-
黑炭(BC)是化石燃料和生物质不完全燃烧生成的具有高度芳香化结构的含碳颗粒物[1-2],长期用于油漆、清漆和印刷工业[3],可制备各种机械橡胶制品和轮胎[4],低温凝胶复合建筑材料[5],还可作为复合金属材料增强剂[6]。目前,全球生产的黑炭约810万吨,位居全球工业化学品制造50强[7]。随着能源需求增加、经济发展加速、城市化和工业化加强以及生物质的露天焚烧,BC排放迅速增加,且BC在环境中很难降解[8-9],在大气[10-11]、水体[12-13]和土壤[14-15]中广泛存在。毒理学研究表明,高浓度BC对植物[16]、动物[17-20]、微生物都具有明显毒性作用[21-22]。BC的环境效应引发了人们的广泛关注。本文从黑炭在环境中的分布及环境效应两个方面进行综述(图1),以期能对黑炭的科学研究提供一些帮助。
-
BC是一种难溶性碳基颗粒。大气和土壤是BC产生后直接进入的场所,水体中BC分为颗粒状和溶解状,颗粒状BC来源于气溶胶沉积和土壤雨水冲击,溶解状BC一部分来源于微生物降解和光氧化。BC在大气、水体和土壤中的分布及对影响其含量的因素研究,可以有效地评价环境中BC污染程度并采取针对性措施减轻污染,如减少生物质的燃烧,使用清洁能源等。下面将对这3种不同介质中BC污染情况进行概述。
-
2007年BC被列入全球大气监测战略计划[23],近年来如何实现BC污染降低引起全世界广泛重视[24-25]。Singh等[26]自2009年开始,在英国进行长达7年的BC浓度测定,结果显示BC浓度以每年8%±3%的速度下降。中国是世界上BC排放量最大的国家[27],自2013年开始实施了污染防治计划[28]。Zheng等[29]自2013年6月在武汉市进行长达5.5年大气BC浓度观测。结果显示,武汉市自实施污染防治后,BC浓度以每年7.78%的速度下降,这主要归功于煤炭和生物质燃料排放的减少。同一地区BC的浓度不仅受到煤炭和生物质燃料的影响,还受到交通等化石燃料、地形、温度、湿度和风速的影响。Mousavi等[30]对意大利米兰市中心和郊区BC浓度进行了检测,发现冬季空气中BC浓度较夏季有所升高,在所有季节中,化石燃料燃烧释放的BC,市中心比郊区的浓度更高,因为市中心的汽车尾气排放较多,而生物质燃烧产生的BC,郊区比市中心的浓度能高,主要是由郊区住宅取暖燃烧更多的木炭导致的。同时在一天中化石燃料燃烧释放的BC在交通运输高峰时段达到最大值,生物质燃烧产生的BC在晚上住宅取暖燃烧时达到峰值。Gramsch等[31]研究发现,由于智利四面环山,冬季BC浓度高于夏季,其主要原因之一在于冬季风速低、温差大,造成BC无法扩散进而导致高浓度BC污染。Chen等[32]于2014—2016年在中国徐州地区检测空气中BC浓度,发现两年BC浓度具有明显的季节性变化规律,冬季BC浓度最高,夏季BC浓度最低,其主要原因,一方面夏季雨水多造成空气中颗粒物的沉降,从而导致BC浓度降低,另一方面冬季取暖造成BC浓度升高。
不同地区BC浓度与人口密度,工业发展水平相关。一般来说,发展中国家较发达国家的BC浓度高,城市较郊区的BC浓度高。合肥属于人口密度高、工业密度大的城市,Zhang等[33]在2012年6月—2013年5月检测出合肥空气中BC年平均浓度为(3.5 ± 2.5)µg·m−3,远高于人口稀疏的青藏高原高海拔地区(0.1331 ± 0.055) µg·m−3[34]。印度属于发展中国家,是世界第二大BC排放国[35],BC的主要来源是生物质低效率燃烧,印度城市、半城市、农村和偏远地区BC浓度分别为(7.3 ± 3.7)、(6.2 ± 4.2)、(3.5 ± 2.9)、(1.3 ± 1.2 )µg·m−3 [36]。而德国、西班牙等发达国家城市、农村BC浓度较印度地区显著降低,2009年在德国巴登-符腾堡州测得城市、农村BC浓度分别为(2.07 ± 1.14 )µg·m−3和(1.58 ± 1.20)µg·m−3 [37]。Becerril-Valle等[38],自2016年开始在西班牙城市交通、城市居民区和农村的3个地点进行为期一年的黑炭浓度测定,结果显示3个地点的浓度分别为:(3.70 ± 3.73)、(2.33 ± 2.96)、(2.61 ± 5.04) µg·m−3。
总体来说,大气环境中BC污染已日趋严重,与人类行为具有显著的相关性,并受地理环境和气象因子的影响较大,一般表现为发展中国家比发达国家的BC浓度高,城市比郊区的BC浓度高,冬季比夏季BC浓度高,对于BC污染治理应从改变人类活动方式入手。
-
BC在环境中可以停留上千年[39],全球生产的BC,很少一部分以气溶胶的形式排放到大气中[40],而90%留在大陆上[41]。随着全球变暖、冰川融化、永久冻土层融化,冰川和土层中BC将被释放,输送进入海洋,进而引发海洋中BC污染加重[39]。另一方面,土壤中的BC可以通过生物和非生物过程被部分氧化,导致极性官能团增加和水溶性增强[42],进入到水体中[43]。2016年,全球海洋中溶解黑炭(DBC)浓度已达到600—810 nmol·L−1 [44]。DBC主要来源包括土壤BC光氧化[45]、雨雪冲击[46-48]和气溶胶BC沉积[49]。光氧化是BC光溶解的潜在机制,有研究对燃烧区域土壤进行人造阳光照射,7 d之后发现体系中DBC含量显著升高[23]。有大量研究表明水体中BC含量与季节表现出强烈的相关关系,一部分原因是春夏季表层土壤被雨水冲刷导致水体中BC的含量更高。刚果河水体中DBC浓度和刚果河流量显示出显著的线性相关性, DBC在冬季含量较少[50],环渤海地区DBC浓度夏季平均为(346±157)µg·L−1,冬季为(229±90) µg·L−1 [12]。另一部分原因是雨水的冲击使得沉积物再悬浮,当沉积物重悬到透光区时,暴露在阳光下会导致颗粒有机碳的光诱导溶解使DBC含量升高,周期性的碳悬浮可以促进沉积物中BC分解[51]。气溶胶沉积是BC达到海洋的主要途径之一[52],Bao等[53]发现在沙尘爆发季节大气中水溶性黑碳的干沉降约占中国沿海河流输入量的40%。水体中BC的含量受到人类活动和环境的影响,21世纪工业迅速发展,白令海峡BC浓度明显增加[54]。还有些研究认为温度的升高可以加速BC的生物和非生物氧化,低温可能限制微生物的降解[55],因此北冰洋沉积物中BC的年龄可能更大[39]。沉积物中BC含量与悬浮泥沙的来源和特征如粒度,粉土、黏粒、含沙量有关[56],像黏土矿物这样的细沉积物具有更大的比表面积,通常比淤泥和沙子更有利于吸附BC[57]。Xia等[56]提出在调水过程中,BC含量随着粒径2—50 μm悬移质浓度的增大而增大,而在调沙过程中BC含量随着粒径< 2 μm悬移质浓度的增大而增大。
BC通过各种途径进入水环境中,在水环境中广泛存在。BC可以附着在颗粒物上,并随着水体进行全球性转移,还有一部分BC在迁移过程中沉积到底泥中。总的来说,BC在水体中的含量受人为因素和自然因素的影响。随着工业制造业的发展,BC在全球环境中含量升高。雨雪冲击可携带土壤和空气中BC进入水体,风浪扰动一方面可使水体中已有BC从水体向沉积物中转移,另一方面增加BC光降解,引起水体中DBC含量升高。
-
