湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估

秦艳红, 秦玮, 蒋自强, 袁琦, 陈诚, 高洁, 刘晨. 湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估[J]. 环境化学, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
引用本文: 秦艳红, 秦玮, 蒋自强, 袁琦, 陈诚, 高洁, 刘晨. 湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估[J]. 环境化学, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
QIN Yanhong, QIN Wei, JIANG Ziqiang, YUAN Qi, CHEN Cheng, GAO Jie, LIU Chen. Evaluating the absorption efficiency and measurement interference of wet rotating denuder for sulfur dioxide[J]. Environmental Chemistry, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
Citation: QIN Yanhong, QIN Wei, JIANG Ziqiang, YUAN Qi, CHEN Cheng, GAO Jie, LIU Chen. Evaluating the absorption efficiency and measurement interference of wet rotating denuder for sulfur dioxide[J]. Environmental Chemistry, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203

湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估

    通讯作者: Tel:17625926948, E-mail:17625926948@163.com
  • 基金项目:
    江苏省PM2.5与臭氧协同控制重大专项(2019023),国家自然科学基金(41601193),江苏省自然科学基金(BK20160622),国家重点研发计划(2016YFC0200506)和江苏省环境监测科研基金(1918)资助.

Evaluating the absorption efficiency and measurement interference of wet rotating denuder for sulfur dioxide

    Corresponding author: QIN Yanhong, 17625926948@163.com
  • Fund Project: Jiangsu Provincial Fund on PM2.5 and O3 Pollution Mitigation (2019023) , the National Natural Science Foundation of China (41601193), and Natural Science Foundation of Jiangsu Province (BK20160622) , National Key Research and Development Project (2016YFC0200506) and Jiangsu Environmental Monitoring Research Fund Project (1918).
  • 摘要: 利用大气细颗粒物水溶性离子在线监测仪(Marga 1S)分别与API 100E和Thermo 43i同时测量环境空气和二氧化硫(SO2)标气,进而评估了湿式旋转溶蚀器对SO2吸收效率及其测量干扰。研究结果显示,基于API 100E和Marga 1S测得的2017年南京市环境空气SO2浓度分别为(17.1±7.7 ) μg·m-3和(9.6±5.9 ) μg·m-3,Marga 1S较API 100E低43.8%,当API 100E监测SO2浓度低于25 μg·m-3时,API 100E和Marga 1S的相对误差较大,秋、冬季Marga 1S测量结果与API 100E最为接近,夏季Marga 1S测量结果偏低;基于实验室研究发现,Marga 1S和Thermo 43i的相关系数r为0.999,相关性较好,Marga 1S的测量结果偏低,与环境空气结论一致。湿式旋转溶蚀器对SO2吸收效率为82.1%—91.7%,随着SO2浓度逐渐升高,湿式旋转溶蚀器的吸收效率逐渐升高,60 μg·m-3附近时吸收效率趋于稳定。高浓度SO2条件下,颗粒态中SO24残留率介于0.43%—1.34%之间,高浓度SO2对颗粒物SO24组分监测影响较小。
  • 我国畜禽粪便污染物总量已达近40×108 t,有效处理量不足50%,其中猪粪占总量比最大,为36.71%[1-4]。清粪工作是解决规模化猪场环境污染的重要内容。在清粪工艺中,干清粪工艺具有机械化程度高、粪中营养成分损失小、耗水量少、可减少污水中大部分污染物(以COD与BOD类指标表征)等优势[5-6]。从清洁生产角度考虑,干清粪工艺是规模化猪场清理猪粪时的首选[7]。干清粪工艺得到的猪粪固含量高、水分含量少,后续输送特别是管道抽吸过程中难度较大。这是由于猪粪含固率变化导致其黏性变化,从而影响了管内流动阻力。因此,对流动黏性阻力这一物理特性进行专门研究是很有必要的,其对运输、搅拌、混合等传质传热过程[8-10]同样有重要影响,属于基础性工艺设计因素。

    国内外许多学者对畜禽粪污或类似物料的流变特性和输送性能已有过研究。石惠娴等[10]验证了猪粪为非牛顿流体中的假塑性流体,可使用幂律模型描述切应力与剪切速率之间的关系。LANDRY等[11]拟合了猪粪稠度系数与含固率的函数关系,建立特定剪切速率条件下表观黏度与含固率的函数表达式。刘刈等[12]考察了包括猪粪在内的6种畜禽养殖场废弃物悬浮分散系的流变特性,研究了物料浓度、温度和发酵时间等因素对粪污黏度的影响,以及猪粪表观黏度随温度的变化趋势,分析了颗粒溶解到液相使其浓度增大并产生表观黏度增大的现象。王少勇等[13]测试不同工况下膏体管道输送的黏度-剪切速率流动曲线,采用Herschel-Bulkey模型进行回归分析,获得了管道输送膏体的流变参数。刘晓辉等[14]对具有非牛顿流体特性的膏体尾矿进行管道输送关键工艺参数研究,实现了对膏体在管内流动时流动阻力的精确测算。

    然而,对畜禽粪污在管道抽吸过程的非牛顿流体流动阻力特性的研究还较少,还需考虑各种浓度、抽吸压力、抽吸管径及自然放置时间等关键影响因素,并进行系统地理论分析,以便为相关的环保工艺与设备研发提供设计参数。本研究以实验为基础,分析在猪粪管道抽吸过程中影响抽吸流量的主要因素,以及猪粪在管道内流动时非牛顿流体阻力特性的影响机理,以期为畜禽粪污环保处理等相关领域提供参考。

