-
砷是一种有毒的类金属元素[1],在地下水中主要以As(Ⅲ)和As(Ⅴ)的络阴离子形式存在,其中As(Ⅲ)对人体的危害远高于As(Ⅴ)[2],地方性的高砷地下水砷中毒问题已在环境地质方面成为当今国际社会所面临的最棘手的问题之一[3]。高砷地下水在世界内分布广泛,遍及全球70 多个国家,包括孟加拉国、印度、中国、墨西哥、匈牙利、越南等[4]。长期饮用砷浓度高于10 μg·L−1地下水的症状通常包括皮肤病(如色素沉着,皮肤角质化过度和皮肤癌等)、心血管疾病、神经系统疾病、肝癌、肾癌和前列腺癌等[5]。在中国北部,尤其是内蒙古、山西、新疆有很多高砷地下水区,寻找替代水资源或有效治理高砷水源面临巨大挑战。
地球成因的高砷水被普遍认为是水-岩相互作用的结果[6];沉积物中可交换态砷在水交替缓慢的条件下,经过长期的水-岩相互作用极易进入地下水中形成高砷地下水[7]。Mukherjee 等的研究表明富砷矿物与全新世冲积沉积物的第四纪沉积物有关[8]。高存荣等认为沉积环境和沉积物性质对地下水中砷的成因与迁移有重要影响[9]。Zhang等发现地下水水位波动和停滞时间是影响地下水中砷的迁移与分布的重要因素[10]。余倩等认为磷酸盐与砷的竞争吸附对地下水中砷的迁移转化有重要影响[11]。因此,查明含水层水文地球化学特征对砷运移的影响可以为揭示高砷地下水成因机理与地下水砷污染的防控提供科学依据。
我国高砷地下水主要分布在干旱内陆盆地及河流三角洲[12]。尽管奎屯河流域是中国首个大规模地方性砷中毒病区[13],但与松嫩平原、大同盆地等区域相比,奎屯河流域高砷地下水地球化学的研究程度仍不够深入,人们对地下水中的高砷成因及砷运移机制还不甚了解。因此,本研究主要目的是:(1)阐述研究区含水层水文地球化学特征;(2)评估地下水中As富集的成因和程度;(3)评价控制砷运移的主要地球化学因子。
奎屯河流域地下水地球化学特征及其对砷运移的影响
Groundwater geochemistry and its implications for arsenic mobilization in Kuitun river basin, Xinjiang
-
摘要: 通过对奎屯河流域61组地下水水样、2个钻孔中44组不同深度沉积物样品中化学组分的分析,研究了该区水文地球化学特征及其对砷运移的影响。结果表明,研究区地下水中As浓度为未检出−444.40 μg·L−1。高砷地下水主要分布在研究区下游还原环境的冲积细土平原区,水化学类型主要为SO4·HCO3-Na型和Cl·HCO3-Na型。在还原环境的地下水中,无机As(Ⅲ)占总溶解性砷的 22.7%。研究区C1、C2钻孔沉积物As含量为8.36—28.41 mg·kg−1、8.69—21.01 mg·kg−1(均值分别为15.26 mg·kg−1、12.54 mg·kg−1)。黏土层As含量较高,砂层中As含量较低,表明沉积物中As含量与岩性关系密切。As通常在Fe、Mn含量高的沉积物中富集,但在强还原环境下,As与Fe、Mn含量呈现负相关。地下水中As的运移不仅受Fe/Mn的氢氧化物的还原溶解影响,还受
${{\rm{PO}}_4^{3-} }$ 和${{\rm{HCO}}_3^{-}} $ 竞争吸附的控制。As(Ⅴ)是地下水中As的主要存在形式,大量的As(Ⅴ)可以减弱地下水中As在空间上的迁移能力。本研究为深入揭示研究区高砷地下水成因机理与地下水砷污染的防控提供科学依据。Abstract: Based on the analysis of chemical elements of 61 groundwater samples and 44 sediment samples at different depths in 2 boreholes, groundwater geochemical characteristics and their influences on arsenic(As) mobilization in Kuitun River Basin were studied. The results showed that groundwater As concentration ranged from 0 to 444.40 μg·L−1. High as groundwater mainly occured at the alluvial plain area with reduction environment in the lower reaches of the study area. The main Hydrochemical types of high As groundwater were SO4·HCO3-Na and Cl·HCO3-Na. In reducing environment, inorganic As (Ⅲ) accounts for 22.7% of the total dissolved As in groundwater. Sediment