-
水溶性有机物(water-soluble organic matters,WSOM)作为大气颗粒物中可溶于水相的有机组分,占大气有机气溶胶的10%—80%[1-2]. 相关研究表明,WSOM可影响气溶胶作为云凝结核的能力,还有助于吸收太阳辐射,从而影响全球气候变化[2-3]. 并且气溶胶中WSOM与活性氧以及细胞的氧化还原活性有着密切的关联,对人体健康有着重要的影响[4]. 近年来,随着大气灰霾污染问题突出,有关大气中 WSOM光学特性和环境行为的研究已成为大气领域研究的重点之一.
WSOM复杂多样的光学特性与其来源和结构组成信息密切相关. WSOM在大气气溶胶中的来源广泛,研究发现生物质燃烧是其主要的来源[5-6]. Zhang等[5]研究发现,北京、上海、广州和西安城市的气溶胶中WSOM最主要的来源为生物质燃烧排放,占总WSOM的17%—26%. Hecobian等[6]研究确定了生物质燃烧是WSOM中发色团的主要来源之一. 此外,生物质燃烧排放源对大气中WSOM的组成和荧光特性有着重要的影响. 例如,Duarte等[7]在大气气溶胶WSOM中检测到了纤维素类和木质素类物质的存在,证实了生物质燃烧源是大气气溶胶中WSOM化学成分的主要贡献源. 范行军等[8]研究发现,生物质燃烧排放是大气气溶胶中WSOM的类蛋白物质的主要贡献源. Qin等[9]研究发现,由于生物质燃烧排放的贡献,兰州市冬季大气中WSOM的腐殖化程度明显低于夏季. 目前对于不同生物质燃烧产生颗粒物的研究主要集中在化学组成和排放特征(如离子组成和排放因子等), 也有学者对其WSOM光学特性开展了部分工作,表明生物质类型对大气气溶胶中WSOM的发色物质组成和光学特性有着重要的影响[8,10].
尽管已有相关学者关注了生物质燃烧排放WSOM的光学特性,但由于生物质的种类繁多,不同生物质燃烧排放WSOM的组成和光学性质可能存在较大差异. 本文以草本类(包括高粱、玉米、水稻、小麦、花生叶、杂草)和木本类(包括松树、杉树的叶、杆、根部位)两类典型生物质为研究对象,收集模拟野外燃烧试验产生的颗粒物,并分析颗粒物的化学成分特征以及颗粒物中WSOM的紫外-可见光吸收特征和三维荧光光谱特征. 研究结果可以补充生物质燃烧源的光学特性,为大气颗粒物源解析提供基础数据.
生物质燃烧排放颗粒物中水溶性有机物的光学特性
Optical properties of water-soluble organic matters in particulate matter from biomass burning
-
摘要: 采用紫外-可见光吸收光谱法(UV-vis)和激发-发射矩阵荧光光谱法(EEM)分析了典型生物质燃烧排放颗粒物(PM2.5)中水溶性有机物(WSOM)的光学特性. 结果表明,WSOM的SUVA254、E250/E365和MAE365值分别为1.79—2.60 m2·g−1、4.56—7.65和0.66—1.17 m2·g−1,说明生物质燃烧排放PM2.5中WSOM具有较低的芳香度和分子量以及较弱的吸光能力. 荧光光谱结果显示,WSOM产生荧光峰的主要范围为λEx/λEm≈(230—250)/(335—380) nm和λEx/λEm≈(260—290)/(330—360) nm,说明生物质燃烧排放PM2.5中WSOM主要以类蛋白荧光物质为主;腐殖化指数(HIX)、荧光指数(FI)和自生源指数(BIX)分别为0.49—1.09、2.03—2.68和1.32—1.81,说明生物质燃烧排放PM2.5中WSOM的腐殖化程度、芳香性和分子量均较低.相关性分析结果显示,生物质燃烧排放PM2.5中WSOM的MAE365值与SUVA254和HIX值呈显著正相关关系,与E250/E365和BIX呈显著负相关性,说明生物质燃烧排放PM2.5中WSOM的光吸收特性与芳香性、腐殖化程度和自生源贡献有着紧密的联系.