    新鲜猪粪,不同的猪粪含固率由未稀释新鲜干猪粪添加适当自来水调配获取。

    实验装置示意图见图1。黏度相关特性的测量仪器为LVDV-II+Pro旋转型黏度计(美国Brookfield公司)。

    图 1  实验装置示意图
    Figure 1.  Schematic diagram of experimental setup

    本实验模拟实际管道抽吸粪污的过程,在真空容器间连接不同管径的塑料波纹软管,改变可能影响抽吸流量及流动阻力特性的操作参数,如猪粪含固率、抽吸真空度、抽吸管径和自然放置时间(自然放置的实验环境为室内常温(20 ℃左右))等。

    根据能量守恒伯努利方程,建立各压头之间的平衡关系式[15](式(1)和式(2))。

    Pρ=gΔZ+u22+hf (1)
    hf=4fLDu22 (2)

    式中:P为抽吸真空度,kPa;ρ为猪粪密度,kg·m−3g为重力加速度,取9.81 m·s−2L为抽吸管道总长度,取1.5 m;D为抽吸管道内径,m;ΔZ为储粪桶1液面到真空容器3抽吸口的竖向高度,m;u为管道内流体平均流速,m·s−1hf为管内流动阻力,m2·s−2f为实验范宁(Fanning)摩擦因子。由于储粪桶截面积较管道截面积大很多,其液位变化可以忽略。

    图2QxDP分别表示抽吸流量、猪粪含固率、抽吸管径和抽吸真空度。图2(a)为抽吸管径为0.03 m时、不同抽吸真空度下,猪粪含固率对抽吸流量的影响。图2(a)内容显示,随着猪粪含固率增加,抽吸流量逐渐减少。且在高抽吸真空度条件下,由于负压压头动力大,其对应的抽吸流量也大。用小抽吸管径(0.015 m,图2(b))同样表现出类似的猪粪含固率和抽吸真空度之间的影响特点。图2(a)图2(b)不同处在于:较大管径条件下,猪粪含固率低于10%时,含固率对抽吸流量的影响并不明显;含固率超过10%后,抽吸流量值才快速下降,整体上抽吸流量与猪粪含固率更符合二次曲线关系;而较小管径条件下,猪粪含固率对抽吸流量的影响显现线性关系(二次项系数接近0),特别是在低抽吸真空度条件下,线性关系更加显著。

    图 2  不同条件下抽吸流量的变化
    Figure 2.  Changes of suction flow under different conditions

    抽吸流量随猪粪含固率增大而减少,说明猪粪固形物增大了管道阻力,这是由猪粪的流体本征特性决定的。从图3可知,随着猪粪含固率增加,流变指数不断下降,从含固率为2%时流变指数接近1,逐渐降至含固率为20%时接近0.3。n为流变指数,是代表流体流动规律的重要指标[16-17],其值在0<n<1时,代表猪粪的流动规律符合假塑性非牛顿流体流动规律,且n值越小代表非牛顿流体特性越强,对应于管道抽吸猪粪过程中管内黏性摩擦力及流动阻力表现越大,带来了表观上抽吸流量减少的效果。

    图 3  流变指数随含固率的变化
    Figure 3.  Change of rheological index n with TS

    猪粪含固率为2%时,此时流变指数为0.952 3,最接近牛顿流体。图4(a)为不同抽吸管径对抽吸流量的影响,可以看出抽吸流量随抽吸管径增大是快速增加的[18],即大管径有更小的相对抽吸阻力,且不同抽吸真空度条件下抽吸流量与抽吸管径之间均呈约1.3次方的幂指数学关系。对于牛顿流体,流体黏度是不受流动速度梯度(剪切速率)影响的,即管径变化带来的管道速度梯度不会对黏性产生影响,抽吸流量表现出了只随抽吸管径变化的特点,抽吸流量和抽吸管径之间存在了一定的幂指数学关系。对于猪粪含固率为20%(图4(b)),此时流变指数为0.300 4,非牛顿流体特性最强)时,抽吸流量随抽吸管径增大同样是快速增加的,但由于非牛顿流体的黏性受流体速度梯度(剪切速率)影响较大,抽吸管径变成了同时影响流体黏性特征的重要间接因素[18],抽吸流量和抽吸管径之间的幂指关系因此变得非常复杂且不再有统一指数数值。

    图 4  不同含固率条件下管径对抽吸流量的影响
    Figure 4.  The effect of diameter on suction flow at different TS

    由于在实际情况下,畜禽粪污通常不能被及时清运,所以应重点研究猪粪自然放置时间对抽吸流量的影响。当抽吸管径为0.03 m,抽吸真空度为−50 kPa时,图5表明在不同含固率条件下,抽吸流量随自然放置时间延长均有少量下降,说明自然放置时间会对管道阻力产生增大效应,而且这种增大效应并没有受到猪粪含固率的影响。图6分析了猪粪低含固率为4%和高含固率为16%时,在抽吸实验前(未自然放置)和抽吸实验后(自然放置末期)流变指数的变化,发现流变指数均有所下降。猪粪含固率为4%时其流变指数从0.916 6降至0.832 0,猪粪含固率为16%时其流变指数从0.451 1降至0.408 0,说明当猪粪的非牛顿流体特性增强时,间接增大了猪粪在管内流动时的流动阻力。

    图 5  自然放置时间对抽吸流量的影响
    Figure 5.  Effect of natural placement time on suction flow
    图 6  流变指数的变化
    Figure 6.  Changes of rheological index

