-
人类活动是造成土壤重金属污染的重要成因,比如:金属冶炼、矿产开采、煤燃烧、汽车尾气排放、污水灌溉等[1]。我国是汞矿资源大国,随着工业化进程的快速发展,化工、医疗等行业对汞的需求量不断增加,而汞矿山开采是其主要来源。虽然矿产资源的开发利用可推动国家和地方的经济发展,但大量的矿产资源开采易使矿区及周边的土壤、地下水以及农作物受到重金属污染[2-5]。大量的研究显示,汞矿区及周边土壤-农作物污染严重,如湘西茶田汞矿区土壤中Hg、Cd、As、Pb、Zn均存在污染,其中Hg和Cd污染较为严重[6];陕西旬阳汞矿区稻田稻米和土壤中Hg含量远超我国农作物和土壤质量标准[7];贵州万山汞矿区土壤中Ni、As、Cd、Hg元素平均含量均超过农用地土壤筛选值,其中Hg元素平均含量超标达70倍[8];贵州丹寨—三都汞矿区土壤中As、Cd、Hg超标率分别达44%、11%、44%,水稻Cd、Cr、Cu、Pb、Zn 等5 种重金属含量超过我国农作物重金属限量标准[9]。重金属进入土壤后因不能被生物降解而长期存在于土壤中且不断积累,不仅影响土壤性质和功能、降低农产品的产量和质量,而且可以通过农作物累积进入食物链,造成当地居民的重金属健康风险[10-11]。
重庆市汞矿的资源优势与贵州、陕西齐名,累计查明汞金属资源储量14271 t,保有资源储量13077 t,列全国第3位[12]。重庆市汞矿集中分布在东南部酉阳、秀山、黔江三区县,矿产地及资源储量均以酉阳县为主,重庆市最大的汞矿(羊石坑汞矿床)位于秀山溪口镇。重庆东南部汞矿储量巨大,对汞矿区周边耕地环境构成了严重威胁,影响着该地区的农业经济发展。1:25万土地质量地球化学调查表明重庆秀山-酉阳地区As、Cd、Hg存在明显的局部聚集[13]。张龙等[14]曾报道秀山汞矿区土壤Hg最高超过土壤环境二级标准值的2倍,并指出矿山的冶炼炉渣和烟道排气是矿区土壤汞的主要来源,而污染大气的汞沉降是下游旱田土壤汞污染的主要途径。李柳[15]评价了秀山溪口乡五龙村汞矿区土壤重金属生态风险,发现全部土壤样品的生态危害程度均为极强。鲍丽然等[16]也指出秀山县西北部汞矿、锰矿区农田土壤As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等重金属均高于重庆土壤背景值,受开矿影响最明显。但以往的研究主要集中在秀山汞矿区及周围土壤污染和生态风险评价,缺少对酉阳汞矿区的研究,并少有对汞矿区周边农作物开展调查。
本文通过对重庆东南部汞矿区内主要农作物及其种植土壤的重金属含量进行调查分析,探讨汞矿区土壤、农作物重金属的分布、积累特征,系统分析土壤重金属污染特征和生态风险,并评价食用农作物的人体健康风险,以期为土壤重金属污染防治、区域农产品安全和居民健康生活提供科学依据。
重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价
Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing
-
摘要: 为了解重庆汞矿区耕地土壤-农作物重金属污染状况,在研究区采集水稻 45件、玉米 32件、红薯 18件及其种植土壤样品 90件,分析测定As、Cd、Cr、Cu、Hg、Ni、Pb、Zn等 8种重金属含量,采用地累积指数法、潜在生态危害指数法和健康风险评估模型,对该区土壤重金属污染程度、生态风险和食用农作物的健康风险进行评估.结果表明,研究区水稻田、玉米地和红薯地土壤重金属平均含量均高于重庆市土壤背景值,呈现不同程度的积累;Cd、Hg、As超出国家农用地土壤污染风险筛选值,水稻田土壤超标率分别为 88.9%、62.2%、11.1%,玉米地土壤超标率分别为 81.3%、43.8%、18.8%,红薯地土壤超标率分别为 100%、44.4%、16.7%.与食品安全国家标准相比,部分水稻和玉米中Cd超标,超标率分别为 20%、15.6%;部分红薯中Cd、Cr和Pb超标,超标率分别为 22.2%、5.56%和 27.8%.地累积指数法评价显示土壤Hg污染严重,以中污染和极重污染为主,As、Cd总体处于轻污染水平,Cr、Cu、Ni、Pb、Zn总体呈无-轻污染状态.潜在生态风险评价显示,Hg、Cd、As为研究区土壤主要生态危害元素,Hg以极强风险为主,Cd以中等风险和强等风险为主,As以轻微风险为主.单一重金属健康风险指数表明研究区居民食用水稻存在较高的As风险.