As content of C1 and C2 borehole in the study area were 8.36—28.41 mg·kg−1 and 8.69—21.01 mg·kg−1, with mean values 15.26 mg·kg−1and 12.54 mg·kg−1, respectively. Sediment As content in clay layer is high, while that in sand was low, which indicating As content in sediments was closely related to lithology. Arsenic was mostly enriched in sediments with high Fe and Mn content, while As content was negatively correlated with that of Fe and Mn under strong reduction environment. The mobilization of As in groundwater is not only affected by the reduction and dissolution of Fe-Mn hydroxides, but also controlled by the competitive adsorption of${\rm{PO}}_4^{3-} $ and${\rm{HCO}}_3^{-} $ . As (Ⅴ) was the main existence state of As in groundwater. A large amount of As (Ⅴ) could reduce the spatial mobilization of As in groundwater. These results could provide direct evidence and insights for the causes of arsenic-rich groundwater in study area. -
表 1 研究区地下水水样的化学参数统计表
Table 1. Statistical table of chemical parameters of groundwater samples in the study area
样品
编号
Sample
number井深
Well
DepthAs/
(μg·L−1)Eh/
mVpH Na+/
(mg·L−1)K+/
(mg·L−1)TDS/
(mg·L−1)Cl−/
(mg·L−1) /${{\rm{SO}}_4^{2-} }$
(mg·L−1) /${{\rm{HCO}}_3^{-}} $
(mg·L−1) /${{\rm{NO}}_3^{-}} $
(mg·L−1) /${{\rm{NO}}_2^{-}} $
(mg·L−1) /${{\rm{NH}}_4^{+}} $
(mg·L−1)Mn/
(mg·L−1)Fe/
(mg·L−1)PO43−/
(mg·L−1)1 190 ND 72 8.3 1.01 1.62 161.99 28.45 27.79 100.17 2.99 ND 0.11 ND ND ND 2 40 23.53 110 8.09 25.03 3.13 163.80 14.20 16.57 124.68 0.10 0.22 0.07 0.07 ND 0.19 3 289 11.00 90 8.01 19.55 3.30 131.69 7.10 19.47 94.12 1.22 ND 0.05 0.02 ND 0.16 4 94 ND 46 8.2 1.01 2.10 254.05 41.96 82.86 83.07 7.93 ND 0.05 ND ND 0.10 5 18 ND 71 7.7 35.24 1.43 356.49 35.56 72.24 250.43 0.96 ND 0.23 0.213 0.10 0.08 6 58 ND 45 7.9 24.78 2.33 270.04 28.45 89.61 124.61 0.32 ND 0.3 ND 0.20 0.10 7 100 38.80 −210 7.7 167.42 1.43 695.01 78.22 296.53 158.81 0.16 ND 0.47 0.20 ND 0.24 8 70 42.60 −69 8.2 181.69 1.70 762.74 161.43 284.84 116.05 ND ND 0.28 0.19 0.08 0.22 9 97 132.17 −21 7.04 32.69 2.82 176.21 31.25 13.68 118.57 0.27 0.07 0.24 0.08 ND 0.37 10 60 1.78 −209 8 699.23 11.67 4623.76 191.74 