    猪粪在管道内流动时,流动阻力的影响因素涉及猪粪在自然放置过程中(本实验在室内环境温度20 ℃左右条件下进行)可能发生的复杂物理变化和生化过程,其包括猪粪中的颗粒性物质发生部分降解、固相颗粒尺寸与分布变化[12]、部分大分子向小分子转变、流体内微气泡产生及与颗粒夹杂等。最终在微观上,增强了猪粪中各种微颗粒之间相互作用力,故宏观上表现出了黏性阻力增大的现象。根据图7显示的本研究工况下的平均情况,在管道抽吸不同含固率猪粪过程中,流量的平均降低率随自然放置时间不断增加。自然放置时间从5 d增加到25 d后,其抽吸流量的平均降低率从4.6%增加到26.2%;且15 d内,降低率不显著(8.3%以内);而15 d后明显扩大,25 d后达到26.2%。结果说明,在自然放置过程中,随着时间的推进,猪粪对管道的阻力逐渐增大。

    图 7  抽吸流量的平均降低率
    Figure 7.  Average reduction of suction flow

    范宁摩擦因子用于计算管道对流体流动时摩擦阻力的大小[19-21]。范宁摩擦因子数值越大表示管道阻力越强。由图8(a)可知,在抽吸管径为0.02 m,抽吸真空度为-70 kPa的条件下,实验测定的范宁摩擦因子随猪粪含固率增大而增大,与抽吸流量随猪粪含固率变化呈相反的对应关系。从曲线变化趋势来看,特别在高含固率(>16%)下,实验范宁摩擦因子的增大明显,说明从流动阻力特性角度来说,不宜在高含固率条件下进行粪污抽吸。虽然抽吸流量随抽吸管径增大而迅速增加(见图4),但当含固率为12%,抽吸真空度为-70 kPa时,实验范宁摩擦因子亦随抽吸管径增大而增大(图8(b))。这是由于抽吸管道内壁面积(与流体接触的摩擦面)是随抽吸管径增大而增加的[22]

    图 8  实验范宁摩擦因子的变化
    Figure 8.  Change of experimental Funning Friction Factor

    雷诺数同样是表征流体流动特性的重要物理量。雷诺数较小说明黏性阻力对流场的影响大于惯性力[21, 23]。从抽吸实验结果来看,由于猪粪黏性阻力较大,实验计算得到的非牛顿流体雷诺数均较小,与实验范宁摩擦因子之间表现出明显的层流特征[15]关系(见图8(c))。图8(c)显示部分代表性实验数据点,最大实验范宁摩擦因子达到3.020 0,而最小实验范宁摩擦因子为0.006 6,最大实验雷诺数达到2 435,而最小实验雷诺数仅有10左右,显示出管道抽吸猪粪过程中阻力特征变化范围较大。另外,由于存在层流关系,由图8(a)图8(b)可以看出,实验雷诺数与猪粪含固率及抽吸管径的对应关系,同实验范宁摩擦因子的情况相反。

    1)随着猪粪含固率从2%增加到20%,其流变指数从0.952 3降至0.300 4,导致管道阻力上升,抽吸流量减少,整体上抽吸流量与含固率符合二次曲线关系;抽吸流量随抽吸管径呈幂指增长关系,当猪粪的非牛顿流体特性增强时,管径间接成为影响管道内非牛顿流体黏性阻力的重要因素。

    2)在自然放置过程中,不同含固率下猪粪的抽吸流量随自然放置时间的延长有所下降,同时流变指数亦有所下降;抽吸流量的平均降低率随自然放置时间不断增加。15 d内降幅较小,15 d后降幅明显扩大,最大达到了26.2%(25 d),越到后期其影响越明显。

    3)本研究条件下的范宁摩擦因子范围为0.006 6~3.020 0,非牛顿流体雷诺数范围为10~2 435,二者符合管道层流流动特征关系。实验范宁摩擦因子随含固率增大而增大,特别在高含固率(>16%)下增速最为显著。从非牛顿流体流动阻力特性角度来说,不宜在高含固率条件下进行粪污抽吸。

  • 图 1  SO2吸收效率实验示意图

    Figure 1.  Schematic of SO2 absorption efficiency

    图 2  Marga(a)验证和Thermo 43i(b)标定结果

    Figure 2.  The calibration results of Marga(a)and Thermo 43i(b)

    图 3  2017年南京市环境空气SO2浓度变化

    Figure 3.  Diurnal variations of SO2 in Nanjing in 2017

    图 4  Marga和API 100E相对误差的频率分布(a)和对比散点图(b)

    Figure 4.  Frequency distribution of relative error between Marga and API 100E monitoring results (a) and Scatter plot (b)

    图 5  不同季节Marga和API 100E对比散点图

    Figure 5.  Scatter plot of Marga and API 100E in different seasons

    图 6  Marga和Thermo 43i的对比散点图

    Figure 6.  Scatter plots of SO2 concentration between Marga and Thermo 43i

    图 7  湿式旋转溶蚀器对不同浓度SO2 的吸收效率曲线

    Figure 7.  Absorption efficiency of wet rotating denuder for different concentrations of SO2

    图 8  溶蚀器对不同浓度SO2 的吸收效率曲线

    Figure 8.  Absorption efficiency curves of wet rotating denuder for different concentrations of SO2

