-
石油炼制和基础化学原料制造过程会产生大量的废催化剂。近年来,石化产品的需求量逐年增加、原料油劣质化和油品质量升级促使炼油催化剂生命周期缩短,卸出量增大。早在2016年,环境保护部联合国家发展和改革委员会、公安部发布《国家危险废物名录(2016年版)》,增加了HW50废催化剂类废物。最新发布的《国家危险废物名录(2021年版)》中,废催化剂主要包括加氢精制、采用钝镍剂的催化裂化、加氢裂化、催化重整等工艺过程产生的废催化剂[1]。
浸出毒性通常指固体废物遇水浸沥,浸出的有害物质迁移转化,对人和生态环境造成的污染。挥发性有机化合物(VOCs)具有较低的沸点,极易挥发和迁移。VOCs具有亲脂性、高毒性和刺激性,在生物体内产生致癌、致畸、致突变以及生理毒性,危害人类健康,属于浸出毒性重点关注的有害物质[2-3]。VOCs是废催化剂危险废物鉴别中重点关注的指标之一。GB5085.3—2007《危险废物鉴别标准浸出毒性鉴别》中涉及多项固体废物浸出液中VOCs指标,超过浓度限值的固体废物是具有浸出毒性特征的危险废物。
由于固体废物浸出液中VOCs种类复杂,含量极低,因此有必要对浸出液进行样品前处理。VOCs的前处理方法主要有吹扫捕集、顶空、溶剂萃取、固相微萃取等。溶剂萃取法成本低,但操作繁琐,需使用大量有机溶剂,提取过程中会损失部分VOCs。顶空法可避免VOCs的损失,测定范围广,操作简便,但不能浓缩VOCs,灵敏度低,无法满足痕量分析的要求。固相微萃取法选择性不高,萃取头种类较少,易受污染而导致萃取效率降低。吹扫捕集是将惰性气体通过吹扫管连续吹扫样品,将样品中的VOCs不断吹入气相,在捕集管中被吸附剂或冷阱捕集,然后迅速加热捕集管,VOCs被解吸,最后进行测定。吹扫捕集灵敏度高、线性范围宽,广泛应用于固体废物VOCs的痕量分析。固体废物浸出液中VOCs的测定方法主要有GB5085.3—2007中推荐的附录O、附录P和附录Q,以及7项固体废物中VOCs的分析标准。前处理技术采用顶空法和吹扫捕集,检测方法有GC-FID[4-7]、GC-MS[4,8-11]、GC-PID[4]、GC-HECD[4]。
目前,国内针对废催化剂浸出液中VOCs的测定鲜有报道。本文选取了3种不同炼油工艺产生的废催化剂,建立了吹扫捕集/气相色谱-质谱法测定废催化剂浸出液中VOCs的分析方法。
吹扫捕集/气相色谱-质谱法测定石油炼制工艺废催化剂浸出液中挥发性有机物
Determination of volatile organic compounds in waste catalyst leaching liquor in petroleum refining process using P&T-GC-MS method
-
摘要: 采用吹扫捕集/气相色谱-质谱法,建立了石油炼制工艺废催化剂浸出液中挥发性有机物(VOCs)的检测方法。该方法标准曲线线性范围为5—200 μg L−1,线性相关系数R2>0.99,方法检出限为0.1—2.0 μg L−1。催化裂化(FCC)废催化剂浸出液、吸附脱硫(S Zorb)废催化剂浸出液和渣油加氢废催化剂浸出液的测定结果显示各组分的相对标准偏差(RSD)分别为0.2%—0.6%、0.7%—3.9%和0.9%—4.3%,基体加标回收率分别为78.7%—161.0%、64.9%—145.6%和74.0%—167.6%。所建立的方法可以满足废催化剂浸出液中VOCs的检测要求。FCC废催化剂浸出液中大部分VOCs的含量低于检出限。S Zorb废催化剂浸出液、渣油加氢废催化剂浸出液检出的化合物分别以C9—C11芳烃和C10—C12芳烃为主。所选取的3种废催化剂浸出液中目标VOCs含量均低于GB5085.3—2007中浸出毒性鉴别限值。Abstract: A method was established for the determination of volatile organic compounds (VOCs) in waste catalyst leaching liquor in petroleum refining process by gas chromatography-mass spectrometry (GC-MS) with purge and trap (P&T) pretreatment. The linear ranges were 5—200 μg L−1 and linear correlation coefficients were more than 0.99. The detection limits were 0.1—2.0 μg L−1. 