[1] FANG Y, CHEN Y J, TIAN C G, et al. Cycling and budgets of organic and black carbon in coastal Bohai sea, China: Impacts of natural and anthropogenic perturbations [J]. Global Biogeochemical Cycles, 2018, 32(6): 971-986. doi: 10.1029/2017GB005863
[2] JIAO N Z, LIANG Y T, ZHANG Y Y, et al. Carbon pools and fluxes in the China Seas and adjacent oceans [J]. Science China Earth Sciences, 2018, 61(11): 1535-1563. doi: 10.1007/s11430-018-9190-x
[3] AUTRAN P O, DEJOIE C, BORDET P, et al. Revealing the nature of black pigments used on ancient Egyptian papyri from Champollion collection [J]. Analytical Chemistry, 2021, 93(2): 1135-1142. doi: 10.1021/acs.analchem.0c04178
[4] AL-GHAMDI A A, AL-HARTOMY O A, AL-SOLAMY F R, et al. Natural rubber based composites comprising different types of carbon-silica hybrid fillers. comparative study on their electric, dielectric and microwave properties, and possible applications [J]. Materials Sciences and Applications, 2016, 7(6): 295-306. doi: 10.4236/msa.2016.76027
[5] KOKHANOVSKAYA O A, RAZDYAKONOVA G I, LIKHOLOBOV V A. New applications of carbon black. an aerogel-like composite material with heat insulating properties [J]. Procedia Engineering, 2016, 152: 540-544. doi: 10.1016/j.proeng.2016.07.652
[6] KHARE M, GUPTA R K, GHOSH S S, et al. Effect of carbon black on mechanical properties of Al7075/Al2O3/B4C reinforced aluminum composite [J]. Materials Today:Proceedings, 2020, 28: 2498-2500. doi: 10.1016/j.matpr.2020.04.803
[7] International Carbon Black Association (ICBA), 2018. Carbon black user’s guide [2019-3-13]. http://www.carbon-black.org/index.php/carbon-black-uses.
[8] ABNEY R B, BERHE A A. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil [J]. Frontiers in Earth Science, 2018, 6: 26. doi: 10.3389/feart.2018.00026
[9] HUANG C C, LU L F, LI Y, et al. Anthropogenic-driven alterations in black carbon sequestration and the structure in a deep plateau lake [J]. Environmental Science & Technology, 2021, 55(9): 6467-6475.
[10] CHEN L, ZHANG F, YAN P, et al. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere [J]. Environmental Pollution, 2020, 263: 114507. doi: 10.1016/j.envpol.2020.114507
[11] QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans [J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8
[12] FANG Y, CHEN Y J, HUANG G P, et al. Particulate and dissolved black carbon in coastal China seas: Spatiotemporal variations, dynamics, and potential implications [J]. Environmental Science & Technology, 2021, 55(1): 788-796.
[13] QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars [J]. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106
[14] YLI-HALLA M, RIMHANEN K, MUURINEN J, et al. Low black carbon concentration in agricultural soils of central and northern Ethiopia [J]. Science of the Total Environment, 2018, 631/632: 1-6. doi: 10.1016/j.scitotenv.2018.02.284
[15] PANDEY S D, ROCHA L C, PEREIRA G, et al. Properties of carbon particles in archeological and natural Amazon rainforest soils [J]. CATENA, 2020, 194: 104687. doi: 10.1016/j.catena.2020.104687
[16] LI L L, WANG X J, FU H Y, et al. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L. ) [J]. Environmental Science & Technology, 2020, 54(18): 11137-11145.
[17] JANSSEN E M L, BECKINGHAM B A. Biological responses to activated carbon amendments in sediment remediation [J]. Environmental Science & Technology, 2013, 47(14): 7595-7607.
[18] WANG Y Y, JING X R, LI L L, et al. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 481-488.
[19] HALE S E, JENSEN J, JAKOB L, et al. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates [J]. Environmental Science & Technology, 2013, 47(15): 8674-8683.