    表 1  Marga和API 100E线性拟合参数

    Table 1.  Marga and API 100E linear fitting parameters

    参数Parameters美国环保署ETV2009报告[19]ETV2009 report of EPA美国环保署ETV2011报告[20]ETV2011 report of EPA本研究This study
    Marga1Marga2Marga1Marga220162017
    斜率 0.79 0.78 0.962 0.890 0.66 0.64
    截距 0.36 0.34 0.498 0.437 1.06 −1.29
    R2 0.88 0.86 0.979 0.982 0.70 0.70
    参数Parameters美国环保署ETV2009报告[19]ETV2009 report of EPA美国环保署ETV2011报告[20]ETV2011 report of EPA本研究This study
    Marga1Marga2Marga1Marga220162017
    斜率 0.79 0.78 0.962 0.890 0.66 0.64
    截距 0.36 0.34 0.498 0.437 1.06 −1.29
    R2 0.88 0.86 0.979 0.982 0.70 0.70
    下载: 导出CSV

    表 2  不同SO2浓度时SO24残留效率

    Table 2.  SO24 residue efficiency at different SO2 concentrations

    SO2浓度/ (μg·m-314.426.834.254.473.8
    SO24浓度/ (μg·m-3 0.29 0.35 0.41 0.49 0.48
    残留率/% 1.34 0.87 0.80 0.60 0.43
    SO2浓度/ (μg·m-314.426.834.254.473.8
    SO24浓度/ (μg·m-3 0.29 0.35 0.41 0.49 0.48
    残留率/% 1.34 0.87 0.80 0.60 0.43
    下载: 导出CSV
  • [1] YANG F, TAN J, ZHAO Q, et al. Characteristics of PM2.5 speciation in representative megacities and across China [J]. Atmospheric Chemistry and Physics, 2011, 11(11): 1025-1051.
    [2] ZHENG J, HU M, PENG J, et al. Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China [J]. Chemosphere, 2016, 159: 480-487. doi: 10.1016/j.chemosphere.2016.06.032
    [3] 王永慧, 刘芃岩, 于泊蕖, 等. 保定市日间、夜间大气PM2.5中无机组分的特征及来源分析 [J]. 环境化学, 2017, 36(9): 1941-1948. doi: 10.7524/j.issn.0254-6108.2016122201

    WANG Y H, LIU P Y, YU B Q, et al. Characeeristics and source analysis of inorganic components in PM2.5 samples collected during daytime and night in Baoding City [J]. Environmental Chemistry, 2017, 36(9): 1941-1948(in Chinese). doi: 10.7524/j.issn.0254-6108.2016122201

    [4] 丁新航, 梁越, 肖化云, 等. 太原市采暖季清洁天与灰霾天PM2.5中水溶性无机离子组成及来源分析 [J]. 环境化学, 2019, 38(6): 1356-1366. doi: 10.7524/j.issn.0254-6108.2018121102

    DING X H, LIANG Y, XIAO H Y, et al. Composition and source analysis of water-soluble inorganic ions of PM2.5 in clean and haze days during heating season in Taiyuan City [J]. Environmental Chemistry, 2019, 38(6): 1356-1366(in Chinese). doi: 10.7524/j.issn.0254-6108.2018121102

    [5] 张予燕, 陆晓波, 任兰, 等. 秸秆焚烧期间空气中细颗粒的组分特征 [J]. 环境监控与预警, 2011, 3(5): 38-41. doi: 10.3969/j.issn.1674-6732.2011.05.011

    ZHANG Y Y, LU X B, REN L, et al. Features of components of fine particles in air during the period of burning stalks [J]. Environmental Monitoring and Forewarning, 2011, 3(5): 38-41(in Chinese). doi: 10.3969/j.issn.1674-6732.2011.05.011

    [6] 操文祥, 陈楠, 田一平, 等. 武汉地区秋冬季清洁与重污染过程的水溶性离子特征研究 [J]. 环境科学学报, 2017, 37(1): 82-88.

    CAO W X, CHEN N, TIAN Y P, et al. Characteristic analysis of water-souble ions during clean and heavy pollution processes in autumn and winter in Wuhan [J]. Acta Scientiae Cirumstantiae, 2017, 37(1): 82-88(in Chinese).

    [7] 俞梁敏, 杨倩, 邱亮, 等. 昆山市夏秋季节大气PM2.5中水溶性无机阴离子的污染特征 [J]. 环境监控与预警, 2014, 6(5): 44-46. doi: 10.3969/j.issn.1674-6732.2014.05.014

    YU L M, YANG Q, QIU L, et al. Pollution charactesistics of water-souble inorganic ion in atmosphere PM2.5 in Kunshan in summer and fall [J]. Environmental Monitoring and Forewarning, 2014, 6(5): 44-46(in Chinese). doi: 10.3969/j.issn.1674-6732.2014.05.014

    [8] 高韩钰, 魏静, 王跃思. 北京南郊区PM2.5中水溶性无机盐季节变化及来源分析 [J]. 环境科学, 2018, 39(5): 1987-1993.

    GAO H J, WEI J, WANG Y S. Seasonal variation and source analysis of water-soluble inorganic salts in PM2.5 in the southern suburbs of Beijing [J]. Environmental Science, 2018, 39(5): 1987-1993(in Chinese).