多种重金属总健康风险指数显示成人食用玉米没有明显的健康影响,但食用水稻、红薯存在明显的复合健康风险;同时儿童更易受到重金属污染威胁,食用水稻、玉米和红薯的THQ均大于 1Abstract: In order to understand the heavy metal pollution of agriculture soil-crops in mercury ore of Chongqing, 45 rice samples, 32 corn samples, 18 sweet potato samples and 90 corresponding soil samples were collected, and the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were analyzed. The soil heavy metal pollution level, the ecological risk and health risk were evaluated by the geological accumulation index, potential ecological hazard index and health risk assessment model. Results showed that the average values of 8 heavy metals in the surrounding soil of mercury mining area were higher than the soil background values of Chongqing, showing different degree of accumulation effect. The concentrations of Cd, Hg and As significantly exceeded the risk screening values for soil contamination of agricultural land, with the over-standard rates of 88.9%, 62.2% and 11.1% in rice soil, with the over-standard rates of 81.3%, 43.8% and 18.8% in corn soil, with the over-standard rates of 100%, 44.4% and 16.7% in sweet potato soil. Compared with the national food safety standard, Cd exceeded the standard in some rice and corn, with the exceeding rate of 20% and 15.6% respectively. Cd, Cr and Pb exceeded the standard in some sweet potatoes, and the exceeding rates were 22.2%, 5.56% and 27.8%, respectively. Evaluation of the soil by geological accumulation index, Hg pollution was relatively serious, and its pollution level was medium pollution or very heavy pollution, As and Cd were generally light pollution, and the remaining heavy metals were basically pollution-free. The potential ecological hazard index showed that Hg, Cd and As were the main ecological hazard elements, Hg ecological risk was mainly extremely strong, Cd ecological risk was mainly medium and strong, and As ecological risk was mainly slight risk. The heavy metal health risk assessment results showed adults and children had a higher risk of As by rice ingestion. The heavy metal health risk assessment of multiple heavy metals showed that adult had no significant health effects by corn ingestion. However, there were significant health effects by rice and sweet potato ingestion. Meanwhile, The heavy metal health risk assessment results showed children were more susceptible to the heavy metal pollution, the THQ of rice, corn and sweet potatoes are all greater than 1.