BC在土壤中有很高的持久性,其在土壤中的浓度被广泛研究,例如:工业用土、农业用土、未被开发用土,而影响土壤中BC浓度和很多因素有关。人为因素导致的土壤中BC含量与经济发展呈正相关,总的来说,在经济发展程度高,人口密度大的地区,尾气排放与煤炭燃烧排放量增加,BC浓度相对较大。城市道路旁土壤BC浓度显著高于地区浓度平均值[59]。城区土壤BC含量相较郊区浓度高,且BC浓度随着与城市距离的增大而减小[59]。黄土高原人口密集的东部和东南部地区BC含量比人口稀少的西北部高[60]。土壤BC含量受到各种自然环境和土壤条件的影响,比如光照,湿度,氧含量、pH和土壤矿物质[61-67]。Huang等[66]研究发现,向阳面的森林土壤BC浓度低于阴面。一方面由于阳面光照充足,微生物繁殖加快,更多微生物分解BC导致BC污染浓度下降[62];另一方面当发生森林火灾时,在潮湿的阴面生物质不完全燃烧因此产生更多BC。同时,有一些研究表明较高的湿度会增加BC在土壤中停留的时间,主要原因在于含水量较高的土壤缺乏氧气,抑制微生物降解导致BC累积。澳大利亚沼泽地湿地土壤BC浓度范围为1—32 mg·g−1C远高于澳大利亚农业土壤BC浓度0.27—5.62 mg·g−1 C[67],稻田中BC的储量较非水田更大[68]。Purakayastha等[69]研究表明,在酸性Planosol中孵育两年后,BC的表面粗糙度和亲水性增加。这意味着对于BC 的降解,土壤pH可能有重要作用,因为pH对于生化过程、酶活性和微生物群落有重要的调控作用。BC的多孔结构使得其很容易和土壤及化学物质结合,增强BC在土壤中的稳定性。Liu等[70]分析了徐州水泥厂附近土壤中BC含量和重金属的关系,得出BC含量与重金属之间存在显著的正相关性,造成这一结果的主要原因可能是BC与重金属缔合导致BC成为重金属的重要载体。Zhan等[60]研究发现黄土高原的黏性黄土较黄土和沙质黄土BC含量更高,一方面黏性黄土中细颗粒物占比较大,与BC结合位点更多,另一方面黏土含量高,可抑制微生物分解,使得BC积累。
相比于空气和水体,土壤中BC含量影响因素更加复杂。由于BC半衰期很长,会长期累积在土壤中。在全球很多地方均有BC检出,且土壤中BC浓度分布呈现城市高于农村的趋势。不同土壤质地会影响BC的稳定性和在土壤中累积量。总的来说,光照充足、湿度小、氧含量高、pH低、土壤中矿物质占比大,有利于微生物生存,加快土壤中BC微生物降解。
-
BC不是一种定义明确的化学物质,热解产生的BC与原料的性质和热解温度有关[71],在热解过程中可以产生稳定自由基,BC表面官能团对BC性质和环境应用起至关重要的作用[72]。BC在环境中无处不在,对植物动物微生物可能产生负面影响,这与BC本身或BC产生的自由基、可溶金属离子或较高的pH有关。BC具有较高的比表面积[75],孔隙率,对重金属、多环芳烃和挥发性有机化合物有较强的吸附能力,可以减弱其向生物群转移,降低对植物、动物、微生物的毒性作用,因而BC也可被用作污染土壤改良剂[74]。BC对植物、动物、微生物与人体的影响与很多因素有关。下面将对BC的在土壤中的环境风险进行简要概述。
-
目前有很多关于BC对植物 影响的报道。BC的加入一方面可以为土壤带来丰富的碳源,可改善土壤pH、土壤酸化情况、土壤孔隙度、土壤储水能力,减少土壤中气体氮损失,增强土壤肥力[75],对土壤退化有一定的改善作用,并可改善植物对营养元素的吸收和利用效率,提高农作物产量[76]。另一方面会吸收土壤中的水分、营养物质或吸附在根表面影响植物对水分和营养物质的吸收,还可能会阻碍一些菌群运动,造成菌群失衡,从而影响植物的生长。有大量研究关于BC与不同污染物结合,降低污染物在植物体内蓄积,增加产量。如在厌氧条件下BC减少了水稻对多环芳烃的生物积累,且添加2% CB300可使得水稻茎叶、谷粒生物量和根生物量有一定程度的增加,进而提高水稻产量[77]。Lou等[78]发现五氯苯酚(PCP)对小麦种子的毒性随着沉积物中BC含量的增加而减小,主要体现在小麦种子发芽率、芽长和根长随着BC含量的增加而呈现一种增加的趋势。Tao等[79]发现BC可吸附磺胺甲噁唑和镉,降低其对植物的毒性作用,在被抗生素和重金属污染的沉积物中加入BC,小白菜的发芽率和根长均有所增加。Marko等[80]发现,BC加入有林丹和六氯苯的沉积物后玉米萌发率和生物量升高,玉米体内积累有机污染物含量降低,对费氏弧菌的毒性降低。Cui等[81]发现,BC的加入降低了水稻对重金属的吸收和转运,并降低了镉和铅在水稻籽粒中蓄积。BC对植物的毒性作用与BC种类、粒径和添加量有关,与植物和土壤种类也有关系。1%柳树BC对大蒜根部生长有促进作作用,而1%小麦秸秆BC却抑制大蒜根部生长[82]。1%—5%的竹子BC加入Cd和Zn污染严重的土壤中对沙柳生长没有显著影响,但7%BC加入后显著抑制沙柳的生长,显著降低沙柳的生物量,可能因为BC的加入提高土壤中C/N比例,增加了微生物与植物对N能源的竞争,从而对植物产生一定抑制作用[83]。Liang等[84]研究发现,土壤酶活性随着BC粒径的减小而升高。Jakob等[85]研究发现,在土壤中添加2%粉末状BC可以抑制植物的生长,而添加2%颗粒状BC可以促进植物的生长,这可能是因为粉末状生物炭拥有较高的比表面积,土壤中的污染物被粉末状BC吸附速度更快。总的来说,BC可对植物产生正面和负面影响,这些不确定性很大程度上是由于BC多样的理化性质和添加量造成的,但目前关于BC对植物毒性的机理部分研究很少,因而开展BC对植物的毒性机理评估具有重大意义。
-
目前关于BC对动物直接和间接的毒性影响研究相对较少,BC对动物的毒性作用与BC种类和添加量、动物和土壤种类有关。不同原料和热解温度产生的BC向人工土壤中添加5%,培养28 d后,爱森尼亚蚯蚓(Eisenia fetida)体重相对于对照组有所降低。以紫苏、芝麻粕和南瓜子为原料,相较于300 ℃下产生的BC,550 ℃下产生的BC对蚯蚓DNA的损伤更严重,土壤中检测出更多的8-羟基脱氧鸟苷和过氧化氢酶,这可能是因为550 ℃热解产生更多的有毒金属[86]。BC的加入在一定范围内可直接对蚯蚓造成危害导致体重降低,还可通过增加微生物活性和吸附有害物质间接增加蚯蚓的体重。Gong等[87]发现,当竹子BC在绿色废弃物中添加剂量达到6%时,可以增强废弃物中纤维素酶、脲酶和碱性磷酸酶活性,对此作者猜测可能是因为BC的加入增强了微生物的活性,加速了绿色废弃物的降解代谢,使得爱森尼亚蚯蚓体重相比对照组有所增加。Zhang等[88]研究了麦秸BC不同添加量对蚯蚓生长的影响,发现1%和3%BC添加可以降低杀虫剂对蚯蚓的毒性作用,增加蚯蚓体重。而当BC添加量为10%时,即使没有杀虫剂存在,蚯蚓生长也会受到明显的抑制作用。这可能是由于较高浓度BC具有很强的保水能力,干燥引发蚯蚓的躲避行为,进而降低了蚯蚓对食物的获取。
BC的各种特性可能潜在地影响微生物的生长、群落结构和活性。BC对微生物存在正面和负面影响。Michał等[82]发现,在沥青加工厂土壤中加入0.5%—1%的BC对念珠菌(Folsomia candida)的繁殖没有影响,而当加入量增加到2.5%—5%时,BC完全抑制了念珠菌的繁殖,而添加小麦秸秆BC和柳树BC,随着剂量的增加,念珠菌幼体数量显著降低。而Lu等[89]发现,与未经BC修正的土壤相比,稻田中添加BC后,土壤中细菌总数增加32%,微生物酶活性提高约30%,而真菌致病性的微生物丰度降低。造成这种差异与BC理化特征的多样性和加入量有关。BC不但对微生物产生不同的影响,还可与微生物通过物理或化学作用反向影响土壤中微生物与其他物质。有研究表明[90],真菌和BC联合作用会吸附更多的多环芳烃。微生物可聚集在BC上,形成微生物-BC复合材料,可提高对多环芳烃(菲、氟、芘)的降解能力[91],还可以降低土壤中可交换重金属的含量,提高土壤的酶活性,改善土壤微生物群落[92]。BC可以作为微生物的保护所,固定微生物,缓解污染物对微生物的毒性作用,从而提高微生物对污染物的去除效率[93]。