    [9] 顾芳婷, 胡敏, 王渝, 等. 北京2009—2010年冬、春季PM2.5污染特征 [J]. 中国环境科学, 2016, 36(9): 2578-2584. doi: 10.3969/j.issn.1000-6923.2016.09.003

    GU F T, HU M, WANG Y, et al. Characteristics of PM2.5 pollution in winter and spring of Beijing during 2009—2010 [J]. China Environmental Science, 2016, 36(9): 2578-2584(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.09.003

    [10] MAKKONEN U, VIRKKULA A, MANTYKENTTA J, et al. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity [J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5617-5631. doi: 10.5194/acp-12-5617-2012
    [11] WITTIG A E, TAKAHAMA S, KHLYSTOV A Y, et al. Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study [J]. Atmospheric Environment, 2004, 38(20): 3201-3213. doi: 10.1016/j.atmosenv.2004.03.002
    [12] 袁超, 王韬, 高晓梅, 等. 大气PM2.5在线监测仪对 SO24 NO3 NH+4的测定评价 [J]. 环境化学, 2012, 31(11): 1808-1815.

    YUAN C, WANG T, GAO X M, et al. Evaluation of SO24, NO3 and NH+4 measurements using ambient PM2.5 real-time monitoring instruments [J]. Environmental Chemistry, 2012, 31(11): 1808-1815(in Chinese).

    [13] 杨懂艳, 刘保献, 石爱军, 等. PM2.5在线水溶性离子与滤膜采集-实验室检测的比对分析 [J]. 环境科学, 2016, 37(10): 3730-3736.

    YANG D Y, LIU BA X, SHI A J, et al. Comparison test between on-line monitoring of water-soluble ions and filterbased manual methods for PM2.5 [J]. Chinese Journal of Environmental Science, 2016, 37(10): 3730-3736(in Chinese).

    [14] DREWNICK F, SCHWAB J J, HOGREFE O, et al. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments [J]. Atmospheric Environment, 2003, 37(24): 3335-3350. doi: 10.1016/S1352-2310(03)00351-0
    [15] SCHAAP M, OTJES R P, WEIJERS E P. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation [J]. Atmospheric Chemistry and Physics, 2010, 10(5): 265-272.
    [16] RUMSEY I C, COWEN K A, WALLKER J T, et al. An assessment of the performance of the Monitor for Aerosols and Gases in ambient air (MARGA): A semi-continuous method for soluble compounds [J]. Atmospheric Chemistry and Physics, 2014, 14(11): 5639-5658. doi: 10.5194/acp-14-5639-2014
    [17] WU W S, WANG T. On the performance of a semi-continuous PM2.5 sulphate and nitrate instrument under high loadings of particulate and sulphur dioxide [J]. Atmospheric Environment, 2007, 41(26): 5442-5451. doi: 10.1016/j.atmosenv.2007.02.025
    [18] 邹强, 王静, 蔡琪, 等. 湿式平行板溶蚀器对气体吸收效率的实验研究 [J]. 现代科学仪器, 2013(4): 210-213.

    ZOU Q, WANG J, CAI Q et al. Experimental study for gas collection efficiency of wetted parallel plate denuder [J]. Modern Scientific Instruments, 2013(4): 210-213(in Chinese).

    [19] GOODWIN B, DEOJAY D, COWEN K, et al. Environmental technology verification report, etv advanced monitoring systems center. Applikon Marga Semi-continuous Ambient Air Monitoring System[EB/OL]. [2009-11-06]. http://www.epa.gov/nrmrl/std/etv/pubs/600r09083.pdf.
    [20] COWEN K, HANFT E, KELLY T, et al. Environmental technology verification report, etv advanced monitoring systems center. Applikon marga semi-continuous ambient air monitoring system[EB/OL]. [2012-11-05]. http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100CH7N.PDF
    [21] 张凯, 李晓苇, 李红莲. 紫外荧光法测量二氧化硫的温度响应特性分析 [J]. 制造业自动化, 2010, 32(9): 33-35. doi: 10.3969/j.issn.1009-0134.2010.09.09

    ZHANG K, LI X W, LI H L. Analysis of the temperature response characteristic in the measurement of sulfur dioxide using UV fluorescence [J]. Manufacturing Automation, 2010, 32(9): 33-35(in Chinese). doi: 10.3969/j.issn.1009-0134.2010.09.09

    [22] 郑海明, 靳伟佳. 温度对二氧化硫紫外吸收特性的影响 [J]. 光谱学与光谱分析, 2013, 33(3): 776-779. doi: 10.3964/j.issn.1000-0593(2013)03-0776-04

    ZHENG H M, JIN W J. Effects of temperature on the ultraviolet absorption characteristics of SO2 [J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 776-779(in Chinese). doi: 10.3964/j.issn.1000-0593(2013)03-0776-04

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.0 %DOWNLOAD: 5.0 %HTML全文: 86.6 %HTML全文: 86.6 %摘要: 8.4 %摘要: 8.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.4 %其他: 96.4 %XX: 2.2 %XX: 2.2 %内网IP: 0.2 %内网IP: 0.2 %北京: 0.5 %北京: 0.5 %成都: 0.2 %成都: 0.2 %深圳: 0.2 %深圳: 0.2 %运城: 0.2 %运城: 0.2 %其他XX内网IP北京成都深圳运城Highcharts.com
图( 8) 表( 2)
计量
  • 文章访问数:  2791
  • HTML全文浏览数:  2791
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-02
  • 录用日期:  2021-11-26
  • 刊出日期:  2021-12-27
秦艳红, 秦玮, 蒋自强, 袁琦, 陈诚, 高洁, 刘晨. 湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估[J]. 环境化学, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
引用本文: 秦艳红, 秦玮, 蒋自强, 袁琦, 陈诚, 高洁, 刘晨. 湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估[J]. 环境化学, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
QIN Yanhong, QIN Wei, JIANG Ziqiang, YUAN Qi, CHEN Cheng, GAO Jie, LIU Chen. Evaluating the absorption efficiency and measurement interference of wet rotating denuder for sulfur dioxide[J]. Environmental Chemistry, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203
Citation: QIN Yanhong, QIN Wei, JIANG Ziqiang, YUAN Qi, CHEN Cheng, GAO Jie, LIU Chen. Evaluating the absorption efficiency and measurement interference of wet rotating denuder for sulfur dioxide[J]. Environmental Chemistry, 2021, 40(12): 3947-3954. doi: 10.7524/j.issn.0254-6108.2020080203

