-
全氟烷基酸(perfluoroalkyl acids, PFAAs)因其化学稳定性、热稳定性和表面活性良好而被广泛应用于工业生产和人类生活,其中全氟辛烷羧酸(perfluorooctanoic acid, PFOA)和全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)是用途最广的两种化合物[1]。近年来,PFAAs污染受到了国内外学者的广泛关注,PFAAs在全球各区域多种环境介质中被普遍检出,尤其是在水环境中[2]。我国主要流域河流河表层水中检出的∑PFAAs高浓度分别为松花江流域8 ng·L−1、辽河流域128 ng·L−1、海河流域174 ng·L−1、黄河流域79 ng·L−1、淮河流域25 ng·L−1、太湖流域330 ng·L−1、长江流域362 ng·L−1、珠江流域62 ng·L−1[3-9],小清河流域报道∑PFAAs高浓度为325280 ng·L−1[10],在日本东京湾农村地区地下水中检出PFOA、PFOS和PFNA浓度分别为1800、990、620 ng·L−1[11]。研究表明PFAAs高值区域均存在工业污染源,且PFAAs能在环境中累积和远距离迁移,具有生物放大效应,潜在的生态风险和居民健康风险较高。Lu等[4]报道了我国辽河流域PFOA(0.38—74 ng·L−1)的潜在水生生物生态风险较高,并且备受关注的小清河流域下游水中PFOA的潜在生态风险更高[10]。Sun等[8]发现PFOA和PFOS对上海地区18—44岁成人的潜在健康风险较大。在我国东南主要流域有大型氟化工生产加工基地,加之环杭州湾是制造业的热点区域,PFAAs生产、消费量较大,但目前对该流域PFAAs研究不够完善,只有少数河流受到了关注[12-14],缺少对整个流域主要河流水体中PFAAs的研究和风险评价。
水环境中PFAAs的污染来源广,包括工业源、生活源、交通源和农业源等,PFAAs迁移途径有大气、水流、食物链等[15]。目前关于持久性有机污染物的来源解析方法有指纹图谱法、比值法、多元统计分析法、同位素分析法等[16],但污染物与受体环境复杂多样,单一源解析方法均存在一定的局限性,需采用多种方法组合进行全面分析。
对于PFAAs的风险评价,由于缺乏生态毒理学数据,大多数评价方法只关注了PFOA、PFOS的潜在生态风险和健康风险,存在较大的不确定性。德国环境署在HRIV(precautionary health related indication value)中制定了一项标准以弥补毒性数据的差异,不确定性分析结果表明该方法优于美国环保局开发的基于ADI(acceptable daily intake)和TDI(Tolerable daily intake)的评价方法[17-18]。饮水和饮食一直被认为是全氟烷基酸(PFAAs)的主要摄入途径之一[19],采用商值法能简单快速的判断是否潜在生态风险和健康风险,可为后续研究和风险调控提供可靠支撑。
本研究探究了我国东南主要河流表层水体中PFAAs的赋存特征和估算PFAAs的入海通量,采用组合方法分析了PFAAs污染来源,并分别评价了PFAAs对水生生物的生态风险和潜在的人体健康风险,研究结果有助于理解我国东南河流PFAAs的环境行为和潜在风险,为整个流域水资源保护、治理和合理利用提供科学支撑。
中国东南主要河流表层水中全氟烷基酸的赋存特征及风险评价
Occurrence and risk assessment of perfluoroalkyl acids in surface water of the major rivers in southeast China
-
摘要: 全氟烷基酸(perfluoroalkyl acids, PFAAs)是一类持久性有机污染物并且在水体中被普遍检出。本文采集了中国东南13条主要河流52份水样并分析了17种PFAAs的浓度,采用因子分析、相关分析和主成分分析等方法分别探究了表层水中PFAAs的赋存特征、入海通量、污染来源及其对流域水生生物的生态风险和对人体的健康风险。研究结果表明该流域 ∑17PFAAs的浓度范围是0.90—231.52 ng·L−1,平均浓度为46.82 ng·L−1。PFAAs的主要污染来源是工业源,排放估算为7.12 t·a−1。生态风险和人体健康风险评价结果表明东南主要河流全氟烷基酸的整体风险较低,但钱塘江、闽江等部分河段PFOA和PFOS的生态风险熵大于1,部分河段具有潜在的生态风险,可能对水生生物产生不利影响。此外,钱塘江部分河段饮水健康风险熵大于1,可能对人群健康产生潜在风险。Abstract: Perfluoroalkyl acids (PFAAs) are a class of persistent organic pollutants, and ubiquitous in aquatic environment . In this study, the concentrations of 17 PFAAs were analyzed in 52 surface water samples of 13 major rivers in southeast China. Factor analysis, correlation analysis, principle component analysis and other methods were used to identify the occurrence, mass flux and source of PFAAs, their ecological risk to aquatic organisms and the potential health risk to human. The results showed that the concentration range of Σ17PFAAs was 0.90—231.52 ng·L−1, with an average value of 46.82 ng·L−1. The main source of PFAAs was the industrial source, and the emission load was estimated to be 7.12 t·a−1. The ecological risk and human health risk assessment results showed that the overall risks of PFAAs in the major rivers of the southeast China were relatively low. However, the ecological risk index of PFOA and PFOS in some reaches of Qiantang River and Minjiang River was greater than 1, and the potential ecological risk in these reaches was relatively high, which might pose adversely affect on aquatic organism. In addition, the human health risk index in some sections of the Qiantang River was more than 1, indicating the existing potential health risk.
