)荧蒽 107(1.7) 107(1.2) 103(2.4) γ-六六六 91(5.2) 97(2.8) 90(8.7) 苯并(k)荧蒽 114(4.7) 112(3.3) 106(3.7) β-六六六 81(6.9) 84(2.4) 79(10.2) 苯并(a)芘 94(2.2) 96(1.1) 93(2.3) δ-六六六 88(5.2) 89(3.9) 88(10.0) 茚并(1,2,3-cd)芘 95(4.3) 96(1.5) 91(5.7) 七氯 73(9.5) 71(3.6) 66(10.4) 二苯并(a,h)蒽 91(4.7) 100(1.8) 80(6.9) 艾氏剂 90(6.8) 85(3.5) 81(7.9) 苯并(g,h,i)苝 76(6.4) 78(5.5) 68(9.1) 环氧七氯 100(13) 100(8.8) 84(9.3) 邻苯二甲酸二甲酯 56(3.8) 56(1.7) 56(2.6) γ-氯丹 85(10.8) 82(5.5) 75(7.4) 邻苯二甲酸二乙酯 71(5.2) 70(0.1) 72(1.9) α-氯丹 96(9.2) 90(6.2) 89(9.6) 邻苯二甲酸二丁酯 65(5.5) 59(0.9) 64(0.3) 硫丹1 72(3.1) 71(1.7) 68(7.0) 邻苯二甲酸丁基苄酯 54(4.9) 50(3.2) 51(1.5) p,p'-DDE 90(8.8) 94(2.9) 83(6.6) 邻苯二甲酸二(2-乙基)己酯 77(2.8) 70(2.8) 52(0.9) 狄氏剂 79(8.3) 80(2.5) 70(0.4) 邻苯二甲酸二正辛酯 90(6.1) 89(1.9) 63(1.1) 异狄氏剂 78(7.3) 78(5.8) 66(11.9) -
[1] 于艳新, 李奇, 王慧, 等. 食物中典型持久性有机污染物(POPs)的生物可给性研究综述 [J]. 生态环境学报, 2015, 24(8): 1406-1414. doi: 10.16258/j.cnki.1674-5906.2015.08.023 YU Y X, LI Q, WANG H, et al. The bioaccessibility of typical persistent organic pollutants(POPs) in food matrix: A review [J]. Ecology and Environmental Sciences, 2015, 24(8): 1406-1414(in Chinese). doi: 10.16258/j.cnki.1674-5906.2015.08.023
[2] LÜ H, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: A review [J]. Environmental Research, 2018, 164: 417-429. doi: 10.1016/j.envres.2018.03.013 [3] 吴亮, 岳中慧, 张皓, 等. ASE-GC-MS法同时测定农用地土壤中的多环芳烃、多氯联苯和有机氯农药 [J]. 化学分析计量, 2019, 28(4): 7-12, 17. doi: 10.3969/j.issn.1008-6145.2019.04.002 WU L, YUE Z H, ZHANG H, et al. Simultaneous determination of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in soil by GC-MS coupled with accelerated solvent extraction [J]. Chemical Analysis and Meterage, 2019, 28(4): 7-12, 17(in Chinese). doi: 10.3969/j.issn.1008-6145.2019.04.002
[4] 张延平, 陈振超, 孙晓薇, 等. 固相萃取/气相色谱-串联质谱法测定竹笋产地土壤中42种持久性有机污染物 [J]. 分析测试学报, 2018, 37(12): 1431-1438. doi: 10.3969/j.issn.1004-4957.2018.12.005 ZHANG Y P, CHEN Z C, SUN X W, et al. Determination of 42 persistent organic pollutants in geographical original soil of bamboo shoot by gas chromatography-tandem mass spectrometry with solid phase extraction [J]. Journal of Instrumental Analysis, 2018, 37(12): 1431-1438(in Chinese). doi: 10.3969/j.issn.1004-4957.2018.12.005
[5] 张丽萍, 项亚男, 王宗义, 等. 冷冻辅助相分离-气相色谱-串联质谱法检测设施蔬菜与土壤中的邻苯二甲酸酯 [J]. 食品安全质量检测学报, 2020, 11(3): 847-853. ZHANG L P, XIANG Y N, WANG Z Y, et al. Detection of phthalates in vegetables and soil in facilities by freezing-assisted phase separation-gas chromatography-tandem mass spectrometry [J]. Journal of Food Safety & Quality, 2020, 11(3): 847-853(in Chinese).
