-
随着我国工业产品的需求量急剧增加,在生产使用化学品的过程中排放污、废水比例也不断增大。对于煤化工、石油等行业废水来说,具有排放量大、废水污染程度高以及含有毒有害性物质等特点,属于典型难降解废水。由于我国工业品生产水平存在差异,部分企业生产技术落后,污染防控和治理措施不完善,低清洁生产水平下排放出的难降解废水,不仅会使河流、湖泊等水生态系统遭到破坏,也会影响周围动植物的生存质量。针对这一问题,我国早在2013年环境保护部印发的《化学品环境风险防控“十二五”规划》中就提到有关行业特征污染物的排放会引发周边环境状况的恶化,此类污染物在环境中降解速度慢,严重威胁人体的健康发展,必须加强特征污染物的环境监测。2018年起开始实施的《中华人民共和国水污染防治法》第二十五条规定国家要完善和加强水环境质量监测与水污染物排放监测。由于废水中的特定污染物对环境危害极大,我国在有毒有害污染物的监测及检测方面愈发重视。但是重金属、农药类有机物等毒性化学品在水体中含量低毒性大,给BOD(biochemical oxygen demand)、生物毒性等指标的检测带来一定的难度。其中BOD检测技术主要分为两部分,一种是以CO2或溶解氧量为定量基础的传统BOD检测技术;另一种是以电信号、光信号为定量基础的微生物传感器技术。以上方法在稳定检测与快速检测等方面具有优势,但不能同时满足。生物毒性检测技术通常受到受试生物的影响,具有检测时间长,重现性差,检测费用高等缺点。这两种传统方法共同存在的问题是,检测用时较长、无法实现在线监测、灵敏度低。为了克服以上问题,以微生物降解及电化学相结合的BOD和毒性一体化检测技术逐渐进入人们的视野,成为BOD、生物毒性等单指标及多指标检测领域的技术研究方向。
水体生化需氧量、生物毒性及其一体化检测技术进展
The development of water biochemical oxygen demand, biological toxicity and its integrated detection technology
-
摘要: 随着国家对环境问题的不断重视,我国水污染状况已有了较大的改善,但为了进一步优化水质并使污水处理厂能够达标排放,水质检测是必要工作。由于在面对污、废水冲击时微生物的理化响应速度较快,因此与微生物相关的水质检测指标通常可以较好地反映出废水特性。本文围绕微生物理化指标,以常见的生化需氧量(biochemical oxygen demand,BOD)、水体生物毒性及其一体化检测方法为探究对象。依次总结了包括传统BOD检测方法、微生物传感器法、微生物燃料电池法以及活性污泥曝气降解法在内的BOD检测技术,以发光细菌、鱼类及藻类等不同营养级生物为主的毒性检测技术,并对以上技术的优缺点进行分析与总结。在综合分析的基础上提出BOD和生物毒性一体化检测技术在实际应用中具有较大发展前景并对技术研究方向进行展望。Abstract: With the continuous attention of the state to environmental problems, the water pollution situation in China has been greatly improved, but in order to further optimize the water quality and make the sewage treatment plant discharge up to the standard, water quality detection is necessary. Because microorganisms have the fastest response to the impact of sewage and wastewater, the water quality indicators related to microorganisms usually can better reflect the characteristics of wastewater. In this paper, the common biochemical oxygen demand (BOD), water biotoxicity and their integrated detection methods at home and abroad are studied, and the advantages and disadvantages of various technologies are analyzed and summarized. On the basis of comprehensive analysis, the integrated detection technology of the BOD and biotoxicity has a great development prospect in practical application, and the research direction of the technology is prospected.