-
Key words:
- perfluoroalkyl acids /
- mass flux /
- pollution source /
- risk assessment
-
图 4 东南主要河流表层水体中PFAAs的源解析(注: (a)主成分分析;(b)和(c)特征PFAAs的浓度比值的3D散点图;(d)PFOA/PFOS的浓度比与纬度的关系
Figure 4. Source of PFAAs in surface waters of Southeast China(Note:(a)Principle component analysis;(b)and(c)3D scatter plot of characteristic PFAAs concentration ratio (d)Relationship between PFOA/PFOS concentration ratio and latitude.
表 1 17种全氟烷基酸的质谱参数和质量控制
Table 1. Mass spectrometry parameters and quality control of 17 PFAAs
化合物
Compounds英文名称
English name缩写
Abbreviation登记号
CAS No分子式
Molecular
formula母离子/
子离子
MS/MS
transition
(m/z)*回收率/%
Recovery
(mean ±
SD)标准曲线R2
Correlation
coefficient检出限/ (ng·L−1)
LOD定量限/ (ng·L−1)
LOQ全氟烷基羧酸 Perfluorocarboxylic acid PFCAs CnHF2n−1O2 全氟丁酸 Perfluorobutyric acid PFBA 375-22-4 C4HF7O2 213.0/169.1 110.6 ± 6.3 0.9986 0.250 1.250 全氟戊酸 Perfluoropentanoic acid PFPeA 2706−90-3 C5HF9O2 263.0/218.9 103.9 ± 9.4 0.9921 0.125 0.375 全氟己酸 Perfluorohexanoic acid PFHxA 307-24-4 C6HF11O2 313.0/269.0 110.9 ± 6.7 0.9957 0.050 0.175 全氟庚酸 Perfluoroheptanoic acid PFHpA 375-85-9 C7HF13O2 363.0/318.9 118.3 ± 8.6 0.9950 0.075 0.250 全氟辛酸 Perfluorooctanoic acid PFOA 335-67-1 C8HF15O2 413.0/368.9 105.7 ± 1.9 0.9940 0.025 0.125 全氟壬酸 Perfluorononanoic acid PFNA 375-95-1 C9HF17O2 463.0/419.0 112.9 ± 3 0.9975 0.025 0.125 全氟癸酸 Perfluorodecanoic acid PFDA 335-76-2 C10HF19O2 513.0/468.9 111.7 ± 10.7 0.9982 0.050 0.175 全氟十一烷酸 Perfluoroundecanoic acid PFUnDA 2058−94-8 C11HF21O2 563.0/519.0 104.6 ± 6 0.9989 0.100 0.250 全氟十二烷酸 Perfluorododecanoic acid PFDoDA 307-55-1 C12HF23O2 613.0/569.0 106.3 ± 9.2 0.9978 0.050 0.150 全氟十三酸 Perfluorotridecanoic acid PFTrDA 72629−94-8 C13HF25O2 662.9/619.0 94.8 ± 6.7 0.9974 0.075 0.225 全氟十四酸 Perfluorotetradecanoic acid PFTeDA 376-06-7 C14HF27O2 713.1/669.0 80.2 ± 10.9 0.9961 0.075 0.200 全氟十六烷酸 Perfluorohexadecanoic acid PFHxDA 67905−19-5 C16HF31O2 813.0/769.0 100.3 ± 27.8 0.9986 0.075 0.225 全氟十八烷酸 Perflfluorooctadecanoic acid PFODA 16517−11-6 C18HF35O2 913.0/869.0 101.8 ± 14.5 0.9976 0.075 0.250 全氟烷基磺酸 Perfluorinated sulfonic acid PFSAs CnHF2n+1O3S 全氟丁烷磺酸 Perfluorobutane sulfonate PFBS 375-73-5 C4HF9O3S 299.0/80.0 109.1 ± 6.2 0.9906 0.050 0.125 全氟己烷磺酸 Perfluorohexane sulfonate PFHxS 355-46-4 C6HF13O3S 399.0/80.0 104.9 ± 6.2 0.9920 0.050 0.100 全氟辛烷磺酸 Perfluorooctane sulfonate PFOS 1763−23-1 C8HF17O3S 498.9/80.0 105.2 ± 12.5 0.9965 0.050 0.125 全氟癸烷磺酸 Perfluorodecane sulfonate PFDS 335-77-3 C10F21O3S 599.0/79.9 101.6 ± 22.9 0.9927 0.125 0.300 内标化合物 Internal standards 13C4全氟丁酸 13C4 Perfluorobutanoic acid 13C4 PFBA 