[6] FANG J, WANG K X. Multiresidual analysis of organochlorine pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine shellfishes by gas chromatography-ion trap mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2007, 35(11): 1607-1613. doi: 10.1016/S1872-2040(07)60095-4 [7] LEE J, LEE S Y, PARK K W, et al. Simultaneous determination of PCBs, OCPs and PAHs in mussel by ultrasound-assisted cloudy extraction and gas chromatography-tandem mass spectrometry [J]. Food Additives & Contaminants:Part A, 2020, 37(10): 1730-1743. [8] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 土壤和沉积物 多氯联苯的测定 气相色谱-质谱法 HJ 743-2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Soil and sediment-Determination of polychlorinated biphenyls(PCBs)-Gas chromatography mass spectrometry. HJ 743-2015[S]. Beijing: China Environment Science Press, 2015(in Chinese). chromatography mass spectrometry[S]. Beijing: China Environmental Science Press, 2015(in Chinese).
[9] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法 HJ 835-2017[S]. 北京: 中国环境出版社, 2017. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Soil and sediment-Determination of organochlorine pesticides-Gas chromatography/Mass spectrometry. HJ 835-2017[S]. Beijing: China Environmental Science Press, 2017(in Chinese).
[10] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 HJ 805—2016[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Soil and Sediment–Determination of polycyclic aromatic hydrocarbon by Gas chromatography-Mass Spectrometry Method. HJ 805—2016[S]. Beijing: China Environment Science Press, 2016(in Chinese). chromatography/Mass spectrometry Method[S]. Beijing: China Environmental Science Press, 2016(in Chinese).
[11] 中华人民共和国生态环境部. 中华人民共和国环保行业标准: 土壤和沉积物 6种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法 HJ 1184-2021[S]. 北京: 中国环境科学出版社, 2021. Environmental Protection Standard of the People's Republic of China. Soil and sediment-Determination of 6 Phthalate Esters(PAEs)-Gas Chromatography/Mass spectrometry HJ 1184-2021[S]. Beijing: China Environment Science Press, 2021 (in Chinese).
[12] LLOMPART M, CELEIRO M, DAGNAC T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment [J]. TrAC Trends in Analytical Chemistry, 2019, 116: 136-150. doi: 10.1016/j.trac.2019.04.029 [13] 罗治定, 万秋月, 王芸, 等. 微波萃取-气相色谱质谱法测定土壤中的多环芳烃 [J]. 天津理工大学学报, 2019, 35(4): 53-57. doi: 10.3969/j.issn.1673-095X.2019.04.012 LUO Z D, WAN Q Y, WANG Y, et al. PAHs in soil extracted by microwave extraction and analyzed by gas chromatography-mass spectrometry [J]. Journal of Tianjin University of Technology, 2019, 35(4): 53-57(in Chinese). doi: 10.3969/j.issn.1673-095X.2019.04.012
[14] LIAO C, YANG P, XIE Z W, et al. Application of GC-triple quadrupole MS in the quantitative confirmation of polycyclic aromatic hydrocarbons and phthalic acid esters in soil [J]. Journal of Chromatographic Science, 2010, 48(3): 161-166. doi: 10.1093/chromsci/48.3.161 [15] HALFADJI A, TOUABET A, PORTET-KOLTALO F, et al. Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in agricultural, urban/residential, and industrial soils, east of Oran (northwest Algeria) [J]. Polycyclic Aromatic Compounds, 2019, 39(4): 299-310. doi: 10.1080/10406638.2017.1326947 [16] CARRO N, GARCÍA I, IGNACIO M, et al. Microwave-assisted solvent extraction and gas chromatography ion trap mass spectrometry procedure for the determination of persistent organochlorine pesticides (POPs) in marine sediment [J]. Analytical and Bioanalytical Chemistry, 2006, 385(5): 901-909. doi: 10.1007/s00216-006-0485-3 [17] RAMÍREZ A, TEIXEIRA M, NEVES A, et al. Development and validation of a solid-liquid extraction with low temperature partitioning (SLE/LTP) method for determination of the herbicide indaziflam in Brazilian soils by high performance liquid chromatography (HPLC-UV/vis) [J]. Journal of Experimental Agriculture International, 2018, 21(3): 1-8. [18] 朱芸, 李世刚, 周圆, 等. 加速溶剂萃取-气相色谱质谱法同时测定土壤及沉积物中34种有机氯农药及18种多氯联苯类化合物 [J]. 环境监控与预警, 2019, 11(3): 30-35. ZHU Y, LI S G, ZHOU Y, et al. Simultaneous determination of 34 organochlorine pesticides and 18 polychlorinated biphenyls in soil and sediment by accelerated solvent extraction-gas chromatography-mass spectrometry [J]. Environmental Monitoring and Forewarning, 2019, 11(3): 30-35(in Chinese).