BC被广泛用作土壤修复剂,但其对土壤植物、动物、微生物造成的环境效益不可忽视。BC不同的理化性质和添加量对不同的模式生物造成不同的环境效益,可能和BC吸附作用有关。关于BC对动物植物微生物影响机理需要未来进一步研究。
-
生物炭(Biocar)因其低廉的价格和对环境友好的特性,在废水处理系统中广泛使用[94]。生物炭不可避免会进入水体并对水生生物造成一定的毒性作用。总的来说,毒性作用所涉及到的机理部分相关研究少之又少,可能和生物炭渗滤液中酚类有机化合物、多环芳烃、重金属或者生物炭本身高比表面积有关。松木衍生的生物炭水提物抑制了蓝绿藻和真核绿藻的生长,可能和渗滤液中的酚类物质有关[95]。在Oleszczuk等的研究中,芒草、柳条、小麦秸秆产生的生物炭渗滤液中,含有较高浓度的多环芳烃,导致大型溞新生儿死亡率高达100%[96]。而毛竹生物炭渗滤液浓度高达51.2 g·L−1时,对大型溞的致死率只有6.7%,Zhang等[97]指出生物炭对底栖生物的毒性作用并不是生物炭浸出液中的多环芳烃和重金属,而是基于生物炭的高比表面积。近年来,对于BC的水生环境风险日益受到重视。如,Kupryianchyk等[98]研究发现,沉积物中0—3%的BC加入对于钩虾(Gammarus pulex)个体大小无显著差异,但对于水栉水虱(Asellus aquaticus)来说,随着沉积物中BC含量的增加水虱的体长逐渐减小。然而,相比于生物炭,黑炭在水体环境中的毒性作用研究相对较少。本课题组以蛋白核小球藻为模式生物,分析了黑炭在水体中的环境风险,结果见图2。图2A显示的是暴露96 h各组藻类密度,各实验组藻类密度均呈上升趋势,96 h后低中高BC浓度组藻密度低于对照组,这可能与BC的毒性作用有关。叶绿素含量代表光合作用活性[99]。图2B、2C和2D所示,随着暴露时间的延长,藻类中叶绿素 a、叶绿素 b 和胡萝卜素的含量增加,且96 h后低中高BC浓度组叶绿素a和胡萝卜素含量均低于对照组,可能与微藻光合作用抑制有关。由上述数据可以看出BC对微藻具有一定的毒性作用,表现在藻密度和叶绿素含量降低。 Zhang等[100]指出,生物炭对水生生物的毒性与生物炭中含有的自由基含量呈正相关。自由基含量随着生物碳浓度增加而增加,对藻类细胞生长和叶绿素a合成抑制作用越大。也有报道称富含自由基的生物炭可能会显著抑制种子萌发,抑制根/芽的生长,损害植物质膜[101]。
-
许多城市地区的空气污染物BC浓度变化很大[102],这种浓度差异导致人口暴露之间的差异,对城市地区空气污染的评估和流行病学有重要意义[103]。黎巴嫩出租车内部BC平均浓度((5.18±1.9) µg·m−3)低于洛杉矶,主要原因在于黎巴嫩出租车燃料使用汽油,洛杉矶使用柴油[104]。而在远离交通的哈萨克斯坦幼儿园内测得BC浓度为(0.912±0.344)µg·m−3 [107]。还有些研究指出,每天做饭的女性患肺癌的概率更大[106],且在明火烹饪下的儿童患哮喘的风险增加[107]。BC比表面积大,可吸附很多致癌物质,在被吸入肺部后会对人体造成不良影响。目前黑炭对人体的影响涉及很多方面。有研究发现室内BC浓度增加与收缩压的升高呈正相关[108]。BC颗粒还可进入胎盘,导致流产、早产等妊娠并发症[109]。超细BC的暴露会破坏胰蛋白酶的骨架和二级结构,从而影响胰蛋白酶的活性[110],经过100 ng·mL−1 BC处理的肺泡2型上皮细胞7 d,肺泡上皮细胞的分泌功能被破坏并增加致癌的风险[111]。小牛胸腺DNA的复制受到纳米BC的极大抑制[112] 。
-
人类生活不可避免会产生BC,BC在环境中分布广泛引发显著的环境效应,BC的分布与地区经济发展水平有关。一般高度工业化、城市化地区的BC分布更广,检出量更大,污染相对比较严重。BC作为纳米颗粒,它带来的生态和健康风险是不容忽视的。目前新能源的研发使用减少BC的产生和排放已迫在眉睫。
依据目前BC的应用、分布,本文对以下3个方面进行展望:(1)BC可吸附很多污染物,降低环境中游离污染物的量,从而降低污染物对植物动物微生物毒性,但是BC这种纳米材料自身对植物动物微生物的毒性研究很少。(2)作为一种常见的土壤修复剂,表观上可以直接看到BC的添加对植物生长发育有不同的影响,然而对影响植物机理的研究比较少,因此有关机理方面还需要进一步研究拓展。(3)BC对动物的毒性研究相对较少,且对动物毒性机理研究更少,有关BC对动物的毒性机理有待进一步研究。
黑炭在环境中的分布及其环境效应研究进展
Research progress on distribution and risk of black carbon in environments
-
摘要: 黑炭(black carbon,BC)主要来源于化石燃料和生物质不完全燃烧。随着经济快速发展,BC广泛存在于环境中,通过各种途径进入生物体,并对其造成严重危害。本文对BC的分布和生物毒性研究进行了总结概述,以期掌握BC的环境行为和毒性,从而减少环境污染和对生物的伤害。总的来说,BC在土壤、水体和空气等多种环境介质中广泛分布,且在城市化和工业化水平较高的地区分布尤为广泛。另外,BC对生物体的毒性作用受到很多方面的影响,如BC浓度、粒径、生物体种类、土壤类型等。最后,本文从环境健康出发,对现阶段BC研究进行了展望。Abstract: Black carbon (BC) is mainly produced by incomplete combustion of fossil fuels and biomass. With the rapid economic development, BC widely exists in the environment which can invade the organism in a variety of ways and can cause serious risk. In this paper, the distribution and biological toxicity of BC were summarized, in order to understand the environmental behavior and toxicity of BC, thus to reduce environmental pollution and minimize the damage to the organisms. In general, BC was widely distributed in soil, water, air and other environmental media, especially in the areas with high level of urbanization and industrialization. In addition, the toxicity of BC to organisms was affected by many factors, such as BC concentration, particle size, species of organisms, soil type and so on. In the end, this paper looked forward to the current BC research from the perspective of environmental health.