217.0/172.0 13C2全氟己酸 13C2 Perfluorohexanoic acid 13C2 PFHxA 315.0/270.0 13C4全氟辛酸 13C4 Perfluorooctanoic acid 13C4 PFOA 417.0/372.0 13C5全氟壬酸 13C5 Perfluorononanoic acid 13C5 PFNA 468.0/423.0 13C2全氟癸酸 13C2 Perfluorodecanoic acid 13C2 PFDA 515.0/470.0 13C2全氟十一烷酸 13C2Perfluoroundecanoic acid 13C2 PFUnDA 565.0/520.0 13C2全氟十二烷酸 13C2 Perfluorododecanoic acid 13C2 PFDoDA 615.0/570.0 18O2全氟己烷磺酸 18O2 Perfluorohexane sulfonate 18O2 PFHxS 403.0/103.0 13C4全氟辛酸 13C4 Perfluorooctane sulfonate 13C4 PFOS 503.0/99.0 注:登记号为 Chemical abstracts service registration number USA,缩写为 CAS No;*定性离子,仪器扫描捕捉目标离子参数.
Note: The registration number is Chemical abstracts service registration number of USA, abbreviated as CAS No; * Qualitative ion, the instrument scans to capture the target ion parameters.表 2 东南主要河流表层水中全氟烷基酸的赋存特征
Table 2. Occurrence of PFAAs in surface waters of Southeast China
河流
Rivers样点数量
PointsPFAAs/(ng·L−1) 参考文献
ReferencesPFBA PFOA PFOS ∑PFAAs 苕溪 2 7.60(6.81—8.39) 23.01(18.91—27.11) 7.73(0.77—14.70) 83.57(41.43—125.71) 钱塘江 6 16.16(10.38—21.40) 124.77(59.92—147.89) 2.71(1.83—3.38) 184.91(107.19—231.52) 甬江 4 7.27(5.50—10.22) 46.962(34.44—6.63) 21.50(5.00—62.52) 105.73(63.77—188.81) 港口 5 1.86(0.82—3.44) 10.16(8.82—12.65) 0.62(nd—2.00) 18.88(14.17—21.97) 灵江 3 5.98(1.12—15.46) 12.79(6.63—24.40) 19.92(0.43—55.99) 51.46(12.67—124.79) 瓯江 3 10.28(8.17—13.59) 6.04 (1.95—8.63) 1.58(0.82—2.94) 21.72(14.07—28.51) 本文 飞云江 3 1.78(0.80—3.46) 1.58(nd—3.58) 1.89(nd—5.40) 8.96(3.55—19.55) 鳌江 5 1.26(0.19—2.78) 0.33(nd—0.89) 0.40(nd—1.10) 6.33(1.53—13.31) 闽江 3 23.55(13.17—30.60) 23.47(17.36—27.95) 1.07(nd—1.72) 71.36(43.65—90.31) 萩芦溪 3 nd nd nd 1.00(0.90—1.08) 木兰溪 3 0.64(nd—1.62) 0.69(nd—2.06) 0.06(nd—0.18) 3.56(1.02—7.85) 晋江 4 1.80(1.2—2.54) 2.65(1.88—4.46) 1.00(nd—1.49) 17.60(7.92—30.25) 九龙江 5 1.96(0.94—3.12) 1.15(0.52—2.25) 0.31(nd—1.53) 11.29(6.43—19.48) 诏安东溪 3 0.81(0.36—1.08) 0.44(0.24—0.58) nd 2.64(1.59—3.46) 钱塘江杭州段 0.59—538 nd—2.48 0.98—609 [31] 污水厂出水 nd—4.00 9.18—11.68 12.28—28.76 54.04—105.64 [32] 大凌河 nd—2430 nd—2280 0.16—483 1.77—9540 [25] 小清河 276240 4.66 325280 [10] 美国 安大略湖 nd—13.00 nd—4.95 nd—84.60 <97.40 [27] 波罗的海地区 nd—8.52 nd—88.30 [33] 大西洋 0.08—5.80 [26] 北极 0.04—0.25 [26] 注:nd represents no detection, 表示样品中未检出PFAA,下同. 表 3 中国东南主要河流中PFAAs的入海通量及与其他研究比较
Table 3. Mass flux from rivers to sea of typical PFAAs along southeast China and comparison with other studies
河流
Rivers采样时间
Sampling
timePFBA/
(kg·a−1)PFPeA/
(kg·a−1)PFHxA/
(kg·a−1)PFHpA/
(kg·a−1)PFOA/
(kg·a−1)PFNA/
(kg·a−1)PFBS/
(kg·a−1)PFHxS/
(kg·a−1)PFOS/
(kg·a−1)∑PFAAs/
(kg·a−1)径流量