-
Key words:
- the mercury ore of Chongqing /
- soil /
- crops /
- heavy metal /
- ecological risk /
- health risk
-
表 1 元素分析方法与检出限(mg·kg−1)
Table 1. The element analysis methods and detection limit(mg·kg−1)
指标
Indicator测定方法
Assay method检出限
Detection limit指标
Indicator测定方法
Assay method检出限
Detection limitCr X射线荧光光谱法 3 Cu 等离子体发射光谱法 1 Pb X射线荧光光谱法 2 Ni 等离子体发射光谱法 1 Zn X射线荧光光谱法 1 Cd 等离子体质谱法 0.02 As 原子荧光光谱法 0.2 pH pH计电极法 0.1 Hg 原子荧光光谱法 0.0005 表 2 地累积指数污染程度划分标准
Table 2. Igeo index and the criteria of pollution grade
地累积指数
Igeo级别
Level污染程度
Pollution levelIgeo<0 0 无污染 0≤Igeo<1 1 轻污染 1≤Igeo<2 2 中污染 2≤Igeo<3 3 中—重污染 3≤Igeo<4 4 重污染 4≤Igeo<5 5 重—极重污染 5≤Igeo 6 极重污染 表 3 土壤重金属潜在生态风险指标分级标准
Table 3. Classification criteria of soil heavy metal potential ecological risk index
潜在生态危害系数(Ei) 总潜在生态危害系数(RI) 潜在生态风险分级
Classification of
potential ecological
risksHakanson 本文
This studyHakanson 本文
This studyEi <40 Ei <40 RI <150 RI <120 轻度生态危害 40≤ Ei <80 40≤ Ei <80 150≤ RI <300 120≤ RI <240 中度生态危害 80≤ Ei <160 80≤ Ei <160 300≤ RI <600 240≤ RI <480 强度生态危害 160≤ Ei <320 160≤ Ei <320 600≤ RI <1200 480≤ RI <960 很强生态危害 Ei ≥320 Ei ≥320 RI ≥1200 RI≥960 极强生态危害 表 4 健康风险评价模型参数
Table 4. The parameters of health risk assessment model
表 5 研究区土壤重金属含量特征(mg·kg−1)
Table 5. Concentrations distribution of heavy metals in soil(mg·kg−1)
耕地
Farland统计值
StatisticAs Cd Cr Cu Hg Ni Pb Zn pH 水稻田
Paddy field最小值Minimun 4.24 0.273 44.5 17 0.088 18 19.6 79.2 4.78 最大值Maximum 57.8 2.02 139 55.6 46.5 71.5 75.3 165.5 7.97 平均值Average 14.9 0.752 80.4 33.1 4.31 37.3 45.0 117 6.37 几何平均值
Geometric mean12.6 0.673 79.1 31.9 1.12 36.3 43.8 115 6.31 变异系数
Variable coefficient0.683 0.513 0.188 0.292 2.18 0.254 0.247 0.182 0.135 玉米地
Corn field最小值Minimun 5.67 0.217 40.5 16.2 0.115 18.5 27.7 67.9 4.33 最大值Maximum 44.6 2.4 115 96.8 432 65 78.7 220 8.22 平均值Average 19.7 0.817 81.4 39 18 39.1 44.2 122 6.13 几何平均值
Geometric mean18.1 0.703 79.6 34.7 0.881 37.3 42.9 117 6.02 变异系数
Variable coefficient0.415 0.614 0.207 0.536 4.24 0.31 0.255 0.291 0.198 红薯地
Sweet potato field最小值Minimun 8.03 0.335 49 21 0.112 25 26.9 78.9 5.1 最大值Maximum 50.2 2.82 103 75.6 115 70.9 119 315 8.08 平均值Average 22.9 1.07 83.3 36.6 9.17 41.3 47.5 138 6.64 几何平均值
Geometric mean20.8 0.905 81.9 34.4 0.961 39.6 44.6 129 6.59 变异系数
Variable coefficient0.468 0.611 0.17 0.393 2.94 0.315 0.441 0.415 0.129 参照值
Reference value重庆土壤背景值
Soil background value of Chongqing6.62 0.28 74.4 24.6 0.069 31.6 28.1 81.9 — 土壤环境质量标准值
Environmental quality standard for soils30a 0.3 a 150 a 50 a 0.5 a 60 a 70 a 200 a — 30 b 0.3 b 150 b 50 b 0.5 b 70 b 90 b 200 b — 25 c 0.3 c 200 c 100 c 0.6 c 100 c 120 c 250 c — 20 d 0.6 d 250 d 100 d 1 .0d 190 d 170 d 300 d — 注:1) pH和变异系数无量纲;2)土壤环境质量标准值来源于《土壤环境质量标准 农用地土壤污染风险管控标准(试行)》( GB15618—
2008) 二级标准,a 为土壤pH< 5.5,b 为pH 介于5.5—6.5 之间,c 为土壤pH 介于6.5—7.5 之间,d 为土壤pH>7.5时分别对应的质量标准.