3 kinds of waste catalysts from the semi synthetic fluid catalytic cracking (FCC), S Zorb and residue hydrotreating refinery process were investigated for leaching experiment. The recoveries of leaching liquors were 78.7%—161.0%, 64.9%—145.6% and 74.0%—167.6% with RSD of 0.2%—0.6%, 0.7%—3.9% and 0.9%—4.3% respectively. This method was suitable for the analysis of VOCs in waste catalyst leaching liquor.The concentration of most VOCs were below the detection limits in waste catalyst leaching liquor from FCC. C9—C11 aromatic hydrocarbons and C10—C12 aromatic hydrocarbons were the main compounds detected in waste catalyst leaching liquors from S Zorb and residue hydrotreating respectively. The contents of target VOCs in the leaching solution of the three waste catalysts selected were all lower than the limiting values for the identification of leaching toxicity in GB5085.3—2007.
-
Key words:
- waste catalyst /
- leaching liquor /
- volatile organic compounds /
- purge and trap
-
表 1 吹扫捕集/气相色谱-质谱法的校准曲线和检出限
Table 1. Calibration curves and detection limits of P&T-GC-MS
VOC种类 Type of VOCs 校准曲线 Calibration curves R2 检出限/(μg·L−1) Detection limits 反-1,2-二氯乙烯 y = 0.120x+0.003 0.9999 0.8 1,1-二氯乙烷 y = 0.246x+0.009 0.9998 0.6 顺-1,2-二氯乙烯 y = 0.196x+0.005 0.9999 0.7 2-丁酮 y = 0.035x+0.008 1.0000 2.0 2,2-二氯丙烷 y = 0.142x 0.9999 1.5 溴氯甲烷 y = 0.102x+0.003 0.9999 0.7 氯仿 y = 0.323x+0.011 0.9998 0.6 二溴氟甲烷 y = 0.176x 1.0000 0.4 1,1,1-三氯乙烷 y = 0.242x−0.002 0.9998 1.2 四氯化碳 y = 0.175x−0.002 0.9997 1.2 1,1-二氯丙烯 y = 0.126x−0.003 0.9999 0.3 苯 y = 0.545x+0.010 0.9999 0.3 1,2-二氯乙烷 y = 0.226x+0.007 0.9998 0.2 三氯乙烯 y = 0.136x+0.002 0.9999 0.3 1,2-二氯丙烷 y = 0.168x 1.0000 0.2 二溴甲烷 y = 0.122x+0.006 0.9991 0.4 一溴二氯甲烷 y = 0.238x−0.008 0.9998 0.2 4-甲基-2-戊酮 y = 0.045x−0.005 0.9987 0.4 甲苯-D8 y = 0.587x+0.010 0.9997 0.3 甲苯 y = 0.449x−0.001 1.0000 0.3 1,1,2-三氯乙烷 y = 0.180x+0.004 0.9997 0.3 四氯乙烯 y = 0.107x+0.003 0.9998 0.4 1,3-二氯丙烷 y = 0.357x+0.005 0.9997 0.2 2-己酮 y = 0.166x−0.012 0.9997 0.3 二溴氯甲烷 y = 0.226x−0.016 0.9995 0.2 1,2-二溴乙烷 y = 0.229x−0.005 1.0000 0.1 氯苯 y = 0.580x+0.010 0.9999 0.2 1,1,1,2-四氯乙烷 y = 0.277x−0.012 0.9997 0.5 乙苯 y = 0.289x−0.007 0.9999 0.3 1,1,2-三氯丙烷 y = 0.483x+0.001 0.9999 0.4 间,对二甲苯 y = 0.733x−0.022 0.9998 0.4 邻二甲苯 y = 0.448x−0.022 0.9996 0.5 苯乙烯 y = 0.660x−0.061 0.9991 0.6 溴仿 y = 0.171x−0.022 0.9972 0.4 异丙苯 y = 1.530x−0.025 