Runoff
(×109)/
(m3·a−1)参考文献
References钱塘江 353.2 82.6 279.2 68.0 2726.2 37.7 167.3 255.3 59.1 4040.0 218.5 甬江 20.8 5.6 10.9 8.6 134.3 3.2 16.8 37.2 61.5 302.0 28.6 瓯江 199.4 6.6 31.3 13.3 117.3 10.5 10.2 0.8 30.7 421.3 194.0 飞云江 7.9 4.5 2.7 1.3 7.0 0.1 2.9 3.4 8.4 39.5 44.5 鳌江 2018年8月 6.9 5.0 3.8 2.3 2.0 1.3 7.2 1.1 2.5 33.3 36.9 本研究 闽江 707.7 51.2 64.2 40.8 705.2 4.6 524.8 3.6 32.3 2137.5 300.5 晋江 7.0 7.5 1.2 1.0 10.3 1.3 1.9 32.0 3.9 66.1 39.0 九龙江 12.8 6.8 10.9 0.3 7.5 0.0 29.1 0.0 2.0 69.3 65.2 木兰溪 1.2 0.0 0.7 0.8 1.3 1.7 0.9 0.0 0.1 6.6 18.57 东南主要河流 1316.9 169.6 404.9 136.5 3711.2 60.5 761.0 333.3 200.5 7115.7 945.9 钱塘江 2011年5月 849.0 1445.0 148.3 [12] 甬江 2011年5月 137.0 185.0 35.0 [12] 瓯江 2011年5月 13 24.0 195.5 [12] 飞云江 2011年5月 6.8 13.0 40.0 [12] 大凌河 2008年5月 145.0 19.6 [39] 大辽河 2008年5月 75.5 46.6 [39] 环渤海北部排放总量 2008年5月 216.0 122.0 [39] 小清河 2011年9月 3600.0 4000.0 19.0 [21] 渤海排放总量 2011年9月 246.0 127.5 207.6 154.7 3975.9 48.7 38.2 13.1 136.0 4962.0 [21] 海河 2016年6月 30.07 19.9 32.5 6.8 25.9 3.5 6.0 1.6 14.3 142.2 [34] 渤海、黄海排放总量 2016年6月 3329.3 1828.2 2868.4 2568.3 52952.3 1008.8 3878.2 272.9 2609.0 72170.3 [34] 德国萨勒河 2015年 164.0 [33] 表 4 17种全氟烷基酸的主成分因子分析
Table 4. Principle component factor analysis of 17 PFAAs
变量
Variance因子载荷矩阵(Factor load matrix) 1 2 3 4 5 6 7 PFBA 0.022 0.845 0.249 −0.107 −0.145 −0.023 0.046 PFPeA 0.22 0.654 0.143 −0.125 0.421 0.065 0.052 PFHxA 0.166 0.712 0.402 0.105 0.415 0.036 −0.019 PFHpA 0.219 0.618 0.573 −0.305 0.235 0.139 0.032 PFOA −0.077 0.724 0.341 0.143 0.438 0.135 −0.038 PFNA 0.193 0.301 0.698 −0.212 0.389 0.003 0.207 PFDA 0.778 0.243 0.367 −0.088 0.096 0.122 −0.007 PFUnDA 0.899 0.023 −0.34 −0.045 0.113 −0.023 −0.028 PFDoDA 0.613 −0.082 −0.633 −0.046 0.196 −0.13 0.056 PFTrDA 0.962 0.013 0.066 0.06 0.049 −0.019 0.03 PFTeDA 0.961 0.023 0.151 0.111 0.057 0.001 0.032 PFHxDA −0.034 0.021 0.164 −0.064 0.112 −0.063 −0.906 PFODA 0.961 0.024 0.168 0.103 0.035 0.004 0.028 PFBS 0.023 0.855 −0.058 −0.091 −0.207 −0.05 −0.14 PFHxS 0.588 0.265 0.211 0.033 0.305 0.514 −0.06 PFOS 0.141 0.203 0.246 −0.516 0.075 0.624 0.135 PFDS −0.03 −0.079 0.028 −0.03 −0.083 0.896 0.004 纬度 0.084 0.266 0.779 0.05 0.173 0.131 −0.154 pH 0.209 0.063 0.806 0.196 0.117 −0.214 −0.062 特征值 7.54 4.48 2.98 1.80 1.58 1.40 1.08 贡献率/% 29.0 17.2 11.4 6.9 6.1 5.4 4.2 累积贡献率/% 29.0 46.2 57.7 64.6 70.7 76.1 80.2 表 5 东南主要河流表层水中 8 种PFAAs的生态风险评价
Table 5. Estimated risk quotients of 8 PFAAs in surface watersof Southeast China