Note: 1) pH and coefficient of variation are dimensionless; 2) The standard value of soil environmental quality originates from the secondary standard of soil environmental quality standard (GB15618—2008) , a is soil pH< 5.5,b is pH between 5.5 and 6.5, c is soil pH between 6.5and 7.5, and d is the corresponding quality standard when soil pH>7.5.表 6 研究区农作物重金属含量特征
Table 6. Concentrations distribution of heavy metals in crops
农作物
Crop元素
Element极小值/
(mg·kg−1)
Minimum极大值/
(mg·kg−1)
Maximum均值/
(mg·kg−1)
Average标准差/
(mg·kg−1)
Standard
deviation变异系数/%
Coefficient of
variation富集系数/%
Concentration
coefficientGB2762—
2017/(mg·kg−1)水稻
RiceAs 0.044 0.42 0.159 0.101 0.635 0.013 0.5 Cd 0.004 1.38 0.202 0.339 1.683 0.276 0.2 Cr 0.051 0.618 0.269 0.172 0.64 0.004 1 Cu 0.47 4.62 2.239 1.013 0.453 0.073 — Hg 0.002 0.01 0.005 0.002 0.45 0.009 0.02 Ni 0.152 1.48 0.473 0.299 0.631 0.011 — Pb 0.022 0.095 0.048 0.017 0.36 0.001 0.2 Zn 12.3 25 19.6 2.817 0.144 0.173 — 玉米
CornAs 0 0.01 0.007 0.004 0.619 0.0002 0.5 Cd 0.006 0.202 0.058 0.051 0.883 0.06 0.1 Cr 0.053 0.514 0.178 0.121 0.681 0.002 1 Cu 1.07 2.8 1.768 0.471 0.266 0.055 — Hg 0.001 0.005 0.003 0.001 0.291 0.004 0.02 Ni 0.14 1.588 0.482 0.309 0.64 0.01 — Pb 0.027 0.072 0.045 0.016 0.36 0.0002 0.2 Zn 13.25 25.9 18.17 2.617 0.144 0.16 — 红薯
Sweet
potatoAs 0.009 0.088 0.029 0.028 0.956 0.001 0.5 Cd 0.008 0.189 0.065 0.05 0.763 0.077 0.1 Cr 0.04 2.01 0.525 0.512 0.975 0.005 1 Cu 1.6 9.62 4.803 2.741 0.571 0.156 — Hg 0.001 0.008 0.004 0.002 0.606 0.009 0.02 Ni 0.16 1.55 0.659 0.368 0.558 0.014 — Pb 0.02 0.403 0.133 0.126 0.951 0.003 0.2 Zn 2 14.4 7.069 3.999 0.566 0.059 — 表 7 土壤重金属污染地累积指数分级
Table 7. The classification of heavy metals in soil based on the Igeo
元素
Element指数均值
Index of average各级样本数Samples of all levels 无污染
Non-pollution轻污染
Mild pollution中污染
Middle pollution中—重污染
Middle-heavy pollution重污染
Heavy pollution重—极重污染
Heavy-extreme
pollution极重污染
Extreme
pollutionAs 0.659 19 48 23 5 0 0 0 Cd 0.783 14 47 27 7 0 0 0 Cr −0.484 92 3 0 0 0 0 0 Cu −0.149 61 30 4 0 0 0 0 Hg 3.275 1 16 23 12 14 7 22 Ni −0.349 70 20 0 0 0 0 0 Pb 0.05 53 41 1 0 0 0 0 Zn −0.055 58 36 1 0 0 0 0 表 8 土壤重金属的潜在生态危害指数统计
Table 8. Potential ecological risk coefficient for every heavy metal in soil
危害指数
Hazard index分布范围
Distribution range各级样本数Samples of all levels 轻微Mild 中Middle 强Heavy 很强Very heavy 极强Extreme Ei As 6.40—87.2 80 14 1 0 0 Cd 23.3—302 10 43 33 9 0 Cr 1.09—3.73 95 0 0 0 0 Cu 3.29—19.7 95 0 0 0 0 Hg 51.2—250584 0 7 21 15 52 Ni 2.84—11.3 95 0 0 0 0 Pb 3.49—21.1 95 0 0 0 0 Zn 0.830—3.85 95 0 0 0 0 RI 131—250757 0 15 32 48 0 表 9 土壤重金属健康风险指数