70.06 110.01 1.78 ND 22.84 2.41 ND ND 11 90 61.60 68 8.7 150.54 1.27 523.44 78.22 192.18 128.27 ND 0.11 0.1 ND ND 0.21 12 93 47.60 −3 8.9 48.40 1.15 183.11 14.22 48.77 101.39 ND ND 0.13 ND 0.10 0.24 13 70 26.60 −160 7.9 389.67 2.81 1646.89 419.56 595.03 146.59 ND ND 0.31 0.44 0.04 0.12 14 80 22.30 80 7.73 130.15 3.21 622.44 111.49 240.63 122.24 0.53 0.16 0.13 0.16 ND 0.16 15 110 99.97 65 8.12 130.15 3.00 512.90 191.74 70.06 110.01 2.71 ND 0.06 0.02 ND 0.64 16 80 ND −49 7.8 685.61 2.62 3455.10 853.35 1389.29 111.17 21.26 ND 0.25 ND 0.04 ND 17 260 ND 40 8 1.96 1.98 164.13 28.45 28.75 97.73 2.86 ND 0.05 ND ND ND 18 260 ND 125 8 1.01 2.10 140.74 8.53 27.79 108.72 1.47 ND ND ND ND ND 19 230 ND 60 7.4 70.43 2.53 542.2 192.00 113.05 98.95 0.96 ND 0.23 ND ND 0.09 20 120 ND −36 7.4 88.50 4.89 905.32 106.67 331.00 339.61 0.53 ND 0.48 1.07 0.62 ND 21 160 ND 49 7.8 9.57 2.84 229.08 28.45 60.15 108.72 4.27 ND 0.06 ND ND 0.07 22 200 ND 112 7.4 135.09 5.68 1086.29 207.65 364.63 245.55 22.24 ND 0.16 ND 0.11 ND 23 180 ND 59 7.6 105.61 5.88 1063.08 253.16 379.59 94.06 40.25 ND 1.01 ND ND ND 24 180 ND 16 7.5 78.99 4.34 670.60 147.91 234.19 97.73 24.26 ND 0.67 ND ND ND 25 280 ND 102 8 1.96 2.33 159.06 14.22 39.37 107.50 2.04 ND 0.09 ND ND ND 26 298 ND 0 7.7 1.01 1.74 160.93 12.80 39.37 106.28 1.37 ND 0.23 ND ND 0.1 27 160 ND 88 8.2 1.01 1.86 138.61 12.80 27.79 95.29 2.37 ND 0.14 ND 0.22 ND 28 282 ND 60 8.3 1.01 1.86 114.48 7.11 15.24 95.29 1.37 ND 0.01 ND ND ND 29 120 ND 37 8.3 1.01 1.54 140.48 7.11 34.55 95.29 2.43 ND 0.13 ND ND ND 30 180 14.60 −3 8 41.90 1.94 268.79 55.47 60.61 116.05 0.65 ND 0.15 ND ND 0.14 31 160 55.70 −125 8.3 22.88 0.83 135.91 12.09 13.06 109.95 ND ND 0.17 ND 0.07 0.21 32 190 23.40 −128 7.5 207.36 1.66 1162.38 192.00 501.66 171.03 0.09 0.14 1.15 0.51 0.03 0.14 33 200 43.60 −216 8 266.32 1.31 1120.76 248.89 429.98 122.16 ND ND 1.83 0.29 ND 0.24 34 220 37.30 194 8 481.29 2.45 2017.67 234.67 1052.60 149.04 0.16 0.17 2.46 0.35 0.06 0.14 35 180 33.70 91 8.1 34.29 1.27 236.35 34.13 57.71 122.16 ND ND 0.22 ND ND 0.18 36 180 72.00 −107 8.5 157.75 1.46 695.94 82.49 315.27 156.37 ND ND 0.09 ND 0.04 0.23 37 