PFAAs PFBA PFPeA PFHxA PFOA PFNA PFDA PFBS PFOS 评价阈值 1400 ng·L−1 600 ng·L−1 200 ng·L−1 20 ng·L−1 100000 ng·L−1 11000 ng·L−1 600 ng·L−1 50 ng·L−1 苕溪 0.005 0.003 0.032 1.151 <<0.001 <<0.001 0.005 0.155 钱塘江 0.012 0.006 0.064 6.239 <<0.001 <<0.001 0.013 0.054 甬江 0.005 0.003 0.019 2.348 <<0.001 <<0.001 0.010 0.430 港口 0.001 0.002 0.008 0.508 <<0.001 <<0.001 0.003 0.012 灵江 0.004 0.004 0.018 0.640 <<0.001 <<0.001 0.003 0.398 瓯江 0.007 0.001 0.008 0.302 <<0.001 <<0.001 0.001 0.032 飞云江 0.001 0.002 0.003 0.079 <<0.001 <<0.001 0.001 0.038 鳌江 0.001 0.002 0.003 0.016 <<0.001 <<0.001 0.002 0.008 闽江 0.017 0.003 0.011 1.173 <<0.001 <<0.001 0.029 0.021 萩芦溪 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 木兰溪 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 <<0.001 0.001 0.001 晋江 0.001 0.003 0.002 0.132 <<0.001 <<0.001 0.001 0.020 九龙江 0.001 0.002 0.008 0.058 <<0.001 <<0.001 0.007 0.006 诏安东溪 0.001 0.001 <<0.001 0.022 <<0.001 <<0.001 <<0.001 <<0.001 流域均值 0.004 0.002 0.015 1.141 <<0.001 <<0.001 0.006 0.078 流域范围 0—0.0215 0—0.0107 0—0.1040 0—7.3943 <<0.001 <<0.001 0—0.039 0—1.251 统计 >1 0 0 0 14 0 0 0 2 表 6 东南主要河流表层水中8种PFAAs的健康风险评价
Table 6. Assessing the health risks of 8 PFAAs in surface waters of major rivers in southeast China
河流
Rivers综合健康风险指数
Comprehensive health risk index(CI)标准偏差
Standard deviation(SD)变异系数
Coefficient of variation(CV)均值
mean最小值
minimum最大值
maximum苕溪 0.599 0.284 0.914 0.445 0.743 钱塘江 1.428 0.719 1.768 0.381 0.267 甬江 0.837 0.442 1.665 0.578 0.690 港口 0.123 0.108 0.165 0.023 0.191 灵江 0.364 0.093 0.128 0.440 1.207 瓯江 0.088 0.031 0.121 0.050 0.566 飞云江 0.044 0.006 0.113 0.060 1.380 鳌江 0.015 0.003 0.032 0.014 0.932 闽江 0.259 0.179 0.316 0.071 0.274 萩芦溪 0.012 0.011 0.012 0.000 0.026 木兰溪 0.023 0.013 0.043 0.017 0.750 晋江 0.125 0.024 0.263 0.107 0.855 九龙江 0.017 0.006 0.025 0.011 0.673 诏安东溪 0.005 0.003 0.006 0.002 0.415 流域 0.322 0.005 1.768 0.514 1.595 -
[1] FU J, GAO Y, CUI L, et al. Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China [J]. Scientific Reports, 2016, 6 (38039): 1-10. [2] LIU W, WU J, HE W, et al. A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks [J]. Ecosystem Health and Sustainability, 2019, 5(1): 1-19. doi: 10.1080/20964129.2018.1558031 [3] 刘冰, 金一和, 于棋麟, 等. 松花江水系江水中全氟辛烷磺酸和全氟辛酸污染现状调查 [J]. 环境科学学报, 2007, 27(3): 480-486. doi: 10.3321/j.issn:0253-2468.2007.03.020 LIU B, JIN Y H, YU Q L, et al. Investigation of Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) pollution in the surface water of the Songhua River [J]. Acta Scientiae Circumstantiae, 2007, 27(3): 480-486(in Chinese). doi: 10.3321/j.issn:0253-2468.2007.03.020