湿式旋转溶蚀器对二氧化硫吸收效率和测量干扰的评估

    通讯作者: Tel:17625926948, E-mail:17625926948@163.com
  • 1. 江苏省环境监测中心,南京,210019
  • 2. 劢强科技(上海)有限公司,上海,200335
  • 3. 南京国思源商贸有限公司,南京,210002
基金项目:
江苏省PM2.5与臭氧协同控制重大专项(2019023),国家自然科学基金(41601193),江苏省自然科学基金(BK20160622),国家重点研发计划(2016YFC0200506)和江苏省环境监测科研基金(1918)资助.

摘要: 利用大气细颗粒物水溶性离子在线监测仪(Marga 1S)分别与API 100E和Thermo 43i同时测量环境空气和二氧化硫(SO2)标气,进而评估了湿式旋转溶蚀器对SO2吸收效率及其测量干扰。研究结果显示,基于API 100E和Marga 1S测得的2017年南京市环境空气SO2浓度分别为(17.1±7.7 ) μg·m-3和(9.6±5.9 ) μg·m-3,Marga 1S较API 100E低43.8%,当API 100E监测SO2浓度低于25 μg·m-3时,API 100E和Marga 1S的相对误差较大,秋、冬季Marga 1S测量结果与API 100E最为接近,夏季Marga 1S测量结果偏低;基于实验室研究发现,Marga 1S和Thermo 43i的相关系数r为0.999,相关性较好,Marga 1S的测量结果偏低,与环境空气结论一致。湿式旋转溶蚀器对SO2吸收效率为82.1%—91.7%,随着SO2浓度逐渐升高,湿式旋转溶蚀器的吸收效率逐渐升高,60 μg·m-3附近时吸收效率趋于稳定。高浓度SO2条件下,颗粒态中SO24残留率介于0.43%—1.34%之间,高浓度SO2对颗粒物SO24组分监测影响较小。

English Abstract

  • 细颗粒物(PM2.5)是影响我国秋冬季空气质量的首要污染物,其化学组分包括有机物、水溶性离子、无机元素等。硫酸盐(SO24)、硝酸盐(NO3)和铵盐(NH+4)(合称SNA)是最主要的水溶性离子,在PM2.5中的占比超过一半[1-4]。以往水溶性离子的测量主要通过离线膜采样-离子色谱分析的方法,但该方法时间分辨率低,无法精准捕捉环境大气污染过程。为了提高颗粒物监测数据的时间分辨率,在线离子色谱仪被广泛应用于大气复合污染的研究中[5-10]

    在线离子色谱仪能够同时测量颗粒物水溶性离子和气态污染物,主要利用颗粒物和气体在溶液中扩散系数和自身质量的差异而实现分离。为了保证在线离子色谱仪的准确性和可比性,已有研究开展了颗粒物膜采样/离线实验室分析和在线离子色谱仪的比对研究。Wittig等[11]发现,半连续的湿式在线离子色谱仪对SO24NO3的测量偏高10%;袁超等[12]发现,在线URG-900B对NH+4NO3的监测结果较好,但对SO24存在明显的高估;杨懂艳等[13]的研究显示,在线URG-900获得的离子总量高于滤膜测试结果,SO24NH+4明显偏高,NO3的年均浓度差异不大。整体来看,在线离子色谱仪对颗粒物组分如SO24NO3均有不同程度的偏差[11-18]。然而现有研究主要集中于颗粒物组分间的比对,鲜有研究针对气态污染物开展比对工作,同时缺乏湿式旋转溶蚀器(WRD,在线离子色谱仪核心部件)对气态污染物吸收效率的研究,成为在线离子色谱仪测量研究的“盲点”。

    本研究利用Marga 1S和API 100E测量的2017年环境大气SO2监测数据,评估不同测量方法的差异性。同时,配制不同浓度的SO2标准气体,测量湿式旋转溶蚀器对不同浓度SO2的吸收效率,估算测量干扰,对提升在线离子色谱仪性能的认识存在积极意义,也为在线离子监测设备在大气复合污染精细化和科学化中的应用提供依据。

    • 2018年7月17—19日9:00—20:00进行了为期3 d的连续测试实验,实验地点位于江苏省南京市凤凰西街某实验室内。实验仪器为荷兰能源所、Metrohm和Applikon公司共同研制的在线气体组分及气溶胶监测仪Marga 1S(以下简称 Marga 1S)和美国赛默飞公司Thermo 43i系列SO2分析仪(以下简称Thermo 43i)。Marga 1S利用气体和气溶胶扩散性质的不同来实现分离,通过湿式旋转溶蚀器(WRD)来采集NH3、HNO2、HNO3、HCl、SO2等痕量气态污染物,湿式旋转溶蚀器是Marga 1S收集气体的核心部分,其水平放置并不断旋转,使得溶蚀器表面形成一层液膜而吸收气体;气溶胶被蒸汽喷射气溶胶收集器(SJAC)收集,颗粒物在过饱和蒸汽的环境下长大,随后通过离子色谱法可测量Ca2+、Mg2+NH+4、Na+、K+SO24NO3、Cl-等水溶性离子,其检出限分别为0.09、0.06、0.05、0.05、0.09、0.04、0.05、0.01 μg·m-3。仪器以LiBr为内标追踪仪器状态,其时间分辨率为1 h。Thermo 43i主要通过紫外荧光法进行SO2测量,体积分数检出限为0.5×10-9(5 min平均时间),此外利用美国API 100E二氧化硫分析仪(以下简称API 100E)对南京市环境空气SO2进行了为期一年的观测,其测量原理为紫外荧光法,Thermo 43i和API 100E的测量原理均是国标推荐方法。

