-
塑料给人们带来很多方便的同时,也给人们带来了困扰。由于产量大,耐受性强,回收率低等原因,塑料在环境中不断积累,在赤道、极地、峰顶和海底都能找到不同种类的塑料残体。在这些塑料残体中,尺寸小于5 mm的塑料被定义为微塑料,由于其特有的理化性质和毒性效应而受到广泛关注[1-3]。目前,微塑料包括初级微塑料和次级微塑料。顾名思义,初级微塑料就是尺寸小于5 mm塑料颗粒的直接应用和排放,例如洗面奶中去角质的颗粒物主要成分就是微塑料[4];次级微塑料来源于大尺寸塑料残体的光解、热解、水解以及生物降解等[5-8]。
微塑料一旦被摄取,会引起摄食活性,存活率和繁殖率的降低等毒性效应,并常伴有炎症反应[9-11]。此外,微塑料还可以随循环系统在生物体内迁移,进入不同的组织和器官,从而在生物体内富集[2]。常常除了自身的毒性,微塑料可以通过吸附作用作为有机和无机污染物传输载体,如多氯联苯、多环芳烃、多溴联苯醚和有机氯农药等[12-16]。Bakir等模拟了肠道系统内污染物的吸附/解吸行为,发现在模拟肠道内污染物从微塑料上的解吸速率是海水中的30倍[17]。一旦被摄取,就像“特洛伊木马”一样将所携带污染物快速解吸,从而提高污染物的毒性和生物可利用性,进一步增加了微塑料的潜在风险。除了不断吸附外源污染物之外,塑料本身会根据特定的用途引入不同的化学添加剂,这些添加剂会随着塑料的老化渗滤到环境中,引起雌激素效应和内分泌干扰效应[16]。
光化学降解是塑料在环境中老化和降解的主要途径。暴露于空气中,经太阳光或紫外光照射,微塑料可以生成含氧基团,如羰基和羟基。未经老化的微塑料往往对疏水性有机物具有很好的吸附性能,随着老化程度的加深,含氧官能团的增加,对亲水性有机污染物的吸附显著增加。Liu等研究了老化前后聚氯乙烯微塑料对抗生素环丙沙星的吸附,发现老化后PVC微塑料结构中的含氧官能团可以与环丙沙星分子之间形成氢键作用,使得环丙沙星的吸附量显著提高[18]。因此,光解老化可以显著改变微塑料的环境行为,从而产生新的环境效应。然而,目前有关微塑料环境转化的研究还很有限。因此,有关不同性质微塑料光解老化过程亟待研究。
本研究以常用塑料制品为研究对象,经机械破碎得到相应的微塑料,于空气中进行太阳光照暴露,研究它们的红外光谱变化情况,并与标准谱图对比,确定塑料种类,以及自然光解老化对塑料结构的影响,从而为分析其潜在的环境行为提供理论指导。
常见微塑料的自然光解老化
Insights into natural photo-aging of common-used microplastics
-
摘要: 微塑料是一种新型环境污染物,对生态环境有重要的影响。本研究分析了几种常见塑料产品的主要成分,并探究了自然光解老化前后微塑料红外光谱的变化情况。通过与标准谱图比对,所选塑料样品分别属于聚乙烯(PE)、聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)。红外结果表明,微塑料老化基本都伴随苯环、羰基与羟基的生成。此外,微塑料自然光解老化后表面发生龟裂,比表面积增加,亲水性增强。微塑料表面结构的变化势必造成微塑料环境行为的改变。因此,探究不同微塑料光解老化过程可以为分析其潜在的环境行为提供理论指导。Abstract: Microplastics have been classified as an emerging environmental contaminant, which exhibits great effect on the ecology. In this study, several types of custom plastic products were identified and grinded into microplastics, which were subsequently exposed to solar irradiation for different time. By comparison with infrared spectra of standard plastics, the selected microplastics belong to polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In addition, infrared spectra were determined for prepared microplastics after exposure to natural solar irradiation. As indicated by the infrared results, oxygen-containing functional groups, e.g., carbonyl and hydroxyl, could be obtained by photo radiation under ambient condition, which would affect the environmental behaviors of microplastics. Therefore, the investigation of microplastic photo-aging could provide theoretical evidence for the analysis of their potential environmental behaviors.