[4] LV J, GUO C, LIANG S, et al. Partitioning behavior, source identification, and risk assessment of perfluorinated compounds in an industry-influenced river [J]. Environmental Sciences Europe, 2019, 31: 1-10. doi: 10.1186/s12302-018-0176-7 [5] LI F, SUN H, HAO Z, et al. Perfluorinated compounds in Haihe River and Dagu Drainage Canal in Tianjin, China [J]. Chemosphere, 2011, 84(2): 265-271. doi: 10.1016/j.chemosphere.2011.03.060 [6] 朴海涛, 陈舒, 焦杏春, 等. 大运河丰水期水体中全氟化合物的分布 [J]. 中国环境科学, 2016, 36(10): 3040-3047. doi: 10.3969/j.issn.1000-6923.2016.10.029 PIAO H T, CHEN S, JIAO X C, et al. Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season [J]. China Environmental Science, 2016, 36(10): 3040-3047(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.10.029
[7] CHEN M, WANG Q, SHAN G, et al. Occurrence, partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake, China [J]. Science of the Total Environment, 2018, 634: 251-259. doi: 10.1016/j.scitotenv.2018.03.301 [8] SUN R, WU M, TANG L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95. doi: 10.1016/j.ecoenv.2017.11.012 [9] 陈清武, 张鸿, 柴之芳, 等. 深圳市沿岸表层海水中全氟化合物的残留特征及其分布规律 [J]. 环境科学, 2012, 33(6): 1795-1800. CHEN Q W, ZHANG H, CHAI Z F, et al. Residue characteristics and distributions of perfluorinated compounds in surface seawater along Shenzhen Coastline [J]. Environmental Science, 2012, 33(6): 1795-1800(in Chinese).
[10] Li Q, ZHANG Y, LU Y, et al. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim [J]. Chemosphere, 2018, 204: 28-35. doi: 10.1016/j.chemosphere.2018.04.030 [11] KURODA K, MURAKAMI M, OGUMA K, et al. Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers [J]. Science of The Total Environment, 2014, 488-489: 51-60. doi: 10.1016/j.scitotenv.2014.04.066 [12] LU Z, SONG L, ZHAO Z, et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China [J]. Chemosphere, 2015, 119: 820-827. doi: 10.1016/j.chemosphere.2014.08.045 [13] LU G H, GAI N, ZHANG P, et al. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed—Influences from paper, textile, and leather industries J]. Chemosphere, 2017, 185: 610-617. [14] CAI Y, WANG X, WU Y, et al. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China [J]. Science of the Total Environment, 2018, 639: 263-270. doi: 10.1016/j.scitotenv.2018.05.042 [15] WANG T, WANG P, MENG J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China [J]. Chemosphere, 2015, 129: 87-99. doi: 10.1016/j.chemosphere.2014.09.021 [16] 周婷, 蒙吉军. 区域生态风险评价方法研究进展 [J]. 生态学杂志, 2009, 28(4): 762-767. ZHOU T, MENG J J. Research progress in regional ecological risk assessment methods [J]. Chinese Journal of Ecology, 2009, 28(4): 762-767(in Chinese).