[20] KIM K, WANG C H, OK Y S, et al. Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): Combined toxicity on heart function by nickel and vanadium [J]. Journal of Hazardous Materials, 2019, 363: 127-137. doi: 10.1016/j.jhazmat.2018.09.089
[21] CHEN J, SUN X, LI L, et al. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar [J]. European Journal of Soil Science, 2016, 67(6): 857-867. doi: 10.1111/ejss.12388
[22] TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil [J]. Science of the Total Environment, 2016, 556: 89-97. doi: 10.1016/j.scitotenv.2016.03.010
[23] ALAN ROEBUCK J Jr, PODGORSKI D C Jr, WAGNER S Jr, et al. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments [J]. Organic Geochemistry, 2017, 112: 16-21. doi: 10.1016/j.orggeochem.2017.06.018
[24] CHENG Y, ENGLING G, MOOSMÜLLER H, et al. Light absorption by biomass burning source emissions [J]. Atmospheric Environment, 2016, 127: 347-354. doi: 10.1016/j.atmosenv.2015.12.045
[25] PETZOLD A, OGREN J A, FIEBIG M, et al. Recommendations for reporting “black carbon” measurements [J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8365-8379. doi: 10.5194/acp-13-8365-2013
[26] SINGH V, RAVINDRA K, SAHU L, et al. Trends of atmospheric black carbon concentration over the United Kingdom [J]. Atmospheric Environment, 2018, 178: 148-157.
[27] HUANG X, NIE W, DING A. Effects of aerosol-radiation interaction on cloud and precipitation during biomass burning season in East China; proceedings of the Agu Fall Meeting, F, 2016 [C].
[28] MA Z W, LIU R Y, LIU Y, et al. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective [J]. Atmospheric Chemistry and Physics, 2019, 19(10): 6861-6877. doi: 10.5194/acp-19-6861-2019
[29] ZHENG H, KONG S F, ZHENG M M, et al. A 5.5-year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends [J]. Atmospheric Environment, 2020, 232: 117581. doi: 10.1016/j.atmosenv.2020.117581
[30] MOUSAVI A, SOWLAT M H, LOVETT C, et al. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy [J]. Atmospheric Environment, 2019, 203: 252-261. doi: 10.1016/j.atmosenv.2019.02.009
[31] GRAMSCH E, MUÑOZ A, LANGNER J, et al. Black carbon transport between Santiago de Chile and glaciers in the Andes Mountains [J]. Atmospheric Environment, 2020, 232: 117546. doi: 10.1016/j.atmosenv.2020.117546
[32] CHEN W, TIAN H M, ZHAO H M, et al. Multichannel characteristics of absorbing aerosols in Xuzhou and implication of black carbon [J]. Science of the Total Environment, 2020, 714: 136820. doi: 10.1016/j.scitotenv.2020.136820
[33] ZHANG X L, RAO R Z, HUANG Y B, et al. Black carbon aerosols in urban central China [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150: 3-11. doi: 10.1016/j.jqsrt.2014.03.006
[34] ZHU C S, CAO J J, XU B Q, et al. Black carbon aerosols at mt. Muztagh ata, a high-altitude location in the western Tibetan Plateau [J]. Aerosol and Air Quality Research, 2016, 16(3): 752-763. doi: 10.4209/aaqr.2015.04.0255
[35] BOND T C. Bounding the role of black carbon in the climate system —A summary assessment [J]. The Magazine for Environmental Managers, 2011(APRa): 11-13.
[36] RANA A, JIA S G, SARKAR S. Black carbon aerosol in India: A comprehensive review of current status and future prospects [J]. Atmospheric Research, 2019, 218: 207-230. doi: 10.1016/j.atmosres.2018.12.002
[37] KUTZNER R D, von SCHNEIDEMESSER E, KUIK F, et al. Long-term monitoring of black carbon across Germany [J]. Atmospheric Environment, 2018, 185: 41-52. doi: 10.1016/j.atmosenv.2018.04.039
[38] BECERRIL-VALLE M, COZ E, PRÉVÔT A S H, et al. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain [J]. Atmospheric Environment, 2017, 169: 36-53. doi: 10.1016/j.atmosenv.2017.09.014
[39] REN P, LIU Y G, SHI X F, et al. Sources and sink of black carbon in Arctic Ocean sediments [J]. Science of the Total Environment, 2019, 689: 912-920. doi: 10.1016/j.scitotenv.2019.06.437
[40] BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 273-298. doi: 10.1146/annurev-earth-060614-105038
[41] JONES M W, SANTÍN C, WERF G R, et al. Global fire emissions buffered by the production of pyrogenic carbon [J]. Nature Geoscience, 2019, 12(9): 742-747. doi: 10.1038/s41561-019-0403-x
[42] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076
[43] SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration [J]. Soil Biology and Biochemistry, 2010, 42(12): 2345-2347. doi: 10.1016/j.soilbio.2010.09.013
[44] COPPOLA A I, DRUFFEL E R M. Cycling of black carbon in the ocean [J]. Geophysical Research Letters, 2016, 43(9): 4477-4482. doi: 10.1002/2016GL068574
[45] FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: Reactive oxygen species generation and phototransformation [J]. Environmental Science & Technology, 2016, 50(3): 1218-1226.