    • 本实验具体流程如图1所示,首先将体积分数为19.8×10-6的SO2标准气体通入Sabio公司生产的4010型智能化气体稀释校准仪,对其进行一级稀释,一级稀释气浓度分别为25×10-9、40×10-9、50×10-9、100×10-9(体积分数),输出流量为5 L,将稀释后的SO2标气全部通入稀释瓶,与零气按1:5—1:7左右的比例进行二级稀释,稀释后SO2的浓度范围在14.4—73.8 μg·m-3之间。Marga 1S和Thermo 43i同时从稀释瓶中采集二级稀释后的SO2标气,多余气体利用旁路排空。

    • Marga 1S监测的每个环境样品自带内标LiBr,用以监控设备运行的稳定性。观测期间,Br和Li基本在真值的±10%内浮动。此外,Marga 1S仪器内部自带标线,每隔3个月需对仪器内部的离子色谱模块进行单点验证,验证溶液的浓度梯度分别为50、100、150、250 μg·L-1,每个梯度重复6次。母液为美国Merck公司生产的标准溶液,溶液浓度为1000 mg·L-1。Marga 1S SO24的验证结果如图2(a)所示,相关系数r为0.9991,斜率为1.002,各溶液浓度的精密度均小于4.2 μg·L-1。Thermo 43i SO2的标定结果如图2(b),体积分数为0、75×10-9、150×10-9、225×10-9、300×10-9、400×10-9,相关系数r为0.9998,斜率为1.003,各体积分数的精密度均小于1.8×10-9,符合《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法》(HJ654—2013)等标准要求。

    • 参考《环境空气质量标准》(GB3095—2012)中数据有效性规定,将每日不足20 h的视为无效数据,观测期间API 100E和Marga 1S都有数据的共计326套。图3是API 100E和Marga对2017年南京市环境空气SO2监测结果的逐日变化。从图3中可以看出,API 100E和Marga监测的SO2变化趋势基本一致,其中API 100E测量结果的日均值范围介于2—45 μg·m-3,均值为(17.1±7.7) μg·m-3,Marga测量结果的日均值范围介于0.6—32.7 μg·m-3之间,均值为(9.6±5.9) μg·m-3,Marga的均值较API 100E低43.8%。

      图4(a)可以看出,API 100E和Marga日均值相对误差的频率分布基本呈正态分布,数学期望μ为-44.7%,标准偏差σ为49.7%。API 100E和Marga对环境空气SO2监测结果的相关性如图4(b)所示,图中散点利用相对误差进行染色,相对误差的计算原理是将《环境空气气态污染物(SO2、NO3、O3、CO)连续自动监测系统技术要求及检测方法》(HJ654—2013)中提到的紫外荧光法(API 100E)看成真值,Marga测量结果为实测值,具体如式(1)所示。

      API 100E和Marga日均值的相关性较好,相关系数r为0.84,截距为-1.29,斜率为0.64,决定系数R2、斜率低于同等设备2016年比对结果、2009年[19]和2011年[20]美国环保署(USEPA)环境技术认证 (Environmental Technology Verification,ETV) 项目中的结果,具体拟合结果如表1所示,此外当API 100E监测SO2浓度低于25 μg·m-3时,API 100E和Marga的相对误差较大。

      从API 100E和Marga SO2季节散点图来看(图5),春季(3—5月)、夏季(6—8月)、秋季(9—11月)及冬季(1、2、12月)的线性相关系数r分别为0.87、0.84、0.80和0.87,拟合性相对较好,季节分布的斜率表现为秋季>冬季>春季>夏季,秋、冬季Marga测量结果与API 100E最为接近,夏季Marga测量结果偏低,一方面这可能是由于Marga和API 100E尽管均采取多种方法提高监测结果的准确度和稳定性,但由于Marga和API 100E的工作原理不同。对于Marga而言,温度越高,SO2在水溶液中的溶解度越低。而API 100E的工作原理为紫外荧光法,温度越高SO2分子的碰撞增加,激发态SO2分子返回基态的机率增加[21-22]。张凯等[21]研究显示,紫外荧光法测量SO2最合适的温度为50 °C,因此方法的差异性使得两种设备测得的SO2的监测结果存在一定的偏差。另一方面,夏季时大气扩散条件良好,SO2浓度相对较低,不同浓度梯度下Marga对SO2的吸收效率存在差异,为此针对不同浓度SO2的吸收效率开展了测试。

    • 本研究参考美国环保署(USEPA)对Marga的环境技术认证方法,使用Thermo 43i和Marga同步进行SO2监测。吸收效率计算方法如式2所示。

      式中,ρ为溶蚀器对气体的吸收效率;C实测为Marga中监测的SO2浓度(μg·m-3);C标准为Thermo 43i监测的SO2的浓度(μg·m-3);