Table 9. Health risk index of heavy metals in soil
类型
Type农作物
CropsHQ THQ As Cd Cr Cu Hg Ni Pb Zn 成人
Adult水稻 2.272 0.864 0.001 0.240 0.068 0.083 0.033 0.280 3.842 玉米 0.050 0.180 0.001 0.189 0.025 0.081 0.009 0.260 0.794 红薯 0.302 0.280 0.001 0.515 0.037 0.110 0.134 0.101 1.480 儿童
Children水稻 5.832 2.218 0.002 0.616 0.175 0.214 0.085 0.719 9.860 玉米 0.129 0.461 0.001 0.486 0.063 0.207 0.023 0.666 2.038 红薯 0.775 0.719 0.003 1.321 0.096 0.282 0.344 0.259 3.799 -
[1] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践 [J]. 农业环境科学学报, 2013, 32(3): 409-417. HUANG Y Z, HAO X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil [J]. Journal of Agro-Environment Science, 2013, 32(3): 409-417(in Chinese).
[2] 丁振华, 王文华, 瞿丽雅, 等. 贵州万山汞矿区汞的环境污染及对生态系统的影响 [J]. 环境科学, 2004, 25(2): 111-114. DING Z H, WANG W H, ZAI L Y, et al. Mercury pollution and its ecosystem effects in Wanshan mercury miner area, Guizhou [J]. Environment Science, 2004, 25(2): 111-114(in Chinese).
[3] 孟其义, 钱晓莉, 陈淼, 等. 稻田生态系统汞的生物地球化学研究进展[J]. 生态学杂志, 2018, 298(5): 268-285. MENG Q Y, QIAN X L, CHEN M, et al, Biogeochemical cycle of mercury in rice paddy ecosystem: A critical review[J]. Chinese Journal of Ecology, 2018, 298(5): 268-285 ( in Chinese).
[4] ZHOU Y, AAMIR M, LIU K, et al. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment [J]. Environmental Pollution, 2018, 240(9): 116-124. [5] 张成丽, 张伟平, 程红丹, 等. 禹州市煤矿区周边土壤和农作物重金属污染状况及健康风险评价 [J]. 环境化学, 2019, 38(4): 805-812. ZHANG C L, ZHANG W P, CHENG H D, et al. Heavy metal contamination and health risk assessment of farmland soil around coal mines in Yuzhou City [J]. Environmental Chemistry, 2019, 38(4): 805-812(in Chinese).
[6] 孙宏飞, 李永华, 姬艳芳, 等. 湘西汞矿区土壤中重金属的空间分布特征及其生态环境意义[J]. 环境科学, 2009, 30(4): 1159-1165. SUN H F, LI Y H, JI Y F, et al, Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province[J]. Environment Science, 2009, 30(4): 1159-1165 (in Chinese).
[7] QIU G, FENG X, MENG B, et al. Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi Province, China [J]. Applied Geochemistry, 2012, 27(12): 2280-2288. doi: 10.1016/j.apgeochem.2012.08.003 [8] 林勇征. 贵州万山汞矿区地球化学特征及环境质量评价[D]. 成都: 成都理工大学, 2017. LIN Y Z. The geochemical characteristics and environmenta levaluation of quality in mercury mine area of Guizhou Wanshan[D]. Chengdu: Chengdu University of Technology, 2017 (in Chinese).