-
关键词:
- 水溶性有机物 /
- 颗粒物 /
- 生物质燃烧 /
- 激发-发射矩阵荧光光谱
Abstract: The optical properties of water-soluble organic matters (WSOM) in particulate matter (PM2.5) from biomass burning were analyzed by ultraviolet-visible absorption spectroscopy (UV-Vis) and excitation-emission matrix fluorescence spectroscopy (EEM). The results showed that the SUVA254, E250/E365 and MAE365 values of WSOM were 1.79—2.60 m2·g−1, 4.56—7.65 and 0.66—1.17 m2·g−1, respectively, indicating that the WSOM in PM2.5 emitted from biomass burning exhibited low aromaticity and molecular weight as well as weak light absorption capacity. EEM results showed that the main wavelength ranges of fluorescence peaks generated by WSOM were λEx/λEm≈(230—250)/(335—380) nm and λEx/λEm≈(260—290)/(330—360) nm, implying that the protein-like substances were dominant fluorophores for WSOM in PM2.5 emitted from biomass burning. Humification index (HIX), fluorescence index (FI) and freshness index (BIX) were 0.49—1.09, 2.03—2.68 and 1.32—1.81, respectively, suggesting that WSOM in PM2.5 emitted from biomass burning had low humification degree, aromaticity and molecular weight. Correlation analysis showed that MAE365 value of WSOM in PM2.5 emitted from biomass burning was significantly positively correlated with SUVA254 and HIX, but negatively with E250/E365 and BIX, indicating that the light absorption characteristics of WSOM emitted from biomass burning were closely related to their aromaticity, humification degree and autochthonous. -
表 1 生物质燃烧排放的PM2.5的化学组成和WSOM的光谱指标
Table 1. Chemical composition in PM2.5 and spectral index of WSOM in PM2.5 emitted from biomass burning
项目
Projects草本类 Herbaceous 木本类 Woody 平均值
Mean最大值
Maximum最小值
Minimum平均值
Mean最大值
Maximum最小值
MinimumOC/TC 0.91 ± 0.04* 0.94 0.84 0.81 ± 0.09* 0.89 0.67 EC/TC 0.09 ± 0.04* 0.16 0.06 0.19 ± 0.09* 0.33 0.11 OC/EC 11.89 ± 3.56** 15.40 5.23 5.21 ± 2.34** 7.94 2.00 WSOM/OC 0.30 ± 0.06 0.41 0.25 0.30 ± 0.05 0.39 0.25 SUVA254/ (m2·g−1) 2.28 ± 0.19 2.50 1.92 2.25 ± 0.27 2.60 1.79 E250/E365 5.79 ± 0.63 6.34 4.56 6.39 ± 0.70 7.65 5.57 MAE365/ (m2·g−1) 0.94 ± 0.14 1.17 0.73 0.84 ± 0.11 1.02 0.66 注:用t检验法进行分析.同一行中草本类与木本类相比,**表示差异性极显著(P<0.01),*表示差异性显著(P<0.05),不标注者则为不显著(P>0.05).
Note:Analyze with t-test method. In the same row, compared with herbaceous species and woody species, ** means the difference is extremely significant (P<0.01), * means the difference is significant (P<0.05), and those not marked are not (P>0.05).表 2 不同生物质燃烧排放PM2.5中WSOM的三维荧光光谱区域积分分析
Table 2. Volume integral of different area in 3D-EEM of WSOM in PM2.5 emissions from different biomass burning
样品
Sample区域Ⅰ