-
Key words:
- biochemical oxygen demand /
- biological toxicity /
- integrated /
- detection technology
-
图 5 不同毒性条件下斑马鱼的BS值曲线[86] a) 对照组;b) 0.1 mg·L−1铊;c) 20 mg·L−1溴氰菊酯;d) 2 mg·L−1溴氰菊酯;e) 30 mg·L−1莠去津;f) 3 mg·L−1莠去津; 圈中为规律异常处
Figure 5. BS value curve of zebrafish under different toxicity conditions [86] a) control group ;b) 0.1 mg·L−1 thallium; c) 20 mg·L−1 deltamethrin; d) 2 mg·L−1 deltamethrin; e) 30 mg·L−1 atrazine; f) 3 mg·L−1 atrazine; In the circle is the abnormal place
表 1 BOD检测技术现状
Table 1. Current situation of BOD detection technology
BOD检测技术
BOD detection technology检测指标
Detection index适用范围
Scope of application优缺点
Advantages and disadvantages传统BOD技术 稀释接种法 二氧化碳/
氧气消耗量市政污水、工业废水、养殖废水、水质监测等 检测结果较为准确,技术较为成熟,但检测用时较长。 压差法 增温法 改进BOD技术 BOD生物
传感器技术光/电信号 模拟染料废水、工业废水 检测用时较短,但操作与制备过程复杂,该技术仍在探究与改进中。 活性污泥
曝气降解法COD变化量 工业废水、市政污水、模拟
生活污水检测时间为2 h,无需专门搭建反应器,减少了实验操作的复杂程度,检测精度较高。 微生物燃料
电池技术电量/电流值 工业废水、水质监测 检测效率与介质、微生物种类有关,检测时间较短,
电极需要定期维护。表 2 几种常见的生物毒性检测方法对比
Table 2. Comparison of several common biological toxicity detection methods
表征指标 检测方法 检测用时 优点 缺点 致死/抑制浓度 鱼类、溞类、蚯蚓等
动物检测方法[87-88]24 、48 、96 h 操作较简便,灵敏度高,
费用较低。检测周期长,具有特异性,
不能实现在线监测。胚胎发育程度 鱼胚胎技术[89] 晶体期:120 —140 h;
出膜期:163 —210 h可实现对遗传
毒性的研究。试验操作复杂,需要具备一定的
专业知识。游动行为强度 鱼类、溞类等水生
动物检测方法[90]实时监测,数天 方法简单 检测周期长;数据分析难度大;
鱼类具有特异性。发光度 发光细菌法与叶绿素
荧光法[91-92]20—120 min/
30—120 min检测时间较短,反应灵敏,
藻类无需预处理。叶绿素荧光试验中需要控制的变量较多,
不适宜广泛应用。电流/电压/电量值 生物燃料电池法[93-94] 15—70 min 检测周期较短,可实现
在线监测。微生物易产生抗性,
会影响检测结果。吸光度 比色法与染色法[95-96] 数天 方便观察 比色法需要基因重组操作较复杂。 微核生成率/
染色体畸变度细胞微核法与SOS
显色法[97-98]数天 可用于探究遗传毒性 微核法的工作量大;不能实现定性、
定量地分析污染物。血液指标 鱼、虾、贝等水生动物检测法[79, 99] 数天 可用于测定累积毒性或
损伤情况。不能定量分析,且具有
特异性。酶活性、耗氧速率、
硝化速率等细菌菌群检测法[100] 60—150 min 可用于活性污泥的
毒性测定检测结果不稳定需
多次测量。 -
[1] BIRUK L N, MORETTON J, FABRIZIO de IORIO A, et al. Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants [J]. Ecotoxicology and Environmental Safety, 2017, 135: 302-311. doi: 10.1016/j.ecoenv.2016.09.024 [2] RASHEED T, BILAL M, NABEEL F, et al. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals [J]. Science of the Total Environment, 2018, 615: 476-485. doi: 10.1016/j.scitotenv.2017.09.126 [3] KIM S, ALIZAMIR M, ZOUNEMAT-KERMANI M, et al. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea [J]. Journal of Environmental Management, 2020, 270: 110834. doi: 10.1016/j.jenvman.2020.110834 [4] ABEYSIRIWARDANA-ARACHCHIGE I S A, NIRMALAKHANDAN N. Predicting removal kinetics of biochemical oxygen demand (BOD) and nutrients in a pilot scale fed-batch algal wastewater treatment system [J]. Algal Research, 2019, 43: 101643. doi: 10.1016/j.algal.2019.101643 [5] JORDAN M A, WELSH D T, JOHN R, et al. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents [J]. Water Research, 2013, 47(2): 841-849. doi: 10.1016/j.watres.2012.11.010 [6] PONOMAREVA O N, ARLYAPOV V A, ALFEROV V A, et al. Microbial biosensors for detection of biological oxygen demand (a Review) [J]. Applied Biochemistry and Microbiology, 2011, 47(1): 1-11. doi: 10.1134/S0003683811010108 [7] JOUANNEAU S, RECOULES L, DURAND M J, et al. Methods for assessing biochemical oxygen demand (BOD): A review [J]. Water Research, 2014, 49: 62-82. doi: 10.1016/j.watres.2013.10.066 [8] SU L, JIA W Z, HOU C J, et al. Microbial biosensors: A review [J]. Biosensors and Bioelectronics, 2011, 26(5): 1788-1799. doi: 10.1016/j.bios.2010.09.005 [9] 曹阳. 稀释与接种法测定BOD5的探讨[J]. 环境工程, 2014, 32(增刊1): 138-140. CAO Y. Discussion on determination of BOD5 by means of dilution and inoculation[J]. Environmental Engineering, 2014, 32(Sup 1): 138-140(in Chinese).