-
Key words:
- black carbon /
- distribution /
- soil /
- atmosphere /
- water /
- environmental risk
-
精神活性物质是指对人类中枢神经系统具有强烈兴奋或抑制作用的成瘾性物质,主要包括:阿片类,可卡因、海洛因和美沙酮等;安非他命类,苯丙胺、甲基苯丙胺和摇头丸等;大麻类,大麻酚和四氢大麻酚等[1]。《2021年世界毒品形势报告》显示,全球超过约2.75亿(15—64岁)人口,在过去一年中至少使用过一次精神活性物质,比2010年增加22%,每年约50万人直接死于精神活性物质的滥用[2],精神活性物质的滥用已经成为全球关注的问题。精神活性物质进入人体后,经过肌体的新陈代谢,以药物母体及其代谢产物的形式排出体外,经由下水道进入污水处理系统。Christian[3]在2001年首次提出,通过检测市政污水中目标物质的浓度与人体药物代谢动力学相结合,可以反推评估该地区精神活性物质的滥用情况及流行率。目前对市政污水中低浓度精神活性物质定性定量检测的主流方法为液相色谱质谱联用法[4]及气相色谱质谱联用法[5]。美国[6-7]、意大利[8]、西班牙[9]、澳大利亚[10]等多个国家已经利用Christian提出的方法开展了多种精神活性物质滥用情况的调查研究。
目标覆盖区域的服务人口数是利用精神活性物质滥用情况反推其滥用量及流行率过程中一个非常重要的参数,其数值的合理性和准确程度极大影响着推算结果的准确度。目前,目标覆盖区域服务人口数的推算方法主要有静态法和动态法,静态法有设计容量法和人口普查法等;动态法有水质参数法,常用的水质参数包括氨氮(NH4-N)、化学需氧量(COD)和总氮(TN)等[11],生物标志物法,常用的生物标志物包括可替宁、肌酸酐和咖啡因等[12]。其中设计容量法更偏向污水处理厂初建时设计的服务人口数,水质参数法和人均用水量法受工业污水占比影响较大,生物标志物法会受到年龄和身体状况等参数的影响,造成吸收和代谢的比例不一致。每种推算方法都有自身的特点和局限性,会给调查结果带来不确定性。因此,服务人口数的估算直接影响目标物滥用量和流行率的反演推算结果。
本研究使用层次分析法,综合多种目标覆盖区域服务人口数的估算方法,建立多参数人口模型,以此获得更为准确的服务人口数,并应用于精神活性物质滥用量和流行率的评估。
1. 材料与方法(Materials and methods)
1.1 实验材料
实验试剂与耗材:甲基苯丙胺(METH)、苯丙胺(AMP)、吗啡(MOR)、O6乙酰吗啡(6MAM)、可替宁(CTN)(1 mg·mL−1,美国Cerilliant公司);甲基苯丙胺-d8(METH-d8)、苯丙胺-d8(AMP-d8)、吗啡-d3(MOR-d3)、O6乙酰吗啡-d3(6MAM-d3)、可替宁-d3(CTN-d3)(100 μg·mL−1,美国Cerilliant公司);甲醇、二氯甲烷、氨水(色谱纯,上海安谱实验科技股份有限公司);盐酸(分析纯,国药集团化学试剂有限公司)、MCX固相萃取柱(3mL, 60 mg,美国Waters公司),玻璃纤维滤膜(0.45 μm,Whatman GF/F);
实验设备:Thermo Scientific TSQ Endura型高效液相色谱质谱仪(美国Thermo Scientific公司),WD-12型氮吹仪(杭州奥盛仪器有限公司),12孔配真空抽干装置固相萃取仪(美国Supelco公司),XW-80A型旋涡混合器(上海精科实业有限公司)。
1.2 样品采集
样品采集于我国西北部某城市主城区污水处理厂(S1、S2、S3、S4)和县(市、区)污水处理厂(X1、X2、X3、X4),以上8个污水处理厂基本覆盖该市所有行政区,覆盖人口数约占全市人口总数的89%。使用自动取样器于2019年冬季和2020年夏季,在污水处理厂进水口采集24 h混合水样约400 mL,样品连续采集一周。精神活性物质的吸食频率存在一定的周期性,连续采集样品一周基本能反映一个地区精神活性物质的滥用情况。样品采集后存放于聚酯(PET)瓶内,加盐酸调节pH≤2,冷冻运输至实验室,待后续分析。
1.3 样品前处理
样品在常温下解冻,经0.45 μm的玻璃纤维滤膜过滤,振荡混合均匀,量取50 mL滤液并添加氘代内标为待测样,固相萃取富集目标物:分别用甲醇、超纯水和pH 2的盐酸水溶液充分活化并平衡固相萃取柱,固相萃取待测样,样品流速控制在每滴1—2 s。富集完成后真空干燥固相萃取柱,依次用甲醇和5%氨水/甲醇溶液(M/M)淋洗洗脱并收集洗脱液。洗脱液在柔和氮气吹至近干后用20%(V/V)甲醇水复溶,转移至色谱瓶进行二次氮吹,最后用200 μL 20%(V/V)甲醇水溶液定容。
1.4 样品分析
使用Thermo Scientific TSQ Endura型高效液相色谱-质谱联用仪进行分析。色谱条件为:Waters XTerra MS C18反相色谱柱(100 mm×2.1 mm, 3.5 μm),流动相A为0.12%甲酸和30 mmol·L−1甲酸铵水溶液,B相为甲醇,流速0.3 mL·min−1,柱温30℃,进样量5 μL。质谱选用电喷雾离子源(ESI),采用ESI(+)模式。目标物特征选择离子、质谱条件及回收率如表1所示。
表 1 目标物特征选择离子、质谱条件及回收率Table 1. Target feature selection ions, mass spectrometry conditions and recovery rate物质Compound 母离子Parent ionm/z 定量离子Quantitative ion 定性离子Qualitative ion 保留时间/minRetention time 回收率/%Recovery rate m/z DP/V CE/V m/z DP/V CE/V MOR 286.0 152.1 82.0 55.0 165.0 82.0 32.0 2.73 88.45±5.22 MOR-d3 289.2 152.1 80.0 55.0 165.0 80.0 41.0 2.72 — 6MAM 328.1 165.3 90.0 36.0 211.3 90.0 36.0 4.35 84.61±3.40 6MAM-d3 331.1 165.1 90.0 38.3 211.2 90.0 25.0 4.36 — METH 150.1 91.1 30.0 16.0 119.1 30.0 16.0 4.62 101.65±4.95 METH-d8 158.2 93.2 40.0 19.0 124.2 40.0 10.3 4.59 — AMP 136.1 91.1 40.0 21.0 119.1 40.0 21.0 4.51 99.00±4.90 AMP-d8 144.2 127.2 40.0 10.3 97.2 40.0 16.0 4.44 — CTN 177.2 80.2 30.0 24.0 101.2 30.0 11.0 3.09 98.31±4.78 CTN-d3 180.1 80.2 30.0 25.0 101.2 30.0 22.4 3.08 — 1.5 质量控制
配制浓度分别为:1.56、3.13、6.25、12.50、25.00、50.00、100.00、150.00、200.00、250.00、300.00 μg·L−1的混合标准溶液,绘制标准曲线,线性良好(R2≥0.999)。
为确定目标物回收率在合理范围内,每12个样品添加一组浓度为100.00 μg·L−1的混合标准溶液为质控样品,结果显示目标物的回收率均在85%—105%之间。同时每12个样品添一组空白实验。
1.6 计算方法
利用水质参数法、生物标志物法和人均用水量法计算服务人口数,具体计算方法如式所示:
PT=CT×FmT (1) 式(1)中,PT是通过水质参数T计算后得到的服务人口数(万人);CT为水质参数T的浓度(mg·L−1);mT是水质参数T的人均产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的水质参数T为氨氮(NH4-N),由于地区、生活习惯、年龄和性别比例的不同,人均排放量的比例亦不相同,结合文献调查结果[13-14]和该市具体情况,人均排放量mT取值为10 g·d−1。
PS=CS×FmS (2) 式(2)中,PS是通过生物标志物S计算后得到的服务人口数(万人);CS为生物标志物S的浓度(mg·L−1);mS是生物标志物的日产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的生物标志物为可替宁,根据该市的烟草消耗、尼古丁含量及其在人体内代谢比例,运用水晶球软件模拟得到该市人均可替宁日产生量为1.47 mg·d−1。
PQ=Q10−3¯Q (3) 式(3)中,PQ是通过人均用水量法计算得到的服务人口数(万人);Q为污水处理厂日均处理污水量(104 m3·d−1);
为该市人均用水量(L·d−1)。¯Q 该市2019年水资源利用公报显示,城镇居民和农村居民人均用水量分别为123 L·d−1和52.9 L·d−1。
检验层次分析法建立模型的合理性与可靠性,需要对判断矩阵一致性进行检验,公式为:
C.I.=λmax−nn−1 (4) C.R.=C.I.R.I. (5) 式(4)和(5)中,C.I.为计算一致性指标;λmax为判断矩阵的最大特征值;n为矩阵阶数;R.I.是判断矩阵特征值的算术平均数,当n=4时取值0.90;C.R.为计算一致性比例。
精神活性物质滥用量及流行率的具体计算公式如下:
Ci,1=Ci,2×Mi,1E×Mi,2 (6) 式(6)中,Ci,1是精神活性物的浓度(μg·L−1);Ci,2是精神活性物质标志物的浓度(μg·L−1);Mi,1和Mi,2分别是精神活性物及其标志物的分子质量;E是精神活性物质标志物的代谢率,甲基苯丙胺的生物标志物为母体,代谢率为42%,海洛因的生物标志物为吗啡,代谢率为77%[15]。
mi=Ci,1×F'P (7) 式(7)中,mi是精神活性物质的人均滥用量(μg·d−1);Ci,1是精神活性物的浓度(10−3 μg·L−1);F'是污水处理厂进水流量(104 m3·d−1);P是服务人口数(万人)。
PR(%)=miR18—60×D×n×100\% (8) 式(8)中,PR为特定时间内,使用某种精神活性物质的人群数量占18——60岁总人数数量的比例;R18—60是该市居民中18—60岁的成年人口比例,经调查该市居民18—60岁成年人口的比例为62.4%;D是精神活性物质使用的典型剂量大小(mg·次−1),n是每天的平均使用频率(次·d−1)。
Bao等[16]研究发现,甲基苯丙胺的典型剂量为(135±80)mg·次−1,平均使用频率为0.31 次·d−1;陈小波,乔静等[17-18]研究发现,海洛因的典型剂量为44 mg·次−1,平均使用频率为2.40 次·d−1。
2. 结果与讨论(Results and discussion)
2.1 污水处理厂服务人口数计算模型
计算所需相关参数大小如表2所示。通过各方法获得的污水处理厂服务人口数,相关数据如表3所示。
表 2 各方法相关参数Table 2. Correlation parameters of each method污水处理厂Sewage treatment plant 日处理污水量/万tDaily amount of sewage treated NH4-N/(mg·L−1) 可替宁/(μg·L−1)Cotinine concentration S1 7.50 67.50 5.88 S2 15.00 60.72 5.29 S3 7.50 49.98 6.21 S4 5.50 49.57 6.07 X1 1.00 107.93 8.05 X2 0.50 30.97 4.46 X3 0.30 50.45 6.34 X4 2.00 28.39 4.14 表 3 污水处理厂服务人口数(万人)Table 3. Population served by sewage treatment plant (ten thousand people)污水处理厂Sewagetreatment plant 专家估算人口Expert estimates of population 设计容量法Design capacity method 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 多参数模型法Multi-parameter model method S1 41.1 30.0 50.6 30 48.8 37.2 S2 52.1 70.0 91.1 54 85.4 68.1 S3 40.7 50.0 37.5 32 42.7 36.3 S4 22.0 27.0 27.3 23 44.7 27.2 X1 4.70 6.00 11.0 5.5 15.3 8.08 X2 2.00 2.30 1.50 1.5 4.80 2.00 X3 1.54 3.00 1.50 1.3 4.00 1.85 X4 5.72 8.00 5.70 5.6 30.7 9.10 专家估算人口是以该市统计年鉴人口数为基础,结合污水处理厂日内污水流量波动、日间污水处理量波动和污水来源组成等因素综合推算得到的污水处理厂服务人口数。Castiglioni等[19]认为专家估算人口是最可靠的服务人口数的估算方法,因此以专家估算人口数为标准判断各方法推算服务人口数的准确度。但是该方法耗时耗力且经济成本较高。设计容量法是一种较为方便和简单获得服务人口数的方法,但是设计容量法获得的人口数更偏向污水处理厂初建设计的服务人口数,获得的服务人口数往往高于实际人口数。但也存在一些污水处理厂满负荷运行,甚至高于污水处理厂初建设计的服务人口数,如S1。而通过水质参数法推算的服务人口数,会受到工业污水的影响,导致主城区服务人口数偏高。主要是因为主城区4个污水处理厂的工业污水业占比较高,导致氨氮数据偏高,从而影响服务人口数的估算。生物标志物法推算的服务人口数也会与真实服务人口数有所差异,这是因为可替宁是尼古丁通过细胞色素P450(CYP)亚型2A6介导产生的代谢物[20],年龄和身体状况的差异,会导致尼古丁代谢为可替宁的比例不同。人均用水量法推算得到的服务人口数明显偏高,主要原因有两个方面,一是污水处理厂的人均用水量数据比实际值高;二是污水处理厂的工业污水占比比登记值高,从而导致推算结果的偏高。