Region Ⅰ区域Ⅱ
Region Ⅱ区域Ⅲ
Region Ⅲ区域Ⅳ
Region Ⅳ区域Ⅴ
Region ⅤPh/Pp* 高粱 0.07 0.31 0.23 0.23 0.16 0.64 玉米 0.09 0.33 0.25 0.20 0.13 0.63 水稻 0.08 0.33 0.23 0.22 0.14 0.59 小麦 0.09 0.33 0.23 0.23 0.13 0.55 花生叶 0.10 0.34 0.22 0.22 0.12 0.51 杂草 0.11 0.36 0.23 0.19 0.11 0.53 松树 0.12 ± 0.03 0.36 ± 0.02 0.19 ± 0.02 0.23 ± 0.01 0.11 ± 0.02 0.42 ± 0.05 杉树 0.12 ± 0.03 0.36 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 0.10 ± 0.01 0.43 ± 0.05 草本类 0.09 ± 0.02 0.33 ± 0.02 0.23 ± 0.01 0.21 ± 0.02 0.13 ± 0.02 0.57 ± 0.05 木本类 0.12 ± 0.02 0.36 ± 0.01 0.19 ± 0.02 0.22 ± 0.01 0.10 ± 0.01 0.42 ± 0.04 *: Ph/Pp=∑ (Ⅲ + Ⅴ)/∑ (Ⅰ + Ⅱ + Ⅳ) 表 3 不同来源WSOM荧光特征参数对比
Table 3. Comparison of fluorescence special parameters for WSOM samples from different sources
样品
Sample来源
SourceHIX FI BIX AFI/TOC 文献
References草本类 湖南 0.91 ± 0.17** 2.57 ± 0.11** 1.38 ± 0.05** 0.37 ± 0.06 本研究 木本类 0.59 ± 0.10** 2.28 ± 0.14** 1.61 ± 0.11** 0.35 ± 0.09 总体 0.49—1.09 2.03—2.68 1.32—1.81 0.23—0.50 杨木 滁州 0.17 ± 0.03 2.10 ± 0.07 2.17 ± 0.06 — [8] 毛竹 池州 0.06 ± 0.01 2.28 ± 0.06 2.40 ± 0.09 — 燃煤 兰州 0.16—0.71 1.84—2.47 0.83—1.29 0.20 ± 0.29 [15] 大气气溶胶 兰州 1.0—2.6 0.2—2.1 1.2—1.6 — [9] 南京 7.07 ± 2.41 1.14—4.22 0.88 ± 0.08 — [31] 雾水 泰山 3.32—6.79 1.42—1.83 0.64—1.02 — [30] 雨水 重庆 0.61—4.79 1.32—1.54 0.64—1.12 — [26] 山东枣庄 1.03—2.07 1.34—1.67 0.78—0.87 — [27] 注:用t检验法进行分析.同一列中木本类与草本类相比,**表示差异性极显著(P<0.01),*表示差异性显著(P<0.05),不标注者则为不显著(P>0.05).
Note:Analyze with t-test method. In the same column, compared with herbaceous species and woody species, ** means the difference is extremely significant (P<0.01), * means the difference is significant (e<0.05), and those not marked are not (P>0.05).表 4 生物质燃烧排放PM2.5中WSOM的吸光特征参数与荧光指标的相关性分析
Table 4. Correlations analysis between light absorption and fluorescence index of WSOM in PM2.5 emitted from biomass burning
MAE365 SUVA254 E250/E365 HIX BIX FI MAE365 1 0.444* −0.914** 0.795** −0.698** −0.318 SUVA254 1 0.090 0.175 −0.287 0.073 E250/E 365 1 −0.753** 0.590** 0.365* HIX 1 −0.883* −0.265 BIX 1 0.074 FI 1 注:**表示在0.01水平(双侧)上显著相关,*表示在0.05水平(双侧)上显著相关.
Note:**means significant correlation at 0.01 level (2-tailed), * means significant correlation at 0.05 level (2-tailed). -
[1] DUARTE R M B O, SANTOS E B H, PIO C A, et al. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances [J]. Atmospheric Environment, 2007, 41(37): 8100-8113. doi: 10.1016/j.atmosenv.2007.06.034 [2] 闫语, 张阳, 张元勋. 大气颗粒物中水溶性有机物的研究进展 [J]. 环境科学研究, 2019, 32(11): 1800-1808. YAN Y, ZHANG Y, ZHANG Y X. The advances of water-soluble organic compounds in atmospheric particles [J]. Research of Environmental Sciences, 2019, 32(11): 1800-1808(in Chinese).