[10] 康小虎, 冷艳, 曾小英, 等. 污水处理活性污泥微生物群落研究进展 [J]. 环境科学与技术, 2020, 43(5): 49-54. KANG X H, LENG Y, ZENG X Y, et al. Review on activated sludge microbial community in sewage treatment [J]. Environmental Science & Technology, 2020, 43(5): 49-54(in Chinese).
[11] HUSSAIN F, YU H W, CHON K, et al. Real-time biomonitoring of oxygen uptake rate and biochemical oxygen demand using a novel optical biogas respirometric system [J]. Journal of Environmental Management, 2021, 277: 111467. doi: 10.1016/j.jenvman.2020.111467 [12] 陈立湘, 柯水洲, 朱佳, 等. 亚铁活化过硫酸钠氧化预处理电镀废水 [J]. 化工环保, 2019, 39(2): 148-152. doi: 10.3969/j.issn.1006-1878.2019.02.006 CHEN L X, KE S Z, ZHU J, et al. Pretreatment of electroplating wastewater by ferrous-activated sodium persulfate oxidation [J]. Environmental Protection of Chemical Industry, 2019, 39(2): 148-152(in Chinese). doi: 10.3969/j.issn.1006-1878.2019.02.006
[13] SARAVANAN N, SASIKUMAR K S K. Waste water treatment process using Nano TiO2 [J]. Materials Today:Proceedings, 2020, 33: 2570-2572. doi: 10.1016/j.matpr.2019.12.143 [14] FAISAL G H, JAEEL A J, AL-GASHAM T S. BOD and COD reduction using porous concrete pavements [J]. Case Studies in Construction Materials, 2020, 13: e00396. doi: 10.1016/j.cscm.2020.e00396 [15] PAHLAVANZADEH S, ZOROUFCHI BENIS K, SHAKERKHATIBI M, et al. Performance and kinetic modeling of an aerated submerged fixed-film bioreactor for BOD and nitrogen removal from municipal wastewater [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6154-6164. doi: 10.1016/j.jece.2018.09.045 [16] RAUD M, TENNO T, JÕGI E, et al. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters [J]. Enzyme and Microbial Technology, 2012, 50(4/5): 221-226. [17] BURGE S R, HRISTOVSKI K D, BURGE R G, et al. Microbial potentiometric sensor: A new approach to longstanding challenges [J]. Science of the Total Environment, 2020, 742: 140528. doi: 10.1016/j.scitotenv.2020.140528 [18] LIU J, MATTIASSON B. Microbial BOD sensors for wastewater analysis [J]. Water Research, 2002, 36(15): 3786-3802. doi: 10.1016/S0043-1354(02)00101-X [19] ARLYAPOV V A, KHARKOVA A S, KURBANALIYEVA S K, et al. Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor [J]. Enzyme and Microbial Technology, 2021, 143: 109706. doi: 10.1016/j.enzmictec.2020.109706 [20] ARLYAPOV V, KAMANIN S, PONAMOREVA O, et al. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii [J]. Enzyme and Microbial Technology, 2012, 50(4/5): 215-220. [21] OOTA S, HATAE Y, AMADA K, et al. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater [J]. Biosensors and Bioelectronics, 2010, 26(1): 262-266. doi: 10.1016/j.bios.2010.06.040 [22] LI Y J, SUN J Z, WANG J F, et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection [J]. Biochemical Engineering Journal, 2017, 123: 86-94. doi: 10.1016/j.bej.2017.03.015 [23] SAKAGUCHI T, KITAGAWA K, ANDO T, et al. A rapid BOD sensing system using luminescent recombinants of Escherichia coli [J]. Biosensors and Bioelectronics, 2003, 19(2): 115-121. doi: 10.1016/S0956-5663(03)00170-2 [24] BOLLELLA P, LUDWIG R, GORTON L. Cellobiose dehydrogenase: Insights on the nanostructuration of electrodes for improved development of biosensors and biofuel cells [J]. Applied Materials Today, 2017, 9: 319-332. doi: 10.1016/j.apmt.2017.08.009 [25] KIM M N, PARK K H. Immobilization of enzymes for Klebsiella BOD sensor [J]. Sensors and Actuators B:Chemical, 2004, 98(1): 1-4. doi: 10.1016/j.snb.2003.07.001 [26] LIU L, DENG L, YONG D M, et al. Native biofilm cultured under controllable condition and used in mediated method for BOD measurement [J]. Talanta, 2011, 84(3): 895-899. doi: 10.1016/j.talanta.2011.02.025 [27] NIYOMDECHA S, LIMBUT W, NUMNUAM A, et al. A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue [J]. Sensors and Actuators B:Chemical, 2017, 241: 473-481. doi: 10.1016/j.snb.2016.10.102 [28] IVANDINI T A, SAEPUDIN E, WARDAH H, et al. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes [J]. Analytical Chemistry, 2012, 84(22): 9825-9832. doi: 10.1021/ac302090y [29] ZAITSEVA A S, ARLYAPOV V A, YUDINA N Y, et al. Use of one-and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii [J]. Enzyme and Microbial Technology, 2017, 98: 43-51. doi: 10.1016/j.enzmictec.2016.12.005 [30] LIU L, ZHAI J F, ZHU C Z, et al. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation [J]. Biosensors and Bioelectronics, 2015, 63: 483-489. doi: 10.1016/j.bios.2014.07.074 [31] ZAITSEVA A S, ARLYAPOV V A, YUDINA N Y, et al. A novel Bod-mediator biosensor based on Ferrocene and Debaryomyces hansenii yeast cells [J]. Applied Biochemistry and Microbiology, 2017, 53(3): 381-387. doi: 10.1134/S0003683817030152 [32] YUDINA N Y, ARLYAPOV V A, CHEPURNOVA M A, et al. A yeast co-culture-based biosensor for determination of waste water contamination levels [J]. Enzyme and Microbial Technology, 2015, 78: 46-53. doi: 10.1016/j.enzmictec.2015.06.008 [33] 徐忠强, 郝瑞霞, 任晓克, 等. 包埋法固定化细胞技术用于三维电极生物膜反应器 [J]. 中国给水排水, 2018, 34(19): 37-42. XU Z Q, HAO R X, REN X K, et al. Application of entrapping method in three-dimensional biofilm-electrode reactor for advanced nitrogen removal [J]. China Water & Wastewater, 2018, 34(19): 37-42(in Chinese).
[34] 李一锦, 夏善红. BOD微生物传感器关键技术及其发展 [J]. 传感器与微系统, 2015, 34(7): 5-10. doi: 10.13873/J.1000-9787(2015)07-0005-06 LI Y J, XIA S H. Key techniques of BOD microbial sensor and its development [J]. Transducer and Microsystem Technologies, 2015, 34(7): 5-10(in Chinese). doi: 10.13873/J.1000-9787(2015)07-0005-06
[35] DHALL P, KUMAR A, JOSHI A, et al. Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor [J]. Sensors and Actuators B:Chemical, 2008, 133(2): 478-483. doi: 10.1016/j.snb.2008.03.010 [36] KWOK N Y, DONG S J, LO W, et al. An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD) [J]. Sensors and Actuators B:Chemical, 2005, 110(2): 289-298. doi: 10.1016/j.snb.2005.02.007 [37] JIA J B, TANG M Y, CHEN X, et al. Co-immobilized microbial biosensor for BOD estimation based on Sol-gel derived composite material [J]. Biosensors and Bioelectronics, 2003, 18(8): 1023-1029. doi: 10.1016/S0956-5663(02)00225-7 [38] SAKAGUCHI T, MORIOKA Y, YAMASAKI M, et al. Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip [J]. Biosensors and Bioelectronics, 2007, 22(7): 1345-1350. doi: 10.1016/j.bios.2006.06.008 [39] ZHAO L, HE L, CHEN S J, et al. Microbial BOD sensors based on Zr(Ⅳ)-loaded collagen fiber [J]. Enzyme and Microbial Technology, 2017, 98: 52-57. doi: 10.1016/j.enzmictec.2016.11.010 [40] ISMAIL Z Z, KHUDHAIR H A. Biotreatment of real petroleum wastewater using non-acclimated immobilized mixed cells in spouted bed bioreactor [J]. Biochemical Engineering Journal, 2018, 131: 17-23. doi: 10.1016/j.bej.2017.12.005 [41] 王永军, 付文强, 薛屏. 利用磁性固定化微生物降解水中微量油 [J]. 化学工程, 2017, 45(9): 7-12. doi: 10.3969/j.issn.1005-9954.2017.09.002 WANG Y J, FU W Q, XUE P. Degradation of trace oil in water using magnetic immobilized microorganism [J]. Chemical Engineering (China), 2017, 45(9): 7-12(in Chinese). doi: 10.3969/j.issn.1005-9954.2017.09.002