[9] 倪莘然, 杨瑞东, 陈蓉, 等. 贵州丹寨-三都汞矿区土壤重金属和玉米Se, Mo, Zn含量及健康风险评价 [J]. 地质论评, 2020, 66(4): 1031-1044. NI Z R, YANG R D, CHEN R, et al. Health risk assessment of heavy metal and Se, Mo, Zn in the soil and maize in the Danzhai—Sandu mercury mining area, Guizhou [J]. Geological Review, 2020, 66(4): 1031-1044(in Chinese).
[10] 孙清斌, 尹春芹, 邓金锋, 等. 大冶矿区土壤-蔬菜重金属污染特征及健康风险评价 [J]. 环境化学, 2013, 32(4): 671-677. doi: 10.7524/j.issn.0254-6108.2013.04.020 SUN Q B, YIN C Q, DENG J F, et al. Characteristics of soil-vegetable pollution of heavy metals and health risk assessment in Daye mining area [J]. Environmental Chemistry, 2013, 32(4): 671-677(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.020
[11] MAO C, SONG Y, CHEN L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice [J]. Catena, 2019, 175: 339-348. doi: 10.1016/j.catena.2018.12.029 [12] 孙阳, 周富春. 重庆市优势矿产资源加工业发展探讨 [J]. 矿业安全与环保, 2005(2): 30-33,57. SUN Y, ZHOU F C. Inquiring into development of processing industry of superior mineral resources in Chongqing [J]. Mining Safety and Environmental protection, 2005(2): 30-33,57(in Chinese).
[13] 曾琴琴, 王永华, 刘才泽, 等. 秀山-酉阳地区土壤环境地球化学特征 [J]. 四川地质学报, 2019, 39(2): 294-298. ZENG Q Q, WANG Y H, LIU Z C, et al. Pedogeochemistry in the Xiushan-Youyang Region [J]. Acta Geologica Sichuan, 2019, 39(2): 294-298(in Chinese).
[14] 张龙, 林先辉, 刘俏, 等. 秀山汞矿开采对当地土水环境的影响 [J]. 西南师范大学学报(自然科学版), 2011, 36(6): 105-109. ZHANG L, LIN X H, LIU Q, et al. Effects of mercury mine exploitation on local soil and water environment in Xiushan [J]. Journal of Southwest China Normal University (Natural Science Edition), 2011, 36(6): 105-109(in Chinese).
[15] 李柳. 溪口汞矿地区汞环境污染现状及风险评价研究[D]. 重庆: 重庆大学, 2014. LI L. Study on environmental pollution status and risk assessment of mercury in Xikou mercury mining area [D]. Chongqing: Chongqing University, 2014 (in Chinese).
[16] 鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质. http://kns.cnki.net/kcms/detail/11.1167.P.20200220.1019.002.html. BAO L R, DENG H, JIA Z M, et al. Ecological and health risk assessment of heavy metals in farmland soil in northwest Xiushan, Chongqing [J]. Geology in China. http://kns.cnki.net/kcms/detail/11.1167.P.20200220.1019.002.html (in Chinese).
[17] 程军, 张丽红, 刘梓萱. 重庆市主要矿产资源分布及赋存特征[J]. 中国西部科技, 2011, 241(10): 3-5. CHENG J, ZHANG L H, LIU Z X. Distribution of main mineral resources and the orebearing feature in Chongqing[J]. 中国西部科技, 2011, 241(10): 3-5 (in Chinese). [18] MULLER G. Index of geoaccumulation in sediments of the Rhime River [J]. Geological Journals, 1969, 2: 109-118. [19] 赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价 [J]. 岩矿测试, 2015, 34(1): 129-137. ZHAO Q L, LI Q C, XIE J K, et al. Characteristics of soil heavy metal pollution and tts ecological risk assessment in south Jining district using methods of enrichment factor and index of geoaccumulation [J]. Rock and Mineral Analysis, 2015, 34(1): 129-137(in Chinese).