160 40.70 −33 8.9 36.38 1.15 137.92 12.80 19.56 97.73 ND ND 0.14 ND ND 0.22 38 188 31.60 31 8.7 131.31 1.40 491.18 119.47 149.91 97.73 ND ND 0.9 ND 0.10 0.16 39 140 42.00 −160 7.8 1089.17 4.71 4357.90 821.35 1962.44 342.05 0.75 ND 0.14 1.10 0.18 0.12 40 188 59.70 46 8.6 155.35 3.05 655.98 135.11 238.00 122.16 1.63 0.25 0.4 ND 0.06 0.22 41 130 57.60 47 8.7 73.63 1.21 276.14 34.35 66.14 146.59 ND ND 1.41 ND ND 0.26 42 120 48.40 −21 8.3 142.13 1.58 689.52 82.49 313.85 157.59 0.18 ND 0.19 ND ND 0.37 43 180 27.30 −94 8.1 1281.43 3.11 5211.00 1671.15 1756.46 169.81 5.06 0.14 0.04 0.43 0.09 0.10 44 130 11.60 68 8.6 98.87 1.21 327.43 46.22 78.69 146.59 1.48 ND 0.07 ND ND 0.13 45 140 34.00 55 8.6 106.08 1.21 394.18 96.00 69.80 158.81 0.5 ND 0.15 ND 0.04 0.28 46 163 72.30 43 8.5 522.19 1.92 2110.82 800.02 539.77 85.51 ND ND 0.5 0.12 ND 0.22 47 500 444.40 −96 9.5 73.63 1.09 259.13 34.85 67.36 78.18 0.12 ND 0.43 ND 0.04 0.71 48 200 58.10 45 8.9 74.84 1.09 251.37 35.56 48.06 130.71 ND ND 0.14 ND ND 0.26 49 200 132.60 31 9 49.60 1.27 162.68 14.22 18.59 122.13 ND 0.06 0.07 ND ND 0.45 50 180 84.20 46 8.4 370.45 2.19 1628.78 605.88 416.47 109.95 0.58 0.06 0.32 0.14 0.04 0.24 51 200 89.00 52 8.9 65.22 1.21 229.67 32.00 43.94 130.71 ND 0.07 ND ND 0.14 0.41 52 90 55.50 40 8.53 163.00 6.26 587.5 182.50 111.21 119.79 0.20 0.13 ND 0.04 ND 0.34 53 54 0.80 66 7.28 710.18 7.53 4033.24 878.79 1551.98 572.06 3.25 0.06 0.68 1.56 ND 1.43 54 38 0.50 70 7.23 688.27 5.31 3997.96 660.42 1859.88 420.49 28.30 ND 0.72 0.47 ND 0.33 55 74 4.42 32 7.72 852.53 4.39 3473.31 1087.22 1179.53 103.90 2.21 0.26 0.21 0.34 ND 0.11 56 70 23.55 55 7.73 743.03 4.43 3136.59 1242.74 792.61 110.01 0.85 0.75 0.15 0.44 ND ND 57 73 26.56 85 7.61 2900.28 6.92 11632.96 5068.58 2444.08 119.79 0.93 ND 25.20 2.14 0.08 ND 58 95 0.56 46 7.81 350.26 4.00 2141.28 291.87 1075.21 266.47 5.33 ND 0.11 0.36 ND ND 59 80 3.14 76 7.80 362.30 3.82 2071.31 407.62 975.71 107.57 0.53 ND 0.16 0.34 ND ND 60 88 4.34 90 7.79 313.02 3.47 1339.78 409.04 427.00 113.68 0.28 ND 1.13 0.14 ND ND 61 98 3.09 26 8.06 140.01 2.91 617.20 199.55 158.62 86.79 0.10 ND 0.12 0.07 ND ND 注:ND.,为未检出.