[17] KARL THEO VON DER TRENCK, RAINER KONIETZKA, ANNEGRET BIEGELENGLER, et al. Significance thresholds for the assessment of contaminated groundwater: perfluorinated and polyfluorinated chemicals [J]. Environmental Sciences Europe, 2018, 30(1): 1-20. doi: 10.1186/s12302-017-0129-6 [18] GOBELIUS L, HEDLUND J, DURIG W, et al. Per- and Polyfluoroalkyl Substances in Swedish Groundwaters and Surface Waters: Implications for environmental quality standards and drinking waters guidelines [J]. Environment Science and Technology, 2018, 52(7): 4340-4349. doi: 10.1021/acs.est.7b05718 [19] ]CHEN R, LI G, YU Y, et al. Occurrence and transport behaviors of perfluoroalkyl acids in drinking water distribution systems [J]. Science of the Total Environment, 2019, 697(134162): 1-9. [20] WANG P, ZHANG M, LU Y, et al. Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewaters treatment plants and bioaccumulation in aquatic plants in river and artificial wetland [J]. Environmental International, 2019, 129: 76-85. doi: 10.1016/j.envint.2019.04.072 [21] WANG P, LU Y, WANG T, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities [J]. Environmental Pollution, 2014, 190: 115-122. doi: 10.1016/j.envpol.2014.03.030 [22] 刘宝林, 张鸿, 谢刘伟, 等. 东江流域表层土中全氟化合物的空间分布及来源解析 [J]. 地球与环境, 2015, 43(3): 302-327. LIU B L, ZHANG H, XIE L W, et al. Spatial distribution and source of perfluorinated compounds in surface soils around the Dongjiang River [J]. Earth and Environment, 2015, 43(3): 302-327(in Chinese).
[23] 张鸿, 陈清武, 王鑫璇, 等. 自来水处理工艺对溶解相中全氟化合物残留的影响 [J]. 环境科学, 2013, 34(9): 3467-3473. ZHANG H, CHEN Q W, WANG X X, et al. Influence of tap waters treatment on perfluorinated compounds residue in the dissolved phase [J]. Environmental Science, 2013, 34(9): 3467-3473(in Chinese).
[24] 陈舒, 焦杏春, 盖楠, 等. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探 [J]. 岩矿测试, 2015, 34(5): 579-585. CHEN S, JIAO X C, GAI N, et al. Composition and source of perfluorinated compounds in soil and waterss from the rural areas in Eastern China [J]. Rock and Mineral Analysis, 2015, 34(5): 579-585(in Chinese).
[25] ZHU Z, WANG T, MENG J, et al. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal variation, mass flow, and risk assessment [J]. Environmental Science and Pollution Research, 2015, 22(13): 10009-10018. doi: 10.1007/s11356-015-4189-0 [26] BENSKIN J P, MUIR D C, SCOTT B F, et al. Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans [J]. Environmental Science & Technology, 2012, 46(11): 5815-5823. [27] GEWURTZ S B, BRADLEY L E, BACKUS S, et al. Perfluoroalkyl acids in Great Lakes precipitation and surface waters (2006-2018) indicate response to phase-outs, regulatory action, and variability in fate and transport processes [J]. Environmental Science & Technology, 2019, 53(15): 8543-8552. [28] MAZZONI M, BUFFO A, CAPPELLI F, et al. Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment [J]. Science of the Total Environment, 2019, 653: 351-358. doi: 10.1016/j.scitotenv.2018.10.274 [29] XIE S, LU Y, WANG T, et al. Estimation of PFOS emission from domestic sources in the eastern coastal region of China [J]. Environmental International, 2013, 59: 336-343. doi: 10.1016/j.envint.2013.06.015 [30] 李忠民, 郭良宏. 氟调醇的环境污染与毒理学研究 [J]. 化学进展, 2016, 28(7): 993-1005. LI Z M, GUO L H. Environmental occurrence and toxicology of fluorotelomer alcohols [J]. Progress in Chemistry, 2016, 28(7): 993-1005(in Chinese).