[3] ZONG Z, WANG X P, TIAN C G, et al. Source and formation characteristics of water-soluble organic carbon in the anthropogenic-influenced Yellow River Delta, North China [J]. Atmospheric Environment, 2016, 144: 124-132. doi: 10.1016/j.atmosenv.2016.08.078 [4] BAE M S, SCHAUER J J, LEE T, et al. Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign [J]. Environmental Pollution, 2017, 231: 1-12. doi: 10.1016/j.envpol.2017.07.100 [5] ZHANG Y L, EL-HADDAD I, HUANG R J, et al. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China [J]. Atmospheric Chemistry and Physics, 2018, 18(6): 4005-4017. doi: 10.5194/acp-18-4005-2018 [6] HECOBIAN A, ZHANG X, ZHENG M, et al. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5965-5977. doi: 10.5194/acp-10-5965-2010 [7] DUARTE R M B O, DUARTE A C. A critical review of advanced analytical techniques for water-soluble organic matter from atmospheric aerosols [J]. Trends in Analytical Chemistry, 2011, 30(10): 1659-1671. doi: 10.1016/j.trac.2011.04.020 [8] 范行军, 操涛, 余旭芳, 等. 薪柴燃烧溶解性棕色碳排放特征及光学性质 [J]. 中国环境科学, 2019, 39(8): 3215-3224. doi: 10.3969/j.issn.1000-6923.2019.08.011 FAN X J, CAO T, YU X F, et al. Emission characteristics and optical properties of extractable brown carbon from residential wood combustion [J]. China Environmental Science, 2019, 39(8): 3215-3224(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.08.011
[9] QIN J J, ZHANG L M, ZHOU X M, et al. Fluorescence fingerprinting properties for exploring water-soluble organic compounds in PM2.5 in an industrial city of northwest China [J]. Atmospheric Environment, 2018, 184: 203-211. doi: 10.1016/j.atmosenv.2018.04.049 [10] FAN X J, WEI S Y, ZHU M B, et al. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13321-13340. doi: 10.5194/acp-16-13321-2016 [11] 王真真, 谭吉华, 毕新慧, 等. 秸秆燃烧产生颗粒物化学组分及排放特征 [J]. 环境科学与技术, 2016, 39(11): 150-155. WANG Z Z, TAN J H, BI X H, et al. Emission characteristics and chemical species from agricultural straw burning smoke [J]. Environmental Science & Technology, 2016, 39(11): 150-155(in Chinese).
[12] TAN J H, ZHANG L M, ZHOU X M, et al. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China [J]. Science of the Total Environment, 2017, 601: 1743-1752. [13] XIAO K, SUN J Y, SHEN Y X, et al. Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: Case studies from two membrane bioreactors and an oxidation ditch [J]. RSC Advances, 2016, 6(29): 24050-24059. doi: 10.1039/C5RA23167A [14] COBLE P, LEAD J, BAKER A, et al. Aquatic organic matter fluorescence[M]. Cambridge: Cambridge University Press, 2014: 75-122. [15] YANG Y R, QIN J J, QI T, et al. Fluorescence characteristics of particulate water-soluble organic compounds emitted from coal-fired boilers [J]. Atmospheric Environment, 2020, 223: 117297. doi: 10.1016/j.atmosenv.2020.117297 [16] 洪蕾, 刘刚, 杨孟, 等. 稻草烟尘中有机碳/元素碳及水溶性离子的组成 [J]. 环境科学, 2015, 36(1): 25-33. HONG L, LIU G, YANG M, et al. Composition of organic carbon / elemental carbon and water-soluble ions in rice straw burning [J]. Environmental Science, 2015, 36(1): 25-33(in Chinese).
[17] 朱恒, 戴璐泓, 魏雅, 等. 生物质燃烧排放PM2.5中无机离子及有机组分的分布特征 [J]. 环境科学学报, 2017, 37(12): 4483-4491. ZHU H, DAI L H, WEI Y, et al. Characteristics of inorganic ions and organic components in PM2.5 from biomass burning [J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4483-4491(in Chinese).
[18] 刘刚, 黄柯, 李久海, 等. 树木模拟燃烧排放烟尘中水溶性离子的组成 [J]. 环境科学, 2016, 37(10): 3737-3742. LIU G, HUANG K, LI J H, et al. Chemical composition of water-soluble ions in smoke emitted from tree branch combustion [J]. Environmental Science, 2016, 37(10): 3737-3742(in Chinese).
[19] PEURAVUORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances [J]. Analytica Chimica Acta, 1997, 337(2): 133-149. doi: 10.1016/S0003-2670(96)00412-6 [20] BADUEL C, VOISIN D, JAFFREZO J L. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4085-4095. doi: 10.5194/acp-10-4085-2010 [21] DUARTE R M B O, DUARTE A C. Application of non-ionic solid sorbents (XAD resins) for the isolation and fractionation of water-soluble organic compounds from atmospheric aerosols [J]. Journal of Atmospheric Chemistry, 2005, 51(1): 79-93. doi: 10.1007/s10874-005-8091-x [22] LI M J, FAN X J, ZHU M B, et al. Abundance and light absorption properties of brown carbon emitted from residential coal combustion in China [J]. Environmental Science & Technology, 2019, 53(2): 595-603. [23] CHENG Y, HE K B, ZHENG M, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China [J]. Atmospheric Chemistry and Physics, 2011, 11(22): 11497-11510. doi: 10.5194/acp-11-11497-2011 [24] DU Z Y, HE K B, CHENG Y, et al. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties [J]. Atmospheric Environment, 2014, 89: 235-241. doi: 10.1016/j.atmosenv.2014.02.022 [25] YAN C Q, ZHENG M, SULLIVAN A P, et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions [J]. Atmospheric Environment, 2015, 121: 4-12. doi: 10.1016/j.atmosenv.2015.05.005 [26] 梁俭, 江韬, 魏世强, 等. 夏、冬季降雨中溶解性有机质(DOM)光谱特征及来源辨析 [J]. 环境科学, 2015, 36(3): 888-897. LIANG J, JIANG T, WEI S Q, et al. Absorption and fluorescence characteristics of dissolved organic matter(DOM) in rainwater and sources analysis in summer and winter season [J]. Environmental Science, 2015, 36(3): 888-897(in Chinese).