由此可见,使用不同方法推算污水处理厂的服务人口数会得到不同的数据,每种方法都有其自身的特点和局限性,为减小单个计算方法带来的不确定性,本文使用层次分析法对不同参数所占的权重进行计算,建立污水处理厂服务人口数多参数计算模型。
在层次分析中,以可替宁计算得到的服务人口数为基础,其他方法推算的服务人口数与可替宁推算人口的相关系数矩阵(表4)作为依据,使用1—9标度法对重要性进行对比打分,将服务人口数相关系数矩阵转为服务人口数判断矩阵(表5),对不同方法的权重进行赋值。
表 4 服务人口数相关系数矩阵Table 4. Correlation coefficient matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 0.55 0.43 0.83 水质参数法 1 0.53 0.77 生物标志物法 1 0.57 人均用水量法 1 表 5 服务人口数判断矩阵Table 5. Judgment matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 1/4 1/5 1 水质参数法 4 1 1/4 2 生物标志物法 5 4 1 3 人均用水量法 1 1/2 1/3 1 计算得到的多参数人口模型公式为:
P=0.09×P设计容量法+0.23×P水质参数法+0.55×P生物标志物法+0.13×P人均用水量法 (9) 对矩阵的一致性进行检验,得到C.R.为0.078<0.1,认为矩阵的一致性是可以接受的。
各方法计算得到的服务人口数与专家估算服务人口数相关性分析如图1所示。相关性分析中,设计容量法的R2=0.9037,水质参数法的R2=0.8850,生物标志物法的R2=0.9238,人均用水量法的R2=0.8238,多参数模型法的R2=0.9472,其中多参数模型法得到的服务人口数与专家估算的服务人口数相关性最强,更能够准确反映服务人口数。
2.2 全市精神活性物滥用情况
该市2019和2020年甲基苯丙胺和海洛因人均滥用量如图2所示。在2019年和2020年两次精神活性物质滥用调查中,每个样品均检出甲基苯丙胺和吗啡,甲基苯丙胺的人均滥用量分别为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1;海洛因的人均滥用量分别为(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1。以《2019年中国毒品形势报告》、《2020年中国毒情形势报告》和该市公安部门提供的吸食精神活性物质信息为基础,从图2可以看出,该市主要吸食的传统精神活性物质为甲基苯丙胺,这也与《2020年中国毒情形势报告》相一致,同时该地区海洛因滥用量水平低于全国滥用量水平[21-22]。与2019年相比,2020年精神活性物质滥用量有所减小。我国传统精神活性物质以甲基苯丙胺和海洛因为主,因此精神活性物质总滥用量多采用两种物质加和的形式[21-22],该市精神活性物质总滥用情况为2019年(144.30±30.56)μg·d−1和2020年(118.46±37.34)μg·d−1。这与该市公安部门自2019年起加强对精神活性物质制造、贩售和吸食等行为的打击力度有着密不可分的关系。同时考虑到我国有近85%的毒品来源于金三角、金新月和北美等境外地区,2020年新冠疫情致使国内涉毒行为和境外流动受限也是导致精神活性物质滥用量下降的一个原因。对该市八个主城区及县(市、区)的精神活性物质滥用调查发现该市S2和S3的AMP/METH比值高于苯丙胺全部由甲基苯丙胺代谢的理论比值0.05—0.24[23](S2比值为0.99±0.17,S3比值为0.83±0.19),说明这两个地区苯丙胺存在其他来源。我国临床禁止使用苯丙胺类药物,因此可以推断这两个地区存在苯丙胺的滥用。同时该市的滥用量均小于北京、广州和大连等地[24-26],主城区高于县(市、区),说明精神活性物质的滥用情况与经济发展程度有关。这也与Bishop等[27]对小城市和农村精神活性物质的滥用量调查结果相一致,城市化水平和经济发展程度更高以及富裕人口更多的小城市,精神活性物质的滥用量高于农村精神活性物质的滥用量。经济的迅速发展导致人们生活节奏变快,在心理上,人们往往会选择吸食精神活性物质来释放压力,从而使得经济条件发达的地区精神活性物质的滥用情况更严重。
2.3 全市精神活性物质流行率
该市2019和2020年精神活性物质流行率,如表6所示。该市2019和2020年甲基苯丙胺的流行率分别为0.49%±0.17%和0.34%±0.11%,2019和2020年海洛因的流行率分别为0.48‰±0.17‰和0.39‰±0.18‰。该市18—60岁成年人甲基苯丙胺的流行率在Shao等[28]调查的全国15—65岁成年人甲基苯丙胺流行率0.08%—1.25%范围内,低于Pei等[29]对北京甲基苯丙胺流行率的估算。海洛因流行率低于Du等[26]调查的全国主要城市海洛因的平均流行率1.01‰。甲基苯丙胺的流行率与海洛因的流行率相比处于较高水平,这也与近年来甲基苯丙胺缉获量远高于海洛因缉获量这一事实相符合。造成以上现象的主要原因是甲基苯丙胺在中国更容易获得,其合成几乎不受地理位置的限制,从而导致甲基苯丙胺的流行率在某种程度上远高于海洛因的流行率。
表 6 精神活性物质流行率Table 6. Epidemic rate of psychoactive substances污水处理厂Sewage treatment plant 2019年 2020年 METH流行率/%Prevalence rate MOR流行率/‰Prevalence rate METH流行率/%Prevalence rate MOR流行率/‰ Prevalence rate S1 0.46 0.48 0.57 0.56 S2 0.60 0.48 0.41 0.55 S3 0.49 0.39 0.37 0.23 S4 0.45 0.43 0.28 0.35 X1 0.30 0.54 0.24 0.44 X2 0.26 0.19 0.19 0.05 X3 0.50 0.52 0.32 0.60 X4 0.83 0.83 0.35 0.35 3. 结论(Conclusion)
利用设计容量法、水质参数法、生物标志物法和人均用水量法对污水处理厂的服务人口数进行推算,使用层次分析法对权重进行赋值,建立了更合理的污水处理厂服务人口数估算模型,同时评估了2019和2020年该市精神活性物质的滥用量和流行率。结果显示,该市2019和2020年甲基苯丙胺的人均滥用量为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1,流行率为0.49%±0.17%和0.34%±0.11%;海洛因的人均滥用量(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1,流行率为0.43‰±0.10‰和0.41‰±0.18‰。该市2020年较2019年精神活性物质的滥用量有所下降,不仅是因为公安机关加大了对毒品制造、贩卖、吸食的打击力度,也是新冠疫情防疫措施导致毒品的流通受阻所带来的结果,同时经济发展水平在一定程度上也影响了精神活性物质的滥用程度。
-
[1] FANG Y, CHEN Y J, TIAN C G, et al. Cycling and budgets of organic and black carbon in coastal Bohai sea, China: Impacts of natural and anthropogenic perturbations [J]. Global Biogeochemical Cycles, 2018, 32(6): 971-986. doi: 10.1029/2017GB005863 [2] JIAO N Z, LIANG Y T, ZHANG Y Y, et al. Carbon pools and fluxes in the China Seas and adjacent oceans [J]. Science China Earth Sciences, 2018, 61(11): 1535-1563. doi: 10.1007/s11430-018-9190-x [3] AUTRAN P O, DEJOIE C, BORDET P, et al. Revealing the nature of black pigments used on ancient Egyptian papyri from Champollion collection [J]. Analytical Chemistry, 2021, 93(2): 1135-1142. doi: 10.1021/acs.analchem.0c04178 [4] AL-GHAMDI A A, AL-HARTOMY O A, AL-SOLAMY F R, et al. Natural rubber based composites comprising different types of carbon-silica hybrid fillers. comparative study on their electric, dielectric and microwave properties, and possible applications [J]. Materials Sciences and Applications, 2016, 7(6): 295-306. doi: 10.4236/msa.2016.76027 [5] KOKHANOVSKAYA O A, RAZDYAKONOVA G I, LIKHOLOBOV V A. New applications of carbon black. an aerogel-like composite material with heat insulating properties [J]. Procedia Engineering, 2016, 152: 540-544. doi: 10.1016/j.proeng.2016.07.652 [6] KHARE M, GUPTA R K, GHOSH S S, et al. Effect of carbon black on mechanical properties of Al7075/Al2O3/B4C reinforced aluminum composite [J]. Materials Today:Proceedings, 2020, 28: 2498-2500. doi: 10.1016/j.matpr.2020.04.803 [7] International Carbon Black Association (ICBA), 2018. Carbon black user’s guide [2019-3-13]. http://www.carbon-black.org/index.php/carbon-black-uses. [8] ABNEY R B, BERHE A A. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil [J]. Frontiers in Earth Science, 2018, 6: 26. doi: 10.3389/feart.2018.00026 [9] HUANG C C, LU L F, LI Y, et al. Anthropogenic-driven alterations in black carbon sequestration and the structure in a deep plateau lake [J]. Environmental Science & Technology, 2021, 55(9): 6467-6475. [10] CHEN L, ZHANG F, YAN P, et al. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere [J]. Environmental Pollution, 2020, 263: 114507. doi: 10.1016/j.envpol.2020.114507 [11] QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans [J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8 [12] FANG Y, CHEN Y J, HUANG G P, et al. Particulate and dissolved black carbon in coastal China seas: Spatiotemporal variations, dynamics, and potential implications [J]. Environmental Science & Technology, 2021, 55(1): 788-796. [13] QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars [J]. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106 [14] YLI-HALLA M, RIMHANEN K, MUURINEN J, et al. Low black carbon concentration in agricultural soils of central and northern Ethiopia [J]. Science of the Total Environment, 2018, 631/632: 1-6. doi: 10.1016/j.scitotenv.2018.02.284 [15] PANDEY S D, ROCHA L C, PEREIRA G, et al. Properties of carbon particles in archeological and natural Amazon rainforest soils [J]. CATENA, 2020, 194: 104687. doi: 10.1016/j.catena.2020.104687 [16] LI L L, WANG X J, FU H Y, et al. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L. ) [J]. Environmental Science & Technology, 2020, 54(18): 11137-11145. [17] JANSSEN E M L, BECKINGHAM B A. Biological responses to activated carbon amendments in sediment remediation [J]. Environmental Science & Technology, 2013, 47(14): 7595-7607. [18] WANG Y Y, JING X R, LI L L, et al. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 481-488. [19] HALE S E, JENSEN J, JAKOB L, et al. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates [J]. Environmental Science & Technology, 2013, 47(15): 8674-8683. [20] KIM K, WANG C H, OK Y S, et al. Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): Combined toxicity on heart function by nickel and vanadium [J]. Journal of Hazardous Materials, 2019, 363: 127-137. doi: 10.1016/j.jhazmat.2018.09.089 [21] CHEN J, SUN X, LI L, et al. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar [J]. European Journal of Soil Science, 2016, 67(6): 857-867. doi: 10.1111/ejss.12388 [22] TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil [J]. Science of the Total Environment, 2016, 556: 89-97. doi: 10.1016/j.scitotenv.2016.03.010 [23] ALAN ROEBUCK J Jr, PODGORSKI D C Jr, WAGNER S Jr, et al. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments [J]. Organic Geochemistry, 2017, 112: 16-21. doi: 10.1016/j.orggeochem.2017.06.018 [24] CHENG Y, ENGLING G, MOOSMÜLLER H, et al. Light absorption by biomass burning source emissions [J]. Atmospheric Environment, 2016, 127: 347-354. doi: 10.1016/j.atmosenv.2015.12.045 [25] PETZOLD A, OGREN J A, FIEBIG M, et al. Recommendations for reporting “black carbon” measurements [J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8365-8379. doi: 10.5194/acp-13-8365-2013 [26] SINGH V, RAVINDRA K, SAHU L, et al. Trends of atmospheric black carbon concentration over the United Kingdom [J]. Atmospheric Environment, 2018, 178: 148-157. [27] HUANG X, NIE W, DING A. Effects of aerosol-radiation interaction on cloud and precipitation during biomass burning season in East China; proceedings of the Agu Fall Meeting, F, 2016 [C]. [28] MA Z W, LIU R Y, LIU Y, et al. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective [J]. Atmospheric Chemistry and Physics, 2019, 19(10): 6861-6877. doi: 10.5194/acp-19-6861-2019 [29] ZHENG H, KONG S F, ZHENG M M, et al. A 5.5-year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends [J]. Atmospheric Environment, 2020, 232: 117581. doi: 10.1016/j.atmosenv.2020.117581 [30] MOUSAVI A, SOWLAT M H, LOVETT C, et al. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy [J]. Atmospheric Environment, 2019, 203: 252-261. doi: 10.1016/j.atmosenv.2019.02.009 [31] GRAMSCH E, MUÑOZ A, LANGNER J, et al. Black carbon transport between Santiago de Chile and glaciers in the Andes Mountains [J]. Atmospheric Environment, 2020, 232: 117546. doi: 10.1016/j.atmosenv.2020.117546 [32] CHEN W, TIAN H M, ZHAO H M, et al. Multichannel characteristics of absorbing aerosols in Xuzhou and implication of black carbon [J]. Science of the Total Environment, 2020, 714: 136820. doi: 10.1016/j.scitotenv.2020.136820 [33] ZHANG X L, RAO R Z, HUANG Y B, et al. Black carbon aerosols in urban central China [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150: 3-11. doi: 10.1016/j.jqsrt.2014.03.006 [34] ZHU C S, CAO J J, XU B Q, et al. Black carbon aerosols at mt. Muztagh ata, a high-altitude location in the western Tibetan Plateau [J]. Aerosol and Air Quality Research, 2016, 16(3): 752-763. doi: 10.4209/aaqr.2015.04.0255 [35] BOND T C. Bounding the role of black carbon in the climate system —A summary assessment [J]. The Magazine for Environmental Managers, 2011(APRa): 11-13. [36] RANA A, JIA S G, SARKAR S. Black carbon aerosol in India: A comprehensive review of current status and future prospects [J]. Atmospheric Research, 2019, 218: 207-230. doi: 10.1016/j.atmosres.2018.12.002 [37] KUTZNER R D, von SCHNEIDEMESSER E, KUIK F, et al. Long-term monitoring of black carbon across Germany [J]. Atmospheric Environment, 2018, 185: 41-52. doi: 10.1016/j.atmosenv.2018.04.039 [38] BECERRIL-VALLE M, COZ E, PRÉVÔT A S H, et al. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain [J]. Atmospheric Environment, 2017, 169: 36-53. doi: 10.1016/j.atmosenv.2017.09.014 [39] REN P, LIU Y G, SHI X F, et al. Sources and sink of black carbon in Arctic Ocean sediments [J]. Science of the Total Environment, 2019, 689: 912-920. doi: 10.1016/j.scitotenv.2019.06.437 [40] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 273-298. doi: 10.1146/annurev-earth-060614-105038 [41] JONES M W, SANTÍN C, WERF G R, et al. Global fire emissions buffered by the production of pyrogenic carbon [J]. Nature Geoscience, 2019, 12(9): 742-747. doi: 10.1038/s41561-019-0403-x [42] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076 [43] SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration [J]. Soil Biology and Biochemistry, 2010, 42(12): 2345-2347. doi: 10.1016/j.soilbio.2010.09.013 [44] COPPOLA A I, DRUFFEL E R M. Cycling of black carbon in the ocean [J]. Geophysical Research Letters, 2016, 43(9): 4477-4482. doi: 10.1002/2016GL068574 [45] FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: Reactive oxygen species generation and phototransformation [J]. Environmental Science & Technology, 2016, 50(3): 1218-1226. [46] ROEBUCK J A Jr, MEDEIROS P M, LETOURNEAU M L, et al. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha river, GA [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(9): 3055-3071. doi: 10.1029/2018JG004406 [47] BARRETT T E, PONETTE-GONZÁLEZ A G, RINDY J E, et al. Wet deposition of black carbon: A synthesis [J]. Atmospheric Environment, 2019, 213: 558-567. doi: 10.1016/j.atmosenv.2019.06.033 [48] HADLEY O L, CORRIGAN C E, KIRCHSTETTER T W, et al. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat [J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7505-7513. doi: 10.5194/acp-10-7505-2010 [49] QI L, WANG S X. Sources of black carbon in the atmosphere and in snow in the Arctic [J]. Science of the Total Environment, 2019, 691: 442-454. doi: 10.1016/j.scitotenv.2019.07.073 [50] DRAKE T W, WAGNER S, STUBBINS A, et al. Du feu à l'Eau: Source and flux of dissolved black carbon from the Congo river [J]. Global Biogeochemical Cycles, 2020, 34(8): e2020GB006560. doi: 10.1029/2020gb006560 [51] ESTAPA M L, MAYER L M. Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions [J]. Marine Chemistry, 2010, 122(1/2/3/4): 138-147. [52] IDE J, OHASHI M, TAKAHASHI K, et al. Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland [J]. Scientific Reports, 2017, 7: 42102. doi: 10.1038/srep42102 [53] BAO H Y, NIGGEMANN J, LUO L, et al. Aerosols as a source of dissolved black carbon to the ocean [J]. Nature Communications, 2017, 8: 510. doi: 10.1038/s41467-017-00437-3 [54] YANG W F, GUO L D. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves [J]. Continental Shelf Research, 2018, 155: 1-10. doi: 10.1016/j.csr.2018.01.008 [55] NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation [J]. Environmental Science & Technology, 2010, 44(9): 3324-3331. [56] XIA X H, DONG J W, WANG M H, et al. Effect of water-sediment regulation of the Xiaolangdi reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River [J]. Science of the Total Environment, 2016, 571: 487-497. doi: 10.1016/j.scitotenv.2016.07.015 [57] OEN A M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments [J]. Environmental Pollution, 2006, 141(2): 370-380. doi: 10.1016/j.envpol.2005.08.033 [58] WANG X S. Black carbon in urban topsoils of Xuzhou (China): Environmental implication and magnetic proxy [J]. Environmental Monitoring and Assessment, 2010, 163(1/2/3/4): 41-47. [59] LIU S D, XIA X H, ZHAI Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 2011, 82(2): 223-228. doi: 10.1016/j.chemosphere.2010.10.017 [60] ZHAN C L, CAO J J, HAN Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau [J]. Science of the Total Environment, 2013, 465: 255-266. doi: 10.1016/j.scitotenv.2012.10.113 [61] GAO C, KNORR K H, YU Z G, et al. Black carbon deposition and storage in peat soils of the Changbai Mountain, China [J]. Geoderma, 2016, 273: 98-105. doi: 10.1016/j.geoderma.2016.03.021 [62] DELUCA T H, PINGREE M R A, GAO S. Assessing soil biological health in forest soils[M]//Global Change and Forest Soils. Amsterdam: Elsevier, 2019: 397-426. [63] FANG Y Y, SINGH B, SINGH B P. Effect of temperature on biochar priming effects and its stability in soils [J]. Soil Biology and Biochemistry, 2015, 80: 136-145. doi: 10.1016/j.soilbio.2014.10.006 [64] RECHBERGER M V, KLOSS S, RENNHOFER H, et al. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil [J]. Carbon, 2017, 115: 209-219. doi: 10.1016/j.carbon.2016.12.096 [65] WANG J Y, XIONG Z Q, KUZYAKOV Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects [J]. GCB Bioenergy, 2016, 8(3): 512-523. doi: 10.1111/gcbb.12266 [66] HUANG W T, HU Y M, CHANG Y, et al. Effects of fire severity and topography on soil black carbon accumulation in boreal forest of northeast China [J]. Forests, 2018, 9(7): 408. doi: 10.3390/f9070408 [67] QI F J, NAIDU R, BOLAN N S, et al. Pyrogenic carbon in Australian soils [J]. Science of the Total Environment, 2017, 586: 849-857. doi: 10.1016/j.scitotenv.2017.02.064 [68] LEHNDORFF E, ROTH P J, CAO Z H, et al. Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China [J]. Global Change Biology, 2014, 20(6): 1968-1978. doi: 10.1111/gcb.12468 [69] PURAKAYASTHA T J, DAS K C, GASKIN J, et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils [J]. Soil and Tillage Research, 2016, 155: 107-115. doi: 10.1016/j.still.2015.07.011 [70] LIU Y H, WANG X S, GUO Y H, et al. Association of black carbon with heavy metals and magnetic properties in soils adjacent to a cement plant, Xuzhou (China) [J]. Journal of Applied Geophysics, 2019, 170: 103802. doi: 10.1016/j.jappgeo.2019.06.018 [71] TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. doi: 10.1016/j.rser.2015.10.122 [72] LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [73] ANAWAR H M, AKTER F, SOLAIMAN Z M, et al. Biochar: an emerging Panacea for remediation of soil contaminants from mining, industry and sewage wastes [J]. Pedosphere, 2015, 25(5): 654-665. doi: 10.1016/S1002-0160(15)30046-1 [74] CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Effect of biochar on chemical properties of acidic soil [J]. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404. doi: 10.1080/03650340.2013.789870 [75] LU S G, SUN F F, ZONG Y T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol) [J]. CATENA, 2014, 114: 37-44. doi: 10.1016/j.catena.2013.10.014 [76] WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. [77] NI N, WANG F, SONG Y, et al. Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization [J]. Chemosphere, 2018, 196: 288-296. doi: 10.1016/j.chemosphere.2017.12.192 [78] LOU L P, LUO L, WANG W, et al. Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 474-479. [79] TAO Q, LI B, LI Q Q, et al. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata [J]. Science of the Total Environment, 2019, 659: 1448-1456. doi: 10.1016/j.scitotenv.2018.12.361 [80] MARKO G, MALETIĆ S, BELJIN J, et al. Lindane and hexachlorobenzene sequestration and detoxification in contaminated sediment amended with carbon-rich sorbents [J]. Chemosphere, 2019, 220: 1033-1040. doi: 10.1016/j.chemosphere.2019.01.017 [81] CUI L Q, LI L Q, BIAN R J, et al. Short- and long-term biochar cadmium and lead immobilization mechanisms [J]. Environments, 2020, 7(7): 53. doi: 10.3390/environments7070053 [82] MICHAŁ K, OLESZCZUK P. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals [J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1321-1328. doi: 10.1002/etc.3246 [83] LI X G, XIAO J, SALAM M M A, et al. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil [J]. International Journal of Phytoremediation, 2021, 23(4): 387-399. doi: 10.1080/15226514.2020.1816893 [84] LIANG C F, GASCÓ G, FU S L, et al. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size [J]. Soil and Tillage Research, 2016, 164: 3-10. doi: 10.1016/j.still.2015.10.002 [85] JAKOB L, HARTNIK T, HENRIKSEN T, et al. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants [J]. Chemosphere, 2012, 88(6): 699-705. doi: 10.1016/j.chemosphere.2012.03.080 [86] KIM W I, KUNHIKRISHNAN A, GO W R, et al. Influence of various biochars on the survival, growth, and oxidative DNA damage in the earthworm Eisenia fetida [J]. Korean Journal of Environmental Agriculture, 2014, 33(4): 231-238. doi: 10.5338/KJEA.2014.33.4.231 [87] GONG X Q, CAI L L, LI S Y, et al. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost [J]. Ecotoxicology and Environmental Safety, 2018, 156: 197-204. doi: 10.1016/j.ecoenv.2018.03.023 [88] ZHANG Q M, SALEEM M, WANG C X. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione [J]. Science of the Total Environment, 2019, 671: 52-58. doi: 10.1016/j.scitotenv.2019.03.364 [89] LU H F, BIAN R J, XIA X, et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial [J]. Geoderma, 2020, 376: 114567. doi: 10.1016/j.geoderma.2020.114567 [90] ANASONYE F, TAMMEORG P, PARSHINTSEV J, et al. Role of biochar and fungi on PAH sorption to soil rich in organic matter [J]. Water, Air, & Soil Pollution, 2018, 229(2): 1-14. [91] XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324. doi: 10.1016/j.chemosphere.2017.05.020 [92] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil [J]. Environment International, 2020, 137: 105576. doi: 10.1016/j.envint.2020.105576 [93] ZHAO L, XIAO D L, LIU Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494. doi: 10.1016/j.watres.2020.115494 [94] THOMPSON K A, SHIMABUKU K K, KEARNS J P, et al. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment[J]. Environmental Science & Technology, 2016, 50(20): 11253-11262. [95] SMITH C R, BUZAN E M, LEE J W. Potential impact of biochar water-extractable substances on environmental sustainability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 118-126. [96] OLESZCZUK P, JOŚKO I, KUŚMIERZ M. Biochar properties regarding to contaminants content and ecotoxicological assessment [J]. Journal of Hazardous Materials, 2013, 260: 375-382. doi: 10.1016/j.jhazmat.2013.05.044 [97] ZHANG C, SHAN B Q, JIANG S X, et al. Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment [J]. Journal of Hazardous Materials, 2019, 376: 48-57. doi: 10.1016/j.jhazmat.2019.05.010 [98] KUPRYIANCHYK D, REICHMAN E P, RAKOWSKA M I, et al. Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments [J]. Environmental Science & Technology, 2011, 45(19): 8567-8574. [99] EGHBALI BABADI F, BOONNOUN P, NOOTONG K, et al. Identification of carotenoids and chlorophylls from green algae Chlorococcum Humicola and extraction by liquefied dimethyl ether [J]. Food and Bioproducts Processing, 2020, 123: 296-303. doi: 10.1016/j.fbp.2020.07.008 [100] ZHANG Y, YANG R X, SI X H, et al. The adverse effect of biochar to aquatic algae- the role of free radicals [J]. Environmental Pollution, 2019, 248: 429-437. doi: 10.1016/j.envpol.2019.02.055 [101] LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. [102] GU P S, LI H Z, YE Q, et al. Intracity variability of particulate matter exposure is driven by carbonaceous sources and correlated with land-use variables [J]. Environmental Science & Technology, 2018, 52(20): 11545-11554. [103] ALEXEEFF S E, ROY A, SHAN J, et al. High-resolution mapping of traffic related air pollution with Google street view cars and incidence of cardiovascular events within neighborhoods in Oakland, CA [J]. Environmental Health, 2018, 17(1): 38. doi: 10.1186/s12940-018-0382-1 [104] HACHEM M, BENSEFA-COLAS L, LAHOUD N, et al. Cross-sectional study of in-vehicle exposure to ultrafine particles and black carbon inside Lebanese taxicabs [J]. Indoor Air, 2020, 30(6): 1308-1316. doi: 10.1111/ina.12703 [105] AMOUEI TORKMAHALLEH M, ZHIGULINA Z, MADIYAROVA T, et al. Exposure to fine, ultrafine particles and black carbon in two preschools in nur-sultan city of Kazakhstan [J]. Indoor Air, 2021, 31(4): 1178-1186. doi: 10.1111/ina.12799 [106] AMOUEI TORKMAHALLEH M, GORJINEZHAD S, UNLUEVCEK H S, et al. Review of factors impacting emission/concentration of cooking generated particulate matter [J]. Science of the Total Environment, 2017, 586: 1046-1056. doi: 10.1016/j.scitotenv.2017.02.088 [107] WONG G W, BRUNEKREEF B, ELLWOOD P, et al. Cooking fuels and prevalence of asthma: A global analysis of phase three of the International Study of Asthma and Allergies in Childhood (ISAAC) [J]. The Lancet Respiratory Medicine, 2013, 1(5): 386-394. doi: 10.1016/S2213-2600(13)70073-0 [108] RABITO F A, YANG Q, ZHANG H, et al. The association between short-term residential black carbon concentration on blood pressure in a general population sample [J]. Indoor Air, 2020, 30(4): 767-775. doi: 10.1111/ina.12651 [109] ERLANDSSON L, LINDGREN R, NÄÄV Å, et al. Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line [J]. Environmental Pollution, 2020, 264: 114790. doi: 10.1016/j.envpol.2020.114790 [110] LI X X, HUO M L, ZHAO L N, et al. Study of the effects of ultrafine carbon black on the structure and function of trypsin [J]. Journal of Molecular Recognition, 2021, 34(2): e2874. [111] LIU S Y, YANG R J, CHEN Y J, et al. Development of human lung induction models for air pollutants' toxicity assessment [J]. Environmental Science & Technology, 2021, 55(4): 2440-2451. [112] LIAN F, YU W C, ZHOU Q X, et al. Size matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments [J]. Environmental Science & Technology, 2020, 54(14): 8821-8829. -