[42] ABREVAYA X C, SACCO N J, BONETTO M C, et al. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand [J]. Biosensors and Bioelectronics, 2015, 63: 580-590. doi: 10.1016/j.bios.2014.04.034 [43] KIM M, YOUN S M, SHIN S H, et al. Practical field application of a novel BOD monitoring system [J]. Journal of Environmental Monitoring, 2003, 5(4): 640-643. doi: 10.1039/b304583h [44] KUMAR S S, KUMAR V, KUMAR R, et al. Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications [J]. Fuel, 2019, 255: 115682. doi: 10.1016/j.fuel.2019.115682 [45] GAO Y Y, YIN F J, MA W Q, et al. Rapid detection of biodegradable organic matter in polluted water with microbial fuel cell sensor: Method of partial coulombic yield [J]. Bioelectrochemistry, 2020, 133: 107488. doi: 10.1016/j.bioelechem.2020.107488 [46] PALANISAMY G, JUNG H Y, SADHASIVAM T, et al. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes [J]. Journal of Cleaner Production, 2019, 221: 598-621. doi: 10.1016/j.jclepro.2019.02.172 [47] ALMATOUQ A, BABATUNDE A O, KHAJAH M, et al. Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells [J]. Journal of Water Process Engineering, 2020, 34: 101140. doi: 10.1016/j.jwpe.2020.101140 [48] MOUSAVI M R, GHASEMI S, SANAEE Z, et al. Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications [J]. Journal of Power Sources, 2019, 437: 226891. doi: 10.1016/j.jpowsour.2019.226891 [49] SIM J, REID R, HUSSAIN A, et al. Semi-continuous measurement of oxygen demand in wastewater using biofilm-capacitance [J]. Bioresource Technology Reports, 2018, 3: 231-237. doi: 10.1016/j.biteb.2018.08.009 [50] TRAN T V, LEE I C, KIM K. Electricity production characterization of a Sediment Microbial Fuel Cell using different thermo-treated flat carbon cloth electrodes [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32192-32200. doi: 10.1016/j.ijhydene.2019.10.076 [51] GUO F, LIU Y, LIU H. Hibernations of electroactive bacteria provide insights into the flexible and robust BOD detection using microbial fuel cell-based biosensors [J]. Science of the Total Environment, 2021, 753: 142244. doi: 10.1016/j.scitotenv.2020.142244 [52] CHOUDHURY P, UDAY U S P, MAHATA N, et al. Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 372-389. doi: 10.1016/j.rser.2017.05.098 [53] LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J]. Bioresource Technology, 2012, 114: 275-280. doi: 10.1016/j.biortech.2012.02.116 [54] DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities [J]. Water Research, 2019, 163: 114908. doi: 10.1016/j.watres.2019.114908 [55] 李彦澄, 刘邓平, 李蕾, 等. 难降解有机物微生物共代谢技术研究进展 [J]. 现代化工, 2019, 39(11): 25-28,34. doi: 10.16606/j.cnki.issn0253-4320.2019.11.006 LI Y C, LIU D P, LI L, et al. Advances in co-metabolic technology of refractory organic pollutants and micro-organisms [J]. Modern Chemical Industry, 2019, 39(11): 25-28,34(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2019.11.006
[56] 王梦乔, 周庆, 李爱民. 环境水体微污染有机物及其去除技术研究进展 [J]. 环境污染与防治, 2012, 34(6): 71-76,96. doi: 10.3969/j.issn.1001-3865.2012.06.016 WANG M Q, ZHOU Q, LI A M. A review of organic micro pollutants in aquatic environment and its removal technologies [J]. Environmental Pollution & Control, 2012, 34(6): 71-76,96(in Chinese). doi: 10.3969/j.issn.1001-3865.2012.06.016
[57] 韩严和, 翟跃华, 阮修莉, 等. 微生物降解前后COD差值法快速测定BOD [J]. 环境工程学报, 2014, 8(9): 4035-4039. HAN Y H, ZHAI Y H, RUAN X L, et al. Rapid detection of BOD with difference of COD before and after activated sludge aeration [J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 4035-4039(in Chinese).