0.9997 0.3 4-溴氟苯 y = 0.464x+0.009 0.9995 0.2 1,1,2,2-四氯乙烷 y = 0.567x−0.008 0.9999 1.0 溴苯 y = 0.426x+0.018 0.9990 0.2 1,2,3-三氯丙烷 y = 0.335x+0.007 0.9956 1.6 正丙苯 y = 1.270x+0.022 0.9962 0.6 2-氯甲苯 y = 1.251x+0.011 0.9997 0.3 1,3,5-三甲基苯 y = 1.526x−0.061 1.0000 0.5 4-氯甲苯 y = 1.225x+0.028 0.9995 0.3 叔丁基苯 y = 1.196x−0.082 0.9998 0.3 1,2,4-三甲基苯 y = 1.614x−0.046 1.0000 0.5 仲丁基苯 y = 1.729x−0.074 1.0000 0.5 1,3-二氯苯 y = 0.895x+0.026 0.9997 0.3 4-异丙基甲苯 y = 1.523x−0.061 1.0000 0.6 1,4-二氯苯 y = 0.936x+0.021 0.9999 0.2 正丁基苯 y = 1.356x−0.061 1.0000 0.6 1,2-二氯苯 y = 0.966x+0.022 0.9999 0.4 1,2-二溴-3-氯丙烷 y = 0.180x−0.017 0.9989 0.4 1,2,4-三氯苯 y = 0.720x−0.010 1.0000 0.7 六氯丁二烯 y = 0.234x 1.0000 2.0 萘 y = 2.596x−0.097 0.9984 0.8 1,2,3-三氯苯 y = 0.760x+0.023 0.9992 0.8 注:表中x为目标VOCs含量与相对应内标物含量的比值,y为目标VOCs峰面积与相对应内标物峰面积的比值.
Note: in the table, x is the ratio of target VOCs content to corresponding internal standard content, and y is the ratio of target VOCs peak area to corresponding internal standard peak area.表 2 废催化剂浸出液中VOCs测定结果及精密度
Table 2. Determination results and precisions of VOCs in waste catalyst leaching liquors
VOC种类
Type of VOCsFCC废催化剂浸出液
Waste catalyst leaching
liquor from FCCS Zorb废催化剂浸出液
Waste catalyst leaching
liquor from S Zorb渣油加氢废催化剂浸出液
Waste catalyst leaching liquor
from residue hydrotreatingS/(μg·L−1) 平均值/
(μg·L−1)RSD/% S/(μg·L−1) 平均值/
(μg·L−1)RSD/% S/(μg·L−1) 平均值/
(μg·L−1)RSD/% 氯仿 — — — — — — — — — 四氯化碳 — — — — — — — — — 苯 — — — 0.089 9.3 1.0 0.279 24.1 1.2 三氯乙烯 — — — — — — — — — 甲苯 — — — 0.028 2.40 1.2 1.217 87.3 1.4 四氯乙烯 — — — — — — — — — 氯苯 — — — — — — — — — 乙苯 — — — — — — 0.233 25.0 0.9 间,对二甲苯 — — — 0.064 5.10 1.2 0.405 36.5 1.1 邻二甲苯 — — — 0.163 9.72 1.7 0.470 44.1 1.1 苯乙烯 — — — — — — — — — 异丙苯 — — — — — — 0.083 4.86 1.7 正丙苯 — — — — — — 0.157 4.80 3.3 1,3,5-三甲基苯 0.024 3.89 0.6 0.070 6.47 1.1 0.617 16.9 3.7 叔丁基苯 0.005 3.44 0.2 0.139 3.55 3.9 — — — 1,2,4-三甲基苯 — — — 0.137 18.9 0.7 2.767 67.0 4.1 仲丁基苯 — — — — — — 0.283 7.79 3.6 4-异丙基甲苯 — — — — — — 0.246 6.96 3.5 1,4-二氯苯 — — — — — — — — — 正丁基苯 — — — — — — 0.362 8.45 4.3 1,2-二氯苯 — — — — — — — — — 萘 — — — 1.387 39.2 3.5 13.9 364 3.8 注:S为标准偏差(μg·L−1);表中未列出的VOCs表示其质量浓度低于方法检出限.