[27] 周石磊, 孙悦, 张艺冉, 等. 基于UV-vis和EEMs解析白洋淀冬季冰封期间隙水DOM的光谱特征及来源 [J]. 环境科学学报, 2020, 40(2): 604-614. ZHOU S L, SUN Y, ZHANG Y R, et al. Spectral characteristics and sources of DOM in sediment interstitial water from Baiyangdian Lake in Xiong’an new area during the winter freezing period based on UV-Vis and EEMs [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 604-614(in Chinese).
[28] SANTOS P S M, OTERO M, DUARTE R M B O, et al. Spectroscopic characterization of dissolved organic matter isolated from rainwater [J]. Chemosphere, 2009, 74(8): 1053-1061. doi: 10.1016/j.chemosphere.2008.10.061 [29] SANTOS P S M, SANTOS E B H, DUARTE A C. First spectroscopic study on the structural features of dissolved organic matter isolated from rainwater in different seasons [J]. Science of the Total Environment, 2012, 426: 172-179. doi: 10.1016/j.scitotenv.2012.03.023 [30] BIRDWELL J E, VALSARAJ K T. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy [J]. Atmospheric Environment, 2010, 44(27): 3246-3253. doi: 10.1016/j.atmosenv.2010.05.055 [31] XIE X C, CHEN Y F, NIE D Y, et al. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China [J]. Chemosphere, 2020, 251: 126350. doi: 10.1016/j.chemosphere.2020.126350 [32] DUARTE R M B O, PIO C A, DUARTE A C. Synchronous scan and excitation-emission matrix fluorescence spectroscopy of water-soluble organic compounds in atmospheric aerosols [J]. Journal of Atmospheric Chemistry, 2004, 48(2): 157-171. doi: 10.1023/B:JOCH.0000036845.82039.8c [33] 范行军, 余旭芳, 操涛, 等. 广州冬季气溶胶中水溶性有机物和类腐殖质的吸光性和荧光光谱特性 [J]. 环境科学, 2019, 40(2): 532-539. FAN X J, YU X F, CAO T, et al. Light absorption and fluorescence characteristics of atmospheric water-soluble organic compounds and humic-like substances during the winter season in Guangzhou [J]. Environmental Science, 2019, 40(2): 532-539(in Chinese).
[34] XIAO K, SHEN Y X, SUN J Y, et al. Correlating fluorescence spectral properties with DOM molecular weight and size distribution in wastewater treatment systems [J]. Environmental Science:Water Research & Technology, 2018, 4(12): 1933-1943. [35] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [36] 吕晶晶, 龚为进, 窦艳艳, 等. PARAFAC和FRI解析ISI中DOM分布 [J]. 中国环境科学, 2019, 39(5): 2039-2047. doi: 10.3969/j.issn.1000-6923.2019.05.031 LÜ J J, GONG W J, DOU Y Y, et al. The distribution of DOM in aeration pretreatment improved soil infiltration system based on FRI and PARAFAC [J]. China Environmental Science, 2019, 39(5): 2039-2047(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.031
[37] OHNO T, CHOROVER J, OMOIKE A, et al. Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite [J]. European Journal of Soil Science, 2007, 58(1): 125-132. doi: 10.1111/j.1365-2389.2006.00817.x [38] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038 [39] FU P Q, KAWAMURA K, CHEN J, et al. Fluorescent water-soluble organic aerosols in the high arctic atmosphere [J]. Scientific Reports, 2015, 5: 9845. doi: 10.1038/srep09845