      图6为Thermo 43i和Marga对SO2标准气的对比散点图,结果显示Marga和Thermo 43i的相关系数r为0.999,相关性较好,表明Marga与Thermo 43i的变化趋势基本一致。斜率为0.93,截距为-1.49,Marga的测量结果偏低,本研究中的斜率介于2011年美国环保署(USEPA)环境技术认证项目结果之间,高于2009年的认证结果[19-20]

      以Thermo 43i监测的SO2 浓度为横坐标,以湿式旋转溶蚀器对SO2的吸收效率为纵坐标,绘制了湿式旋转溶蚀器对不同浓度SO2的吸收效率曲线,具体如图7所示. 从图7可以看出,本研究获得的湿式旋转溶蚀器吸收效率曲线的方程为:y=-4×10-5x2 + 0.0048x + 0.7624,相关系数r为0.9765。对应于14.4—73.8 μg·m-3浓度的SO2,湿式旋转溶蚀器对其吸收效率为82.1%—91.7%,随着SO2浓度逐渐升高,湿式旋转溶蚀器的吸收效率逐渐升高,60 μg·m-3附近时吸收效率在91.0%左右趋于稳定。

      利用本研究获得的13组有效数据计算了Marga对SO2的平均吸收效率,结果为88.2%±4.8%,低于邹强等[18]的研究结果。一方面可能是由于邹强等[18]利用的是平行版溶蚀器,且测定的是极端高浓度条件下SO2的吸收效率,其质量浓度范围介于171.4—1428.6 μg·m-3,本研究测定的是与环境大气接近的浓度范围(14.4—73.8 μg·m-3);另一方面可能是由于本研究使用的Marga已经连续运转5年,仪器内部不可避免的产生磨损、老化和变形,仪器内部的参数可能发生变化。

    • 袁超等[12]在上海和泰山观测中溶蚀器的吸收液使用超纯水,相较于膜采样的结果,URG-9000B监测的SO24浓度分别高估了25%和64%,香港观测时将吸收液更换为5 mmol·L-1 H2O2,URG-9000B仍存在高估现象;Wu等[17]比对了URG-9000B和膜采样方法中SO24的结果,在SO2高浓度条件下,存在SO24高估的现象。为进一步探讨不同浓度SO2对蒸汽喷射气溶胶收集器(SJAC)的影响程度,本实验分析了不同SO2浓度梯度下颗粒态SO24NO3NH+4浓度变化情况,具体如图8所示. 结果显示,SO2浓度从14.4 μg·m-3升高到73.8 μg·m-3时,SO24NO3NH+4的变化幅度分别为0.19、0.002、-0.01 μg·m-3,整体来看,随着SO2浓度的升高,SO24的浓度呈现升高的趋势,但升幅微弱,高浓度的SO2NO3NH+4的影响并不显著,NO3的浓度水平趋于平稳,NH+4的浓度呈现略微下降。与袁超等[12]和Wu等[17]的结果略微不同,这可能是由于本实验Marga的溶蚀器为旋转型,吸收液中H2O2的浓度为1 mmol·L-1, URG-9000B的溶蚀器为平版型,吸收液分别为纯水和添加了5 mmol·L-1 H2O2的纯水,仪器构造和测量方法存在一定差异。

      表2计算了不同SO2浓度时SO24残留效率,结果显示SO2浓度在14.4—73.8 μg·m-3范围时,采样体积为1 m3颗粒态中SO24残留率介于0.43%—1.34%之间,其中SO2浓度越低,SO24残留率越高,SO2达到73.8 μg·m-3时,其残留率为0.43%,较低浓度SO2(14.4 μg·m-3)的残留率低0.91个百分点,表明高浓度的SO2气体对颗粒物中的SO42-的监测分析影响较小;此外SO2在低浓度时残留量高,可能是由于低浓度时放大了仪器噪声的影响。

    • (1)通过离子色谱法和紫外荧光法同时监测了2017年南京市环境空气SO2,其中API 100E日均值范围介于2—45 μg·m-3,均值为(17.1±7.7)μg·m-3,Marga日均值范围介于0.6—32.7 μg·m-3之间,均值为(9.6±5.9 )μg·m-3,Marga的均值较API 100E低43.8%,二者相关系数r为0.84,截距为-1.29,斜率为0.64;当API 100E监测SO2浓度低于25 μg·m-3时,API 100E和Marga 1S的相对误差较大; 秋、冬季Marga测量结果与API 100E最为接近,夏季Marga测量结果偏低。

      (2)基于实验室研究发现,Marga和Thermo 43i的相关系数r为0.999,相关性较好,Marga的测量结果偏低,与环境空气监测结果结论一致。湿式旋转溶蚀器对SO2吸收效率为82.1%—91.7%,平均吸收效率为88.2%±4.8%,随着SO2浓度逐渐升高,湿式旋转溶蚀器的吸收效率逐渐升高,60 μg·m-3附近时吸收效率趋于稳定。

      (3)SO2浓度从14.4 μg·m-3升高到73.8 μg·m-3时,SO24浓度呈现升高趋势,但升幅微弱,高浓度的SO2NO3NH+4的影响并不显著,NO3的浓度水平趋于平稳,NH+4的浓度呈现略微下降,颗粒态中SO24残留率为0.43%—1.34%。SO2为73.8 μg·m-3时,其残留率为0.43%,低浓度SO2(14.4 μg·m-3)的残留率低0.91个百分点,高浓度的SO2气体对颗粒物中的SO24的监测分析影响较小。

    参考文献 (22)

返回顶部

目录

/

返回文章
返回