Note: S is the standard deviation(μg·L−1);VOCs not listed in the table indicated that their mass concentrations were lower than the detection limits of the method.表 3 废催化剂浸出液基体加标回收率测定结果
Table 3. Determination of recovery rates of waste catalyst leaching liquors by matrix standard addition
VOC
种类
Type of
VOCsFCC废催化剂浸出液
Waste catalyst leaching
liquor from FCCS Zorb废催化剂浸出液
Waste catalyst leaching
liquor from S Zorb渣油加氢废催化剂浸出液
Waste catalyst leaching liquor
from residue hydrotreating实际样品
含量/
(μg·L−)
Content in
practical sample加标后浓度/
(μg·L−1)
Content after
standard addition回收率/%
Recovery
rate实际样品
含量/
(μg·L−1)
Content in
practical sample加标后浓度/
(μg·L−1)
Content after
standard addition回收率/%
Recovery
rate实际样品
含量/
(μg·L−1)
Content in
practical sample加标后浓度/
(μg·L−1)
Content after
standard addition回收率/%
Recovery
rate反-1,2-二氯乙烯 — 80.5 161.0 — 72.8 145.6 — 67.8 135.6 1,1-二氯乙烷 — 68.5 137.0 — 61.1 122.2 — 83.8 167.6 顺-1,2-二氯乙烯 — 63.8 127.6 — 55.9 111.9 — 78.2 156.4 2-丁酮 — 60.7 121.4 — 55.0 109.9 — 82.8 165.6 2,2-二氯丙烷 — 71.4 142.9 — 52.2 104.4 — 77.7 155.5 溴氯甲烷 — 65.9 131.8 — 57.1 114.1 — 80.3 160.5 氯仿 — 54.8 109.7 — 48.1 96.2 — 65.8 131.7 二溴氟
甲烷— 52.3 104.6 — 45.0 90.0 — 62.8 125.5 1,1,1-三氯乙烷 — 54.8 109.7 — 45.1 90.2 — 53.4 106.9 四氯化碳 — 47.9 95.9 — 38.6 77.3 — 43.4 86.8 1,1-二氯丙烯 — 50.1 100.1 — 43.8 87.5 — 55.1 110.2 苯 — 61.2 122.5 9.3 58.3 97.9 24.1 92.0 135.7 1,2-二氯乙烷 — 60.2 120.5 — 52.9 105.9 — 71.3 142.6 三氯乙烯 — 50.5 101.1 — 44.0 88.0 — 57.3 114.7 1,2-二氯丙烷 — 58.3 116.7 — 50.7 101.4 — 66.5 133.1 二溴甲烷 — 59.6 119.3 — 51.7 103.4 — 69.9 139.8 一溴二氯甲烷 — 51.6 103.2 — 44.0 88.0 — 62.6 125.3 4-甲基-2-戊酮 — 62.1 124.2 — 52.6 105.2 — 75.3 150.6 甲苯-D8 — 48.4 96.9 — 42.6 85.3 — 54.9 109.7 甲苯 — 49.6 99.1 2.40 45.1 85.3 87.3 136.2 97.8 1,1,2-三氯乙烷 — 55.4 110.8 — 49.2 98.4 — 65.6 131.1 四氯乙烯 — 41.7 83.4 — 36.0 72.1 — 43.4 86.9 1,3-二氯丙烷 — 56.1 112.1 — 50.3 100.6 — 67.2 134.4 2-己酮 — 52.4 104.9 — 46.4 92.7 — 70.4 140.8 二溴氯