[46] ROEBUCK J A Jr, MEDEIROS P M, LETOURNEAU M L, et al. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha river, GA [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(9): 3055-3071. doi: 10.1029/2018JG004406
[47] BARRETT T E, PONETTE-GONZÁLEZ A G, RINDY J E, et al. Wet deposition of black carbon: A synthesis [J]. Atmospheric Environment, 2019, 213: 558-567. doi: 10.1016/j.atmosenv.2019.06.033
[48] HADLEY O L, CORRIGAN C E, KIRCHSTETTER T W, et al. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat [J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7505-7513. doi: 10.5194/acp-10-7505-2010
[49] QI L, WANG S X. Sources of black carbon in the atmosphere and in snow in the Arctic [J]. Science of the Total Environment, 2019, 691: 442-454. doi: 10.1016/j.scitotenv.2019.07.073
[50] DRAKE T W, WAGNER S, STUBBINS A, et al. Du feu à l'Eau: Source and flux of dissolved black carbon from the Congo river [J]. Global Biogeochemical Cycles, 2020, 34(8): e2020GB006560. doi: 10.1029/2020gb006560
[51] ESTAPA M L, MAYER L M. Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions [J]. Marine Chemistry, 2010, 122(1/2/3/4): 138-147.
[52] IDE J, OHASHI M, TAKAHASHI K, et al. Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland [J]. Scientific Reports, 2017, 7: 42102. doi: 10.1038/srep42102
[53] BAO H Y, NIGGEMANN J, LUO L, et al. Aerosols as a source of dissolved black carbon to the ocean [J]. Nature Communications, 2017, 8: 510. doi: 10.1038/s41467-017-00437-3
[54] YANG W F, GUO L D. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves [J]. Continental Shelf Research, 2018, 155: 1-10. doi: 10.1016/j.csr.2018.01.008
[55] NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation [J]. Environmental Science & Technology, 2010, 44(9): 3324-3331.
[56] XIA X H, DONG J W, WANG M H, et al. Effect of water-sediment regulation of the Xiaolangdi reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River [J]. Science of the Total Environment, 2016, 571: 487-497. doi: 10.1016/j.scitotenv.2016.07.015
[57] OEN A M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments [J]. Environmental Pollution, 2006, 141(2): 370-380. doi: 10.1016/j.envpol.2005.08.033
[58] WANG X S. Black carbon in urban topsoils of Xuzhou (China): Environmental implication and magnetic proxy [J]. Environmental Monitoring and Assessment, 2010, 163(1/2/3/4): 41-47.
[59] LIU S D, XIA X H, ZHAI Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 2011, 82(2): 223-228. doi: 10.1016/j.chemosphere.2010.10.017
[60] ZHAN C L, CAO J J, HAN Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau [J]. Science of the Total Environment, 2013, 465: 255-266. doi: 10.1016/j.scitotenv.2012.10.113
[61] GAO C, KNORR K H, YU Z G, et al. Black carbon deposition and storage in peat soils of the Changbai Mountain, China [J]. Geoderma, 2016, 273: 98-105. doi: 10.1016/j.geoderma.2016.03.021
[62] DELUCA T H, PINGREE M R A, GAO S. Assessing soil biological health in forest soils[M]//Global Change and Forest Soils. Amsterdam: Elsevier, 2019: 397-426.