[20] HAKANSON L. An ecological risk index for aquatic pollution control a sediment to logical approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [21] 陆金, 赵兴青. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价 [J]. 环境化学, 2017, 36(9): 1958-1967. doi: 10.7524/j.issn.0254-6108.2017010304 LU J, ZHAO X Q. Characteristics and ecological risk assessment of polluted soil by heavy metals in Shizishan, Tongling [J]. Environmental Chemistry, 2017, 36(9): 1958-1967(in Chinese). doi: 10.7524/j.issn.0254-6108.2017010304
[22] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价 [J]. 环境科学, 2015, 36(3): 1037-1044. LI Y M, MA J H, LIU D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng city, China [J]. Environment Science, 2015, 36(3): 1037-1044(in Chinese).
[23] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算 [J]. 环境科学与技术, 2008, 31(2): 112-115. XU Z Q, NI S J, YU X G, et al. Calculat ion of heavy metals’ toxicity coefficient in the evaluat ion of potential ecological risk index [J]. Environmental Science & Technology, 2008, 31(2): 112-115(in Chinese).
[24] USEPA. Exposure factors handbook[R]. Washington: National Center for Environmental Assessment, 2011. [25] USEPA. Highlights of the child–specific exposure factors handbook(Final Report)[R]. Washington DC: U. S. Environmental Protection Agency, 2009. [26] USEPA. Regional screening level (RSL) for chemical contaminants at superfund sites[R]. Washington DC: U. S. Environmental Protection Agency, 2013. [27] 王锐, 胡小兰, 张永文, 等. 重庆市主要农耕区土壤Cd生物有效性及影响因素 [J]. 环境科学, 2020, 41(4): 355-361. WANG R, HU X L, ZHANG Y W, et al. Bioavailability and influencing factors of soil Cd in the major farming areas of Chongqing [J]. Environment Science, 2020, 41(4): 355-361(in Chinese).
[28] 陈凤, 董泽琴, 王程程, 等. 锌冶炼区耕地土壤和农作物重金属污染状况及风险评价 [J]. 环境科学, 2017, 38(10): 4360-4369. CHEN F, DONG Z Q, WANG C C, et al. Heavy metal contamination of soils and crops near a zinc smelter [J]. Environment Science, 2017, 38(10): 4360-4369(in Chinese).
[29] 赵方杰, 谢婉滢, 汪鹏. 土壤与人体健康 [J]. 土壤学报, 2020, 57(1): 1-11. ZHAO F J, XIE W Y, WANG P. Soil and human health [J]. Acta Pedologica Sinica, 2020, 57(1): 1-11(in Chinese).
[30] 马宏宏, 彭敏, 郭飞等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学.https://doi.org/10.13227/j.hjkx.202007138. MA H H, PENG M, GUO F, et al. Factors affecting translocation and accumulation of cadmium in soil-crop system from a typical karst area in Guangxi province, China[J]. Environment Science.https://doi.org/10.13227/j.hjkx.202007138 ( in Chinese).
[31] 李杰, 朱立新, 康志强. 南宁市郊周边农田土壤-农作物系统重金属元素迁移特征及其影响因素 [J]. 中国岩溶, 2018, 37(1): 43-52. LI J, ZHU L X, KANG Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China [J]. Carsologica sinica, 2018, 37(1): 43-52(in Chinese).
[32] 李永华, 孙宏飞, 杨林生, 等. 湖南凤凰茶田汞矿区土壤-水稻系统中汞的传输及其健康风险 [J]. 地理研究, 2012, 31(1): 63-70. LI Y H, SUN H F, YANG L S, et al. Transmission and health risks of mercury in soil-paddy system in Chatian mercury mining area, Fenghuang County, Hunan Province [J]. Geographical Research, 2012, 31(1): 63-70(in Chinese).
[33] CUI L, FENG X, LIN C J, et al. Accumulation and translocation of 198Hg in four crop species [J]. Environmental Toxicology and Chemistry, 2014, 33(2): 334-340. doi: 10.1002/etc.2443