甲烷— 51.6 103.1 — 45.4 90.7 — 61.9 123.8 1,2-二溴乙烷 — 55.4 110.9 — 49.1 98.1 — 67.6 135.1 氯苯 — 52.0 104.1 — 45.2 90.3 — 58.3 116.6 1,1,1,2-四氯乙烷 — 51.8 103.6 — 43.4 86.8 — 56.9 113.8 乙苯 — 46.5 93.0 — 40.3 80.6 25.0 72.9 95.9 1,1,2-三氯丙烷 — 53.6 107.3 — 45.6 91.1 — 60.3 120.6 间,对二甲苯 — 47.0 93.9 5.10 42.5 74.7 36.5 84.6 96.2 邻二甲苯 — 50.9 101.7 9.72 47.7 75.9 44.1 95.9 103.6 苯乙烯 — 48.1 96.2 — 41.3 82.6 — 56.9 113.8 溴仿 — 50.4 100.7 — 43.1 86.3 — 60.8 121.6 异丙苯 — 47.5 95.0 — 41.1 82.2 4.86 52.1 94.5 4-溴氟苯 — 57.9 115.8 — 50.4 100.8 — 64.4 128.7 1,1,2,2-四氯乙烷 — 59.4 118.9 — 49.1 98.3 — 70.4 140.8 溴苯 — 54.9 109.8 — 48.1 96.1 — 58.8 117.6 1,2,3-三氯丙烷 — 45.0 90.1 — 42.6 85.2 — 53.6 107.3 正丙苯 — 42.1 84.3 — 37.5 75.0 4.80 50.7 91.9 2-氯甲苯 — 53.2 106.4 — 46.4 92.7 — 56.2 112.3 1,3,5-三甲基苯 3.89 51.5 95.3 6.47 45.4 77.8 16.9 67.5 101.3 4-氯甲苯 — 51.6 103.3 — 45.3 90.5 — 53.8 107.6 叔丁基苯 3.44 45.3 83.7 3.55 39.7 72.2 — 49.5 99.0 1,2,4-三甲基苯 — 53.0 106.0 18.9 56.5 75.2 67.0 128.1 122.2 仲丁基苯 — 42.5 85.0 — 36.5 72.9 7.79 47.2 78.9 1,3-二
氯苯— 53.9 107.7 — 46.5 92.9 — 54.4 108.8 4-异丙基甲苯 — 45.7 91.4 — 38.9 77.9 6.96 48.4 82.9 1,4-二
氯苯— 53.8 107.7 — 47.2 94.4 — 56.1 112.2 正丁基苯 — 42.3 84.7 — 37.1 74.2 8.45 47.7 78.6 1,2-二氯苯 — 58.5 116.9 — 49.8 99.5 — 59.6 119.2 1,2-二溴-3-氯丙烷 — 59.3 118.6 — 50.6 101.1 — 74.7 149.5 1,2,4-三氯苯 — 60.8 121.6 — 51.6 103.2 — 49.2 98.4 六氯丁
二烯— 39.3 78.7 — 32.5 64.9 — 37.0 74.0 萘 — 64.8 129.5 39.2 85.2 92.1 364 430.2 131.7 1,2,3-三氯苯 — 62.0 124.0 — 52.4 104.9 — 47.1 94.3 注:VOCs的加标量均为50.0 μg·L−1.
Note: adding standard amounts of VOCs were 50.0 μg·L−1. -
[1] 生态环境部, 国家发展和改革委员会, 公安部, 等. 国家危险废物名录(2021年版) [R/OL]. 2020: [000014672/2020-01495]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html. Ministry of Ecology and Environment, National Development and Reform Commission, Ministry of Public Security, et al. National hazardous waste list (2021 Edition) [R/OL]. 2020: [000014672/2020-01495]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_ 810202. html.