ND., not detected.表 2 C1钻孔沉积物化学组分相关性一览表
Table 2. Correlations of sediments chemical components in the C1 borehole
As Fe Mn Cu Mg Ca As 1 0.611** 0.529** 0.627** 0.449* 0.166 Fe 1 0.805** 0.935** 0.838** 0.278 Mn 1 0.813** 0.513** −0.009 Cu 1 0.783** 0.266 Mg 1 0.706** Ca 1 注:* 在 0.05 级别,相关性显著;** 在 0.01 级别,相关性显著.
Note: * indicate significant correlation at 0.05; ** indicate significant correlation at 0.01.表 3 C2钻孔沉积物化学组分相关性一览表
Table 3. Correlations of sediments chemical components in the C2 borehole
As Fe Mn Cu Mg Ca As 1 −0.143 −0.096 −0.017 0.282 0.023 Fe 1 0.577* 0.932** 0.710** −0.055 Mn 1 0.491 0.506 −0.301 Cu 1 0.676** 0.056 Mg 1 −0.51 Ca 1 注:* 在0.05 级别,相关性显著;** 在0.01 级别,相关性显著.
Note: * Indicate significant correlation at 0.05; ** Indicate significant correlation at 0.01. -
[1] ZHAO Z, WANG S, JIA Y. Effect of sulfide on As(Ⅲ) and As(V) sequestration by ferrihydrite [J]. Chemosphere, 2017, 185: 321-328. doi: 10.1016/j.chemosphere.2017.06.134 [2] 韩双宝, 张福存, 张徽, 等. 中国北方高砷地下水分布特征及成因分析 [J]. 中国地质, 2010, 37(3): 748-751. HAN S B, ZHANG F C, ZHANG H, et al. An analysis of the distribution and formation of high arsenic groundwater in northern China [J]. Geology in China, 2010, 37(3): 748-751(in Chinese).
[3] 郑天亮, 邓娅敏, 鲁宗杰, 等. 江汉平原浅层含砷地下水稀土元素特征及其指示意义 [J]. 地球科学, 2017, 42(5): 694-703. ZHENG T L, DENG Y M, LU Z J, et al. Geochemistry and implications of rare earth elements in arsenic-affected shallow aquifer from Jianghan Plain, Central China [J]. Earth Science, 2017, 42(5): 694-703(in Chinese).
[4] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地富砷地下水的水化学与地球化学研究 [J]. 生态毒理学报, 2013, 8(2): 215-221. doi: 10.7524/AJE.1673-5897.20121223002 ZHANG L P, XIE X J, LI J X, et al. Hydrochemical and geochemical investigations on high arsenic groundwater from Datong Basin, Northern China [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 215-221(in Chinese). doi: 10.7524/AJE.1673-5897.20121223002
[5] 邓安琪, 董兆敏, 高群, 等. 中国地下水砷健康风险评价 [J]. 中国环境科学, 2017, 37(9): 3556-3565. doi: 10.3969/j.issn.1000-6923.2017.09.044 DENG A Q, DONG Z M, GAO Q, et al. Health risk assessment of arsenic in groundwater across China [J]. China Environment Science, 2017, 37(9): 3556-3565(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.044
[6] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5 [7] 王焰新, 郭华明, 阎世龙, 等. 浅层孔隙地下水系统环境演化及污染敏感性研究-以山西大同盆地为例[M]. 北京: 科学出版社, 2004: 53-80. WANG Y X, GUO H M, YAN S L, et al. Geochemical evolution of shallow groundwater systems and their vulnerability to contamants: A case study at Datong Basin[M]. Beijing: Science Press, 2004: 53-80 (in Chinese).
[8] MUKHERJEE A, FRYAR A E, THOMAS W A. Geologic, geomorphic and hydrologic framework and evolution of the Bengal Basin, India and Bangladesh [J]. Journal of Asian Earth Sciences, 2009, 34(3): 227-244. doi: 10.1016/j.jseaes.2008.05.011 [9] 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例 [J]. 地学前缘, 2014, 21(4): 13-27. GAO C R, LIU W B, FENG C E, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao plain in inner Mongolia, China [J]. Earth Science Frontiers, 2014, 21(4): 13-27(in Chinese).