[31] 张明, 唐访良, 俞雅雲, 等. 钱塘江(杭州段)表层水中全氟化合物的残留水平及分布特征 [J]. 环境科学, 2015, 36(12): 4471-4478. ZHANG M, TANG F L, YU Y Y, et al. Residue concentration and distribution characteristics of perfluorinated compounds in surface waters from Qiantang River in Hangzhou Section [J]. Environmental Science, 2015, 36(12): 4471-4478(in Chinese).
[32] 王世亮, 孙建树, 杨月伟, 等. 典型旅游城市河流水体及污水厂出水中全氟烷基酸类化合物的空间分布及其前体物的转化 [J]. 环境科学, 2018, 39(12): 5494-5502. WANG S L, SUN J S, YANG Y W. Spatial Distribution of perfluoroalkyl acids and transformation of their precursors in river waters samples and effluents of wastewaters treatment plans in a typical tourism city [J]. Environmental Science, 2018, 39(12): 5494-5502(in Chinese).
[33] ZACS D, BARTKEVICS V. Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface waters, wastewaters, biota, sediments, and sewage sludge) using liquid chromatography - Orbitrap mass spectrometry [J]. Journal of Chromatography A, 2016, 1473: 109-121. doi: 10.1016/j.chroma.2016.10.060 [34] ZHOU Y, WANG T, LI Q, et al. Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks [J]. Environmental Pollution, 2018, 238: 111-120. doi: 10.1016/j.envpol.2018.03.027 [35] ZHANG A, WANG P, LU Y, et al. Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea, China [J]. Science of the Total Environment, 2019, 665: 1026-1034. doi: 10.1016/j.scitotenv.2019.02.165 [36] 张超. 罗源湾水环境质量与环境容量研究[D]. 青岛: 中国海洋大学, 2011:95. ZHANG C. The study of water environmental quality and carrying capacity of luoyuan bay[D]. Qingdao Ocean University of China, 2011:95
[37] 汤云, 卢毅敏, 吴升. 闽江流域水质时空分布特征及污染源解析 [J]. 长江科学院院报, 2019, 36(8): 30-35. doi: 10.11988/ckyyb.20171452 TANG Y, LU Y M, WU S. Spatio-temporal distribution and source identification of waters pollutants in Minjiang River Basin [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 30-35(in Chinese). doi: 10.11988/ckyyb.20171452
[38] SIMMONET-LAPRADE C, BUDZINSKI H, BABUT M, et al. Investigation of the spatial variability of poly- and perfluoroalkyl substance trophic magnification in selected riverine ecosystems [J]. Science of the Total Environment, 2019, 686: 393-401. doi: 10.1016/j.scitotenv.2019.05.461 [39] 陈春丽, 王铁宇, 吕永龙, 等. 河流及污水处理厂全氟化合物排放估算 [J]. 环境科学, 2011, 32(4): 1073-1080. CHEN C, WANG T, LU Y, et al. Estimation of perfluorinated compounds emissions from major rivers and wastewaters treatment plants in China [J]. Environmental Science, 2011, 32(4): 1073-1080(in Chinese).
[40] 李法松, 倪卉, 黄涵宇, 等. 安徽省部分城市土壤中全氟化合物空间分布及来源解析 [J]. 环境科学, 2017, 18(1): 327-332. LI F S, NI H, HUANG H Y, et al. Spatial distribution and source of perfluorinated compounds in urban soil from part of cities in Anhui Province, China [J]. Environmental Science, 2017, 18(1): 327-332(in Chinese).
[41] CHIMEDDULAM D, WU K Y. River water contaminated with perfluorinated compounds potentially posing the greatest risk to young children [J]. Chemosphere, 2013, 90(5): 1617-1624. doi: 10.1016/j.chemosphere.2012.08.039 [42] LEE J W, CHOI K, PARK K, et al. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review [J]. Science of the Total Environment, 2019, 707: 135334. [43] ZHANG W, SHENG N, WANG M H, et al. Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure [J]. Aquatic Toxicology, 2016, 175: 269-276. doi: 10.1016/j.aquatox.2016.04.005