-
Key words:
- microplastics /
- solar irradiation /
- aging /
- infrared spectra
-
表 1 微塑料老化前后的比表面积。
Table 1. BET specific surface areas of microplastics before and after aging treatment.
BET比表面积/(m2 g−1) 光照前Before photo-irradiation 光照后After photo-irradiation 塑料袋Plastic bag 0.12 0.23 饮料瓶drink bottle 0.15 0.17 外卖盒Take-out box 0.23 0.26 离心管Centrifuge tube 0.31 0.33 枪头Tip 0.54 0.55 注射器筒Syringe barrel 0.32 0.34 注射器推杆Injector handspike 0.27 0.37 -
[1] COLE M, LINDEQUE P, FILEMAN E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod calanus helgolandicus [J]. Environmental Science & Technology, 2015, 49(2): 1130-1137. [2] LU Y, ZHANG Y, DENG Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver [J]. Environmental Science & Technology, 2016, 50(7): 4054-4060. [3] HUERTA L E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for lumbricus terrestris (oligochaeta, lumbricidae) [J]. Environmental Science & Technology, 2016, 50(5): 2685-2691. [4] FENDALL L S, SEWELL M A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers [J]. Marine Pollution Bulletin, 2009, 58(8): 1225-1228. doi: 10.1016/j.marpolbul.2009.04.025 [5] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025 [6] ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030 [7] BROWNE M A, GALLOWAY T, THOMPSON R. Microplastic—an emerging contaminant of potential concern? [J]. Integrated Environmental Assessment and Management, 2007, 3(4): 559-561. [8] ZITKO V, HANLON M. Another source of pollution by plastics: Skin cleaners with plastic scrubbers [J]. Marine Pollution Bulletin, 1991, 22(1): 41-42. doi: 10.1016/0025-326X(91)90444-W [9] GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling [J]. Environmental Pollution, 2016, 208: 426-434. doi: 10.1016/j.envpol.2015.10.010 [10] LEI L, WU S, LU S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of The Total Environment, 2018, 619-620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103 [11] VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel mytilus edulis l. After an experimental exposure [J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. [12] GOUIN T, ROCHE N, LOHMANN R, et al. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic [J]. Environmental Science & Technology, 2011, 45(4): 1466-1472. [13] MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment [J]. Environmental Science & Technology, 2001, 35(2): 318-324. [14] RIOS L M, MOORE C, JONES P R. Persistent organic pollutants carried by synthetic polymers in the ocean environment [J]. Marine Pollution Bulletin, 2007, 54(8): 1230-1237. doi: 10.1016/j.marpolbul.2007.03.022 [15] VELZEBOER I, KWADIJK C J, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [16] CHUA E M, SHIMETA J, NUGEGODA D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, allorchestes compressa [J]. Environmental Science & Technology, 2014, 48(14): 8127-8134. [17] BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions [J]. Environmental Pollution, 2014, 185: 16-23. doi: 10.1016/j.envpol.2013.10.007 [18] LIU G, ZHU Z, YANG Y, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100 [19] ZHANG Y, HOU Z, WU K, et al. Influence of oxygen diffusion on thermal ageing of cross-linked polyethylene cable insulation [J]. Materials, 2020, 13(9): 1-12. [20] MELO NOBREGA A., BARREIRA MARTINEZ M L, ALENCAR DE QUEIROZ A A Investigation and analysis of electrical aging of XLPE insulation for medium voltage covered conductors manufactured in Brazil [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2): 628-640. doi: 10.1109/TDEI.2013.6508767 [21] LI J, YANG R, YU J, et al. Natural photo-aging degradation of polypropylene nanocomposites [J]. Polymer Degradation and Stability, 2008, 93(1): 84-89. doi: 10.1016/j.polymdegradstab.2007.10.022 [22] ATKINSON J., BIDDLESTONE F, HAY J An investigation of glass formation and physical ageing in poly(ethylene terephthalate) by FT-IR spectroscopy [J]. Polymer, 2000, 41(18): 6965-6968. doi: 10.1016/S0032-3861(00)00017-3