[10] ZHANG Z H, XIAO C L, ADEYEYE O, et al. Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City, Northeast China [J]. Water, 2020, 12(2): 534. doi: 10.3390/w12020534 [11] 余倩, 张宇, 邬建勋, 等. 江汉平原沉积物中磷酸盐与砷的竞争吸附机制 [J]. 中南民族大学学报(自然科学版), 2020, 39(4): 337-342. YU Q, ZHANG Y, WU J X, et al. Competitive adsorption mechanism of phosphate and arsenic in sediments from Jianghan Plain [J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2020, 39(4): 337-342(in Chinese).
[12] 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程 [J]. 地球科学与环境学报, 2013, 35(3): 85-92. GUO H M, GUO Q, JIA Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater indifferent regions of China [J]. Journal of Earth Sciences and Environment, 2013, 35(3): 85-92(in Chinese).
[13] 王连方, 郑宝山, 王生玲, 等. 新疆水砷及其对开发建设的影响 [J]. 地方病通报, 2002, 17(1): 21-24. doi: 10.3969/j.issn.1000-3711.2002.01.007 WANG L F, ZHENG B S, WANG S L, et al. Water arsenic and its influence on the development of Xinjiang [J]. Endemic Disease Bulletin, 2002, 17(1): 21-24(in Chinese). doi: 10.3969/j.issn.1000-3711.2002.01.007
[14] 罗艳丽, 李晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析 [J]. 环境科学学报, 2017, 37(8): 2898-2903. LUO Y L, LI J, JIANG P A, et al. Distribution, classification and cause analysis of geogenic high-arsenic groundwater in Kuitun, Xinjiang [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2898-2903(in Chinese).
[15] 孙丹阳, 朱东波. 中国西北地区高砷地下水赋存环境对比及其成因分析 [J]. 资源环境与工程, 2019, 33(3): 387-390. SUN D Y, ZHU D B. Environment contrast and Genesis analysis of high arsenic groundwater in Northwestern China [J]. Resources Environment & Engineering, 2019, 33(3): 387-390(in Chinese).
[16] 吕晓立, 刘景涛, 朱亮, 等. 甘肃省榆中盆地地下水化学演化特征及控制因素 [J]. 干旱区资源与环境, 2020, 34(2): 195-201. LV X L, LIU J T, ZHU L, et al. Characteristics and controlling factors of chemical evolution of groundwater in Yuzhong basin [J]. Journal of Arid Land Resources and Environment, 2020, 34(2): 195-201(in Chinese).
[17] 罗艳丽, 李晶, 蒋平安, 等. 新疆高砷地区地下水水化学特征及其成因分析 [J]. 干旱区资源与环境, 2017, 31(8): 116-121. LUO Y L, LI J, JIANG P A, et al. Hydro-chemical characteristics and the formations for groundwater in Kuitun, Xinjiang [J]. Journal of Arid Land Resources and Environment, 2017, 31(8): 116-121(in Chinese).
[18] LI M Q, LIANG X J, XIAO C L, et al. Hydrochemical evolution of groundwater in a typical semi-arid groundwater storage basin using a zoning model [J]. Water, 2019, 11(7): 1334. doi: 10.3390/w11071334 [19] 李勇, 高旭波, 张鑫, 等. 运城盆地高砷区地下水-沉积物中砷的地球化学特征研究 [J]. 安全与环境工程, 2017, 24(5): 68-74. LI Y, GAO X B, ZHANG X, et al. Geochemistry of arsenic in sediments groundwater in areas with arsenic polluted groundwater in Yuncheng Basin [J]. Safety and Environmental Engineering, 2017, 24(5): 68-74(in Chinese).