[19] 廖健, 邓超, 陈怡, 等. 西湖景区土壤中邻苯二甲酸酯污染水平、来源分析和空间分布特征 [J]. 环境科学, 2019, 40(7): 3378-3387. doi: 10.13227/j.hjkx.201812207 LIAO J, DENG C, CHEN Y, et al. Pollution levels, sources, and spatial distribution of phthalate esters in soils of the west lake scenic area [J]. Environmental Science, 2019, 40(7): 3378-3387(in Chinese). doi: 10.13227/j.hjkx.201812207
[20] 刘彬, 闫强, 郭丽, 等. 加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃 [J]. 环境化学, 2019, 38(10): 2212-2221. doi: 10.7524/j.issn.0254-6108.2018112605 LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification [J]. Environmental Chemistry, 2019, 38(10): 2212-2221(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112605
[21] MAGALHÃES E J, NASCENTES C C, AUGUSTI R, et al. Fast determination of benzodiazepines in human urine via liquid-liquid extraction with low temperature partitioning and LC-HRMS [J]. American Journal of Analytical Chemistry, 2012, 3(2): 118-124. doi: 10.4236/ajac.2012.32017 [22] 金梦, 李彦希, 黎玉清, 等. 多环芳烃污染与儿童内暴露负荷的关系 [J]. 环境科学与技术, 2020, 43(1): 212-216. doi: 10.19672/j.cnki.1003-6504.2020.01.031 JIN M, LI Y X, LI Y Q, et al. Relationship between PAHs pollution and exposure levels in children [J]. Environmental Science & Technology, 2020, 43(1): 212-216(in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.01.031
[23] SOUSA D A, GONÇALVES R M, HELENO F F, et al. Chemometric optimization of solid-liquid extraction with low-temperature partition (SLE-LTP) for determination of persistent organic pollutants in Caiman yacare eggs [J]. Microchemical Journal, 2014, 114: 266-272. doi: 10.1016/j.microc.2014.01.012 [24] 刘笑笑, 张菁菁, 李晨曦, 等. 低温微萃取-GCMS/MS联用技术检测食用油中20种持久性污染物 [J]. 食品与发酵工业, 2020, 46(5): 292-298. doi: 10.13995/j.cnki.11-1802/ts.021039 LIU X X, ZHANG J J, LI C X, et al. Determination of 20 persistent pollutants in edible oil by freeze-degreasing-GCMS/MS [J]. Food and Fermentation Industries, 2020, 46(5): 292-298(in Chinese). doi: 10.13995/j.cnki.11-1802/ts.021039
[25] GOULART S M, de QUEIROZ M E L R, NEVES A A, et al. Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection [J]. Talanta, 2008, 75(5): 1320-1323. doi: 10.1016/j.talanta.2008.01.058 [26] GOULART S M, ALVES R D, NEVES A A, et al. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water [J]. Analytica Chimica Acta, 2010, 671(1/2): 41-47.