[63] FANG Y Y, SINGH B, SINGH B P. Effect of temperature on biochar priming effects and its stability in soils [J]. Soil Biology and Biochemistry, 2015, 80: 136-145. doi: 10.1016/j.soilbio.2014.10.006
[64] RECHBERGER M V, KLOSS S, RENNHOFER H, et al. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil [J]. Carbon, 2017, 115: 209-219. doi: 10.1016/j.carbon.2016.12.096
[65] WANG J Y, XIONG Z Q, KUZYAKOV Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects [J]. GCB Bioenergy, 2016, 8(3): 512-523. doi: 10.1111/gcbb.12266
[66] HUANG W T, HU Y M, CHANG Y, et al. Effects of fire severity and topography on soil black carbon accumulation in boreal forest of northeast China [J]. Forests, 2018, 9(7): 408. doi: 10.3390/f9070408
[67] QI F J, NAIDU R, BOLAN N S, et al. Pyrogenic carbon in Australian soils [J]. Science of the Total Environment, 2017, 586: 849-857. doi: 10.1016/j.scitotenv.2017.02.064
[68] LEHNDORFF E, ROTH P J, CAO Z H, et al. Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China [J]. Global Change Biology, 2014, 20(6): 1968-1978. doi: 10.1111/gcb.12468
[69] PURAKAYASTHA T J, DAS K C, GASKIN J, et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils [J]. Soil and Tillage Research, 2016, 155: 107-115. doi: 10.1016/j.still.2015.07.011
[70] LIU Y H, WANG X S, GUO Y H, et al. Association of black carbon with heavy metals and magnetic properties in soils adjacent to a cement plant, Xuzhou (China) [J]. Journal of Applied Geophysics, 2019, 170: 103802. doi: 10.1016/j.jappgeo.2019.06.018
[71] TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. doi: 10.1016/j.rser.2015.10.122
[72] LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
[73] ANAWAR H M, AKTER F, SOLAIMAN Z M, et al. Biochar: an emerging Panacea for remediation of soil contaminants from mining, industry and sewage wastes [J]. Pedosphere, 2015, 25(5): 654-665. doi: 10.1016/S1002-0160(15)30046-1
[74] CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Effect of biochar on chemical properties of acidic soil [J]. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404. doi: 10.1080/03650340.2013.789870
[75] LU S G, SUN F F, ZONG Y T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol) [J]. CATENA, 2014, 114: 37-44. doi: 10.1016/j.catena.2013.10.014
[76] WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814.
[77] NI N, WANG F, SONG Y, et al. Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization [J]. Chemosphere, 2018, 196: 288-296. doi: 10.1016/j.chemosphere.2017.12.192
[78] LOU L P, LUO L, WANG W, et al. Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 474-479.
[79] TAO Q, LI B, LI Q Q, et al. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata [J]. Science of the Total Environment, 2019, 659: 1448-1456. doi: 10.1016/j.scitotenv.2018.12.361
[80] MARKO G, MALETIĆ S, BELJIN J, et al. Lindane and hexachlorobenzene sequestration and detoxification in contaminated sediment amended with carbon-rich sorbents [J]. Chemosphere, 2019, 220: 1033-1040. doi: 10.1016/j.chemosphere.2019.01.017
[81] CUI L Q, LI L Q, BIAN R J, et al. Short- and long-term biochar cadmium and lead immobilization mechanisms [J]. Environments, 2020, 7(7): 53. doi: 10.3390/environments7070053
[82] MICHAŁ K, OLESZCZUK P. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals [J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1321-1328. doi: 10.1002/etc.3246
[83] LI X G, XIAO J, SALAM M M A, et al. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil [J]. International Journal of Phytoremediation, 2021, 23(4): 387-399. doi: 10.1080/15226514.2020.1816893
[84] LIANG C F, GASCÓ G, FU S L, et al. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size [J]. Soil and Tillage Research, 2016, 164: 3-10. doi: 10.1016/j.still.2015.10.002
[85] JAKOB L, HARTNIK T, HENRIKSEN T, et al. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants [J]. Chemosphere, 2012, 88(6): 699-705. doi: 10.1016/j.chemosphere.2012.03.080
[86] KIM W I, KUNHIKRISHNAN A, GO W R, et al. Influence of various biochars on the survival, growth, and oxidative DNA damage in the earthworm Eisenia fetida [J]. Korean Journal of Environmental Agriculture, 2014, 33(4): 231-238. doi: 10.5338/KJEA.2014.33.4.231
[87] GONG X Q, CAI L L, LI S Y, et al. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost [J]. Ecotoxicology and Environmental Safety, 2018, 156: 197-204. doi: 10.1016/j.ecoenv.2018.03.023
[88] ZHANG Q M, SALEEM M, WANG C X. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione [J]. Science of the Total Environment, 2019, 671: 52-58. doi: 10.1016/j.scitotenv.2019.03.364
[89] LU H F, BIAN R J, XIA X, et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial [J]. Geoderma, 2020, 376: 114567. doi: 10.1016/j.geoderma.2020.114567
[90] ANASONYE F, TAMMEORG P, PARSHINTSEV J, et al. Role of biochar and fungi on PAH sorption to soil rich in organic matter [J]. Water, Air, & Soil Pollution, 2018, 229(2): 1-14.