[2] 胡桐搏, 张长平, 刘浩, 等. VOCs废气危害及处理技术进展 [J]. 化工管理, 2018(10): 125-127. doi: 10.3969/j.issn.1008-4800.2018.10.088 HU T B, ZHANG C P, LIU H, et al. The damage and development of treatment technique of VOCs [J]. Chemical Enterprise Management, 2018(10): 125-127(in Chinese). doi: 10.3969/j.issn.1008-4800.2018.10.088
[3] 齐安安, 周小平, 雷春妮, 等. 兰州市功能区环境空气中挥发性有机物关键活性组分与来源解析 [J]. 环境化学, 2020, 39(11): 3083-3093. doi: 10.7524/j.issn.0254-6108.2019080402 QI A A, ZHOU X P, LEI C N, et al. Key active components and sources of volatile organic compounds in ambient air of Lanzhou City [J]. Environmental Chemistry, 2020, 39(11): 3083-3093(in Chinese). doi: 10.7524/j.issn.0254-6108.2019080402
[4] 国家环境保护总局, 国家质量监督检验检疫总局. 中华人民共和国国家标准: GB5085.3—2007 [S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration of China, General Administration of quality supervision, inspection and Quarantine of the people's Republic of China. National standards of China: GB5085.3—2007 [S]. Beijing: China Environmental Science Press, 2007.
[5] 中华人民共和国环境保护部. 中华人民共和国环保行业标准: 固体废物 挥发性有机物的测定 顶空-气相色谱法 HJ 760—2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of the People's Republic of China. Environmental Protection Standard of the People's Republic of China: Solid waste—Determination of volatile organic compounds—Headspace-gas chromatography method. HJ 760—2015[S]. Beijing: China Environment Science Press, 2015(in Chinese).
[6] 环境保护部. 中华人民共和国国家环境保护标准: HJ 874—2017 [S]. 北京: 中国环境科学出版社, 2017. Ministry of Environmental Protection. National standards of China: HJ 874—2017 [S]. Beijing: China Environmental Science Press, 2017.
[7] 生态环境部. 中华人民共和国国家环境保护标准: HJ 975—2018 [S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment. National standards of China: HJ 975—2018 [S]. Beijing: China Environmental Science Press, 2018.
[8] 环境保护部. 中华人民共和国国家环境保护标准: HJ 643—2013 [S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection. National standards of China: HJ 643—2013 [S]. Beijing: China Environmental Science Press, 2013.
[9] 环境保护部. 中华人民共和国国家环境保护标准: HJ 713—2014 [S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection. National standards of China: HJ 713—2014 [S]. Beijing: China Environmental Science Press, 2014.
[10] 环境保护部. 中华人民共和国国家环境保护标准: HJ 714—2014 [S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection. National standards of China: HJ 714—2014 [S]. Beijing: China Environmental Science Press, 2014.
[11] 生态环境部. 中华人民共和国国家环境保护标准: HJ 976—2018 [S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment. National standards of China: HJ 976—2018 [S]. Beijing: China Environmental Science Press, 2018.
[12] 王爽, 丁巍, 赵德智, 等. 渣油加氢催化剂酸性、孔结构及分散度对催化活性的影响 [J]. 化工进展, 2015, 34(9): 3317-3322. doi: 10.16085/j.issn.1000-6613.2015.09.017 WANG S, DING W, ZHAO D Z, et al. Influence on catalytic activity in residue hydrogenation by acidity, pore structure and dispersion [J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3317-3322(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.09.017
[13] 陈德阳, 江思雨. 吹扫捕集-气质联用法测定固体废物浸出液中64种挥发性有机物[J]. 环境科学导刊, 2018, 37(增刊1): 142-148. CHEN D Y, JIANG S Y. Determination of sixty-four kinds of volatile organic compounds in solid waste leaching liquor by purging and trapping-gas chromatography and mass spectrometry[J]. Environmental Science Survey, 2018, 37(Sup 1): 142-148(in Chinese).