[58] JIN X W, LI Z Y, XU P P, et al. Advances in microfluidic biosensors based on luminescent bacteria [J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 181-189. doi: 10.1016/S1872-2040(19)61139-4 [59] MA X Y, WANG X C, NGO H H, et al. Bioassay based luminescent bacteria: Interferences, improvements, and applications [J]. Science of the Total Environment, 2014, 468/469: 1-11. doi: 10.1016/j.scitotenv.2013.08.028 [60] YE Z F, ZHAO Q L, ZHANG M H, et al. Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1351-1354. [61] XU Y Q, LIU S S, LI K, et al. Polyethylene glycol 400 significantly enhances the stimulation of 2-phenoxyethanol on Vibrio qinghaiensis sp.-Q67 bioluminescence [J]. Ecotoxicology and Environmental Safety, 2019, 171: 240-246. doi: 10.1016/j.ecoenv.2018.12.087 [62] MOHSENI M, ABBASZADEH J, MAGHOOL S S, et al. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea [J]. Ecotoxicology and Environmental Safety, 2018, 148: 555-560. doi: 10.1016/j.ecoenv.2017.11.002 [63] MENZ J, SCHNEIDER M, KÜMMERER K. Toxicity testing with luminescent bacteria - Characterization of an automated method for the combined assessment of acute and chronic effects [J]. Chemosphere, 2013, 93(6): 990-996. doi: 10.1016/j.chemosphere.2013.05.067 [64] MA K, QIN Z, ZHAO Z Q, et al. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant [J]. Chemosphere, 2016, 158: 163-170. doi: 10.1016/j.chemosphere.2016.05.052 [65] LIU X X, WANG Y, CHEN H, et al. Acute toxicity and associated mechanisms of four strobilurins in algae [J]. Environmental Toxicology and Pharmacology, 2018, 60: 12-16. doi: 10.1016/j.etap.2018.03.021 [66] ROY B, SURESH P K, CHANDRASEKARAN N, et al. Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus [J]. Chemosphere, 2021, 267: 128923. doi: 10.1016/j.chemosphere.2020.128923 [67] 郐安琪, 赵伟华, 李青云, 等. 典型污染物对藻类生态毒性效应研究进展 [J]. 长江科学院院报, 2015, 32(6): 100-109. KUAI A Q, ZHAO W H, LI Q Y, et al. Research advances in ecotoxicological effects of typical pollutants on algae [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 100-109(in Chinese).
[68] GAN T T, ZHAO N J, YIN G F, et al. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia Closterium based on chlorophyll fluorescence technology [J]. Journal of Photochemistry and Photobiology B:Biology, 2019, 197: 111551. doi: 10.1016/j.jphotobiol.2019.111551 [69] 何莹, 楚梦玮, 刘洋, 等. 铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展 [J]. 生态毒理学报, 2020, 15(4): 56-65. HE Y, CHU M W, LIU Y, et al. Toxicity and the underlying mechanisms of copper and copper oxide nanoparticles to duckweed and algae: A review [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 56-65(in Chinese).