[20] 袁翰卿, 李巧, 陶洪飞, 等. 新疆奎屯河流域地下水砷富集因素 [J]. 环境化学, 2020, 39(2): 524-530. doi: 10.7524/j.issn.0254-6108.2019051403 YUAN H Q, LI Q, TAO H F, et al. Groundwater arsenic enrichment factors of Kuitun river basin, Xinjiang [J]. Environmental Chemistry, 2020, 39(2): 524-530(in Chinese). doi: 10.7524/j.issn.0254-6108.2019051403
[21] GUO H M, LIU C, LU H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: An iron isotope approach [J]. Geochimica et Cosmochimica Acta, 2013, 112: 130-145. doi: 10.1016/j.gca.2013.02.031 [22] 段艳华, 甘义群, 郭欣欣, 等. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析 [J]. 地质科技情报, 2014, 33(2): 141-146. DUAN Y H, GAN Y Q, GUO X X, et al. Hydrogeochemistry and arsenic contamination of groundwater in the monitoring field, Jianghan Plain [J]. Geological Science and Technology Information, 2014, 33(2): 141-146(in Chinese).
[23] 张昌延, 何江涛, 张小文, 等. 珠江三角洲高砷地下水赋存环境特征及成因分析 [J]. 环境科学, 2018, 39(8): 3632-3637. ZHANG C Y, HE J T, ZHANG X W, et al. Geochemical characteristics and genesis analyses of high-arsenic groundwater in the Pearl River Delta [J]. Environmental Science, 2018, 39(8): 3632-3637(in Chinese).
[24] 李巧, 周金龙, 曾妍妍. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响 [J]. 环境化学, 2017, 36(10): 2227-2234. doi: 10.7524/j.issn.0254-6108.2017021307 LI Q, ZHOU J L, ZENG Y Y. Effects of nitrogens on the migration and enrichment of arsenic in the groundwater in the plain area of Kuitun River and Manas River basin [J]. Environmental Chemistry, 2017, 36(10): 2227-2234(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021307
[25] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究 [J]. 地质科技情报, 2014, 33(1): 179-182. ZHANG L P, XIE X J, LI J X, et al. Spatial variation, speciation and enrichment of arsenic in groundwater from the Datong basin, Northern China [J]. Geological Science and Technology Information, 2014, 33(1): 179-182(in Chinese).
[26] 袁雪花, 苏玉红. 奎屯高砷地下水灌溉区居民头发和指甲中砷含量研究 [J]. 安全与环境学报, 2017, 17(4): 1519-1523. YUAN X H, SU Y H. On the arsenic content rate in the hair and nail of the residents due to the high arsenic groundwater pollution in Kuitun irrigated area, Xinjiang [J]. Journal of Safety and Environment, 2017, 17(4): 1519-1523(in Chinese).
[27] 邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征 [J]. 地质科技情报, 2019, 38(1): 251-257. WU J X, YU Q, JIANG Q K, et al. Geochemical characteristics of groundwater and aquifer sediments in high arsenic groundwater in Jianghan Plain [J]. Geological Science and Technology Information, 2019, 38(1): 251-257(in Chinese).
[28] GUO H M, ZHANG D, WEN D G, et al. Arsenic mobilization in aquifers of the Southwest Songnen basin, P. R. China: Evidences from chemical and isotopic characteristics [J]. Science of the Total Environment, 2014, 490: 590-602. doi: 10.1016/j.scitotenv.2014.05.050 [29] 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因 [J]. 地学前缘, 2014, 21(4): 1-12. GUO H M, NI P, JIA Y F, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world [J]. Earth Science Frontiers, 2014, 21(4): 1-12(in Chinese).
[30] 余倩, 谢先军, 马瑞, 等. 地下水系统中砷迁移富集过程的水文地球化学模拟 [J]. 地质科技情报, 2013, 32(6): 116-122. YU Q, XIE X J, MA R, et al. Hydrogeochemical modeling of arsenic transport and enrichment in groundwater [J]. Geological Science and Technology Information, 2013, 32(6): 116-122(in Chinese).