[91] XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324. doi: 10.1016/j.chemosphere.2017.05.020
[92] TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil [J]. Environment International, 2020, 137: 105576. doi: 10.1016/j.envint.2020.105576
[93] ZHAO L, XIAO D L, LIU Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494. doi: 10.1016/j.watres.2020.115494
[94] THOMPSON K A, SHIMABUKU K K, KEARNS J P, et al. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment[J]. Environmental Science & Technology, 2016, 50(20): 11253-11262.
[95] SMITH C R, BUZAN E M, LEE J W. Potential impact of biochar water-extractable substances on environmental sustainability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 118-126.
[96] OLESZCZUK P, JOŚKO I, KUŚMIERZ M. Biochar properties regarding to contaminants content and ecotoxicological assessment [J]. Journal of Hazardous Materials, 2013, 260: 375-382. doi: 10.1016/j.jhazmat.2013.05.044
[97] ZHANG C, SHAN B Q, JIANG S X, et al. Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment [J]. Journal of Hazardous Materials, 2019, 376: 48-57. doi: 10.1016/j.jhazmat.2019.05.010
[98] KUPRYIANCHYK D, REICHMAN E P, RAKOWSKA M I, et al. Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments [J]. Environmental Science & Technology, 2011, 45(19): 8567-8574.
[99] EGHBALI BABADI F, BOONNOUN P, NOOTONG K, et al. Identification of carotenoids and chlorophylls from green algae Chlorococcum Humicola and extraction by liquefied dimethyl ether [J]. Food and Bioproducts Processing, 2020, 123: 296-303. doi: 10.1016/j.fbp.2020.07.008
[100] ZHANG Y, YANG R X, SI X H, et al. The adverse effect of biochar to aquatic algae- the role of free radicals [J]. Environmental Pollution, 2019, 248: 429-437. doi: 10.1016/j.envpol.2019.02.055
[101] LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
[102] GU P S, LI H Z, YE Q, et al. Intracity variability of particulate matter exposure is driven by carbonaceous sources and correlated with land-use variables [J]. Environmental Science & Technology, 2018, 52(20): 11545-11554.
[103] ALEXEEFF S E, ROY A, SHAN J, et al. High-resolution mapping of traffic related air pollution with Google street view cars and incidence of cardiovascular events within neighborhoods in Oakland, CA [J]. Environmental Health, 2018, 17(1): 38. doi: 10.1186/s12940-018-0382-1
[104] HACHEM M, BENSEFA-COLAS L, LAHOUD N, et al. Cross-sectional study of in-vehicle exposure to ultrafine particles and black carbon inside Lebanese taxicabs [J]. Indoor Air, 2020, 30(6): 1308-1316. doi: 10.1111/ina.12703
[105] AMOUEI TORKMAHALLEH M, ZHIGULINA Z, MADIYAROVA T, et al. Exposure to fine, ultrafine particles and black carbon in two preschools in nur-sultan city of Kazakhstan [J]. Indoor Air, 2021, 31(4): 1178-1186. doi: 10.1111/ina.12799
[106] AMOUEI TORKMAHALLEH M, GORJINEZHAD S, UNLUEVCEK H S, et al. Review of factors impacting emission/concentration of cooking generated particulate matter [J]. Science of the Total Environment, 2017, 586: 1046-1056. doi: 10.1016/j.scitotenv.2017.02.088
[107] WONG G W, BRUNEKREEF B, ELLWOOD P, et al. Cooking fuels and prevalence of asthma: A global analysis of phase three of the International Study of Asthma and Allergies in Childhood (ISAAC) [J]. The Lancet Respiratory Medicine, 2013, 1(5): 386-394. doi: 10.1016/S2213-2600(13)70073-0
[108] RABITO F A, YANG Q, ZHANG H, et al. The association between short-term residential black carbon concentration on blood pressure in a general population sample [J]. Indoor Air, 2020, 30(4): 767-775. doi: 10.1111/ina.12651
[109] ERLANDSSON L, LINDGREN R, NÄÄV Å, et al. Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line [J]. Environmental Pollution, 2020, 264: 114790. doi: 10.1016/j.envpol.2020.114790
[110] LI X X, HUO M L, ZHAO L N, et al. Study of the effects of ultrafine carbon black on the structure and function of trypsin [J]. Journal of Molecular Recognition, 2021, 34(2): e2874.
[111] LIU S Y, YANG R J, CHEN Y J, et al. Development of human lung induction models for air pollutants' toxicity assessment [J]. Environmental Science & Technology, 2021, 55(4): 2440-2451.
[112] LIAN F, YU W C, ZHOU Q X, et al. Size matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments [J]. Environmental Science & Technology, 2020, 54(14): 8821-8829.