[70] LI Y Y, LIU X L, ZHENG X W, et al. Toxic effects and mechanisms of PFOA and its substitute GenX on the photosynthesis of Chlorella pyrenoidosa [J]. Science of the Total Environment, 2021, 765: 144431. doi: 10.1016/j.scitotenv.2020.144431 [71] SALAS P, ODZAK N, ECHEGOYEN Y, et al. The role of size and protein shells in the toxicity to algal photosynthesis induced by ionic silver delivered from silver nanoparticles [J]. Science of the Total Environment, 2019, 692: 233-239. doi: 10.1016/j.scitotenv.2019.07.237 [72] SURESH KUMAR K, DAHMS H U, LEE J S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence [J]. Ecotoxicology and Environmental Safety, 2014, 104: 51-71. doi: 10.1016/j.ecoenv.2014.01.042 [73] CAMARGO J A, ALONSO A, SALAMANCA A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates [J]. Chemosphere, 2005, 58(9): 1255-1267. doi: 10.1016/j.chemosphere.2004.10.044 [74] YANG C, SONG G, LIM W. A review of the toxicity in fish exposed to antibiotics [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 237: 108840. [75] CARNEY ALMROTH B, CARTINE J, JÖNANDER C, et al. Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111523. doi: 10.1016/j.ecoenv.2020.111523 [76] 陈建华, 谢艳颖, 陈世红, 等. 茶多酚对壬基酚所致斑马鱼急性死亡和遗传损伤的保护作用 [J]. 环境污染与防治, 2018, 40(10): 1126-1131. doi: 10.15985/j.cnki.1001-3865.2018.10.010 CHEN J H, XIE Y Y, CHEN S H, et al. The protection of Danio rerio from acute lethal toxicity and genetic damage induced by nonylphenol through tea polyphenol [J]. Environmental Pollution & Control, 2018, 40(10): 1126-1131(in Chinese). doi: 10.15985/j.cnki.1001-3865.2018.10.010
[77] 朱燕华, 王钟凰, 李昱宗, 等. 基于斑马鱼胚胎急性毒性测试预测食用油毒性可行性研究 [J]. 中国油脂, 2020, 45(12): 71-75. doi: 10.12166/j.zgyz.1003-7969/2020.12.014 ZHU Y H, WANG Z H, LI Y Z, et al. A feasibility study on predicting the toxicity of edible oils using zebrafish embryos [J]. China Oils and Fats, 2020, 45(12): 71-75(in Chinese). doi: 10.12166/j.zgyz.1003-7969/2020.12.014
[78] MALEV O, LOVRIĆ M, STIPANIČEV D, et al. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia) [J]. Environmental Pollution, 2020, 266: 115162. doi: 10.1016/j.envpol.2020.115162 [79] GRABDA E, EINSZPORN-ORECKA T, FELIŃSKA C, et al. Experimental methemoglobinemia in rainbow trout [J]. Acta Ichthyologica et Piscatoria, 1974, 4(2): 43-71. doi: 10.3750/AIP1974.04.2.05 [80] 许阳光, 李学锋, 张文吉, 等. 低浓度醚菊酯对鲤鱼生长及生理生化指标的影响 [J]. 农药, 2005, 44(3): 105-107. doi: 10.3969/j.issn.1006-0413.2005.03.003 XU Y G, LI X F, ZHANG W J, et al. Effects of low concentrations of ethofenprox on physiological and bio- chemical parameters and growth of carp [J]. Pesticides, 2005, 44(3): 105-107(in Chinese). doi: 10.3969/j.issn.1006-0413.2005.03.003
[81] BABIĆ S, BARIŠIĆ J, STIPANIČEV D, et al. Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization [J]. Science of the Total Environment, 2018, 643: 435-450. doi: 10.1016/j.scitotenv.2018.06.124 [82] NEWBOLD L R, SHI X T, HOU Y Q, et al. Swimming performance and behaviour of bighead carp (Hypophthalmichthys nobilis): Application to fish passage and exclusion criteria [J]. Ecological Engineering, 2016, 95: 690-698. doi: 10.1016/j.ecoleng.2016.06.119 [83] ROUNTOS K J, KIM J J, HATTENRATH-LEHMANN T K, et al. Effects of the harmful algae, Alexandrium Catenella and Dinophysis acuminata, on the survival, growth, and swimming activity of early life stages of forage fish [J]. Marine Environmental Research, 2019, 148: 46-56. doi: 10.1016/j.marenvres.2019.04.013 [84] GOUNDADKAR B B, KATTI P. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio) [J]. Environmental Toxicology and Pharmacology, 2017, 54: 146-154. doi: 10.1016/j.etap.2017.07.001 [85] AL SHURAIQI A, AL-HABSI A, BARRY M J. Time-, dose- and transgenerational effects of fluoxetine on the behavioural responses of zebrafish to a conspecific alarm substance [J]. Environmental Pollution, 2021, 270: 116164. doi: 10.1016/j.envpol.2020.116164 [86] ZHAO R B, HU Y Y, LI B, et al. Potential effects of internal physio-ecological changes on the online biomonitoring of water quality: The behavior responses with circadian rhythms of zebrafish (Danio rerio) to different chemicals [J]. Chemosphere, 2020, 239: 124752. doi: 10.1016/j.chemosphere.2019.124752 [87] CHAE Y, AN Y J. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish [J]. Aquatic Toxicology, 2016, 173: 94-104. doi: 10.1016/j.aquatox.2016.01.011 [88] YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida) [J]. Chemosphere, 2019, 227: 489-495. doi: 10.1016/j.chemosphere.2019.04.064 [89] van der VEN L T M, SCHOONEN W G, GROOT R M, et al. The effects of aliphatic alcohols and related acid metabolites in zebrafish embryos - correlations with rat developmental toxicity and with effects in advanced life stages in fish [J]. Toxicology and Applied Pharmacology, 2020, 407: 115249. doi: 10.1016/j.taap.2020.115249 [90] ZHANG Y, MA J, ZHOU S Y, et al. Concentration-dependent toxicity effect of SDBS on swimming behavior of freshwater fishes [J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 77-85. doi: 10.1016/j.etap.2015.05.005 [91] ZHANG Y, GUO X, SI X H, et al. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria [J]. Science of the Total Environment, 2019, 687: 348-354. doi: 10.1016/j.scitotenv.2019.06.137 [92] ZHAO L J, XIE J F, ZHANG H, et al. Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings(Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium [J]. Journal of Integrative Agriculture, 2018, 17(4): 826-836. doi: 10.1016/S2095-3119(17)61717-9 [93] YU D B, BAI L, ZHAI J F, et al. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor [J]. Talanta, 2017, 168: 210-216. doi: 10.1016/j.talanta.2017.03.048 [94] LU H B, YU Y, XI H B, et al. Bacterial response to formaldehyde in an MFC toxicity sensor [J]. Enzyme and Microbial Technology, 2020, 140: 109565. doi: 10.1016/j.enzmictec.2020.109565 [95] 吴立冬, 刘玲, 李丹, 等. 基于亚甲基蓝的水体急性毒性快速检测方法研究 [J]. 分析化学, 2016, 44(9): 1354-1358. doi: 10.11895/j.issn.0253-3820.160245 WU L D, LIU L, LI D, et al. A new microbial biosensor for detecting and monitoring water acute toxicity based on methylene blue [J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1354-1358(in Chinese). doi: 10.11895/j.issn.0253-3820.160245
[96] FUJIMOTO H, WAKABAYASHI M, YAMASHIRO H, et al. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum [J]. Applied Microbiology and Biotechnology, 2006, 73(2): 332-338. doi: 10.1007/s00253-006-0483-6 [97] LIMAN R, ACIKBAS Y, CIĞERCI İ H. Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests [J]. Ecotoxicology and Environmental Safety, 2019, 168: 408-414. doi: 10.1016/j.ecoenv.2018.10.088 [98] ZHANG Z S, WANG X M, LI J F, et al. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells [J]. International Journal of Biological Macromolecules, 2016, 87: 252-255. doi: 10.1016/j.ijbiomac.2016.02.065 [99] XIAN J N, WANG A L, MIAO Y T, et al. Flow cytometric analysis of in vitro cytotoxicity of cadmium in haemocytes from the tiger shrimp, Penaeus monodon [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 46-50. doi: 10.1007/s00128-012-0839-9 [100] 陈亚松, 张超, 陈振国, 等. 基于耗氧速率预警重金属对活性污泥的抑制性 [J]. 环境工程, 2015, 33(2): 27-31,52. CHEN Y S, ZHANG C, CHEN Z G, et al. Early warning of activated sludge inhibitory action by heavy metals based on oxygen uptake rate index [J]. Environmental Engineering, 2015, 33(2): 27-31,52(in Chinese).
[101] XU M, LI J F, LIU B C, et al. The evaluation of long term performance of microbial fuel cell based Pb toxicity shock sensor [J]. Chemosphere, 2021, 270: 129455. doi: 10.1016/j.chemosphere.2020.129455 [102] PAN J Y, HU J P, LIU B C, et al. Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor [J]. Environmental Research, 2020, 181: 108906. doi: 10.1016/j.envres.2019.108906