-
硫在自然界中广泛分布,但地壳中含量仅为0.048%,并且主要存在于岩石矿物、化石燃料和海洋中。硫有多种存在形态,可分为无机硫和有机硫,其中无机硫包括硫酸盐、硫化物以及单质硫等,有机硫主要包括酯键硫和碳键硫[1]。沉积物和岩石中储存约7.80×1018 kg的硫,且主要以金属硫化物和石膏的形式存在。金属硫化物(如黄铁矿、磁黄铁矿、方铅矿、闪锌矿、黄铜矿和砷黄铁矿等)尾矿在空气、水和微生物作用下氧化、酸化,形成含大量重金属离子的酸性矿山废水(acid mine drainage, AMD)[2-3]。AMD随地表径流进入河流后,其携带的硫化物也会进入到沉积物中并迁移转化。自然界有32S、33S、34S和36S 的4种稳定同位素,地球化学研究中一般考虑丰度最大的34S和32S,其组成一般用δ34S表示[4]。不同源区的硫一般具有不同的同位素组成特征,且不同形态硫的来源和迁移过程也不尽相同,因此,硫同位素组成可用来指示硫的来源以及迁移转化过程[5-6]。
沉积物是水生态系统的重要组成部分,是众多污染物在环境中迁移转化的载体、归宿和蓄积库,是研究污染物环境地球化学循环的重要载体[7-9]。在硫的迁移、转化过程中,地表径流携带的硫素被输送到河流与海洋,这些硫一部分被浮游动植物及鱼类利用,其余部分在水-沉积物界面发生复杂的生物地球化学迁移转化,最终埋藏于河流或海洋底部[10]。沉积物中的无机硫主要包括硫酸盐、酸可挥发性硫(AVS)、黄铁矿硫(CRS)和单质硫(ES)等。AVS是指在酸性条件下能够分解生成硫化氢的那部分硫化物,化学性质相对活跃,主要包括结晶型马基诺矿、游离硫化物、无定型FeS等以及其它二价金属硫化物[11],可进一步与铁反应生成更为稳定的黄铁矿。CRS(FeS2)化学性质较为稳定,不溶于盐酸,是硫铁化物成岩后的最终产物[12]。
庐江县是安徽省矿产资源富集区之一,有“地下聚宝盆”之称,也是安徽省确定的第五大工矿区和重点开发建设的工矿基地。全县共有以龙桥、矾山、泥河和罗河为代表的大小矿区(床)77个,保有资源储量居全省前五位的有6种矿产,其中铅、锌、硫铁矿、明矾石等4种居首位,铜矿居第二位,铁矿居第三位[13]。钟山铁矿床位于庐枞火山岩盆地北部,规模为中型铁矿,主要矿石类型为赤铁矿和磁铁矿,并共生黄铁矿[14]。庐江县钟山铁矿于1967年开始建设矿山,1979年投产开采[14]。采选矿形成的尾矿中硫化物经氧化、酸化形成AMD,随雨水径流排入河流,给局地的水生态环境带来潜在危害。
本文以安徽省庐江县钟山铁矿尾矿库周边失曹河与黄屯河为研究对象,采集河流水和沉积物样品,分析了水和沉积物硫形态含量、硫酸根硫同位素组成及其分布特征,为尾矿区酸性矿山废水环境影响及其排放控制提供基础参考。
安徽庐江钟山尾矿区河流水体硫形态及硫同位素分布特征
Distribution characteristics of sulfur species and isotopes in sediments of rivers around Zhongshan tailing at Lujiang County, Anhui Province
-
摘要: 分析了安徽省庐江县钟山尾矿区周边受酸性矿山废水影响的失曹河和黄屯河水体硫形态及硫酸根(
${{\rm{SO}}_4^{2-}} $ )硫同位素组成与分布特征。结果表明,两条河流河水整体呈酸性;失曹河河水${{\rm{SO}}_4^{2-}} $ 含量为85.06—1669.04 mg·L−1(均值347.10 mg·L−1),黄屯河河水${{\rm{SO}}_4^{2-}} $ 含量为79.05—15348.10 mg·L−1(均值673.42 mg·L−1);两条河流河水${{\rm{SO}}_4^{2-}} $ 含量沿流向呈下降趋势。河流沉积物${{\rm{SO}}_4^{2-}} $ 占总硫比值超过60%,是硫的主要存在形态。失曹河沉积物中酸可挥发性硫(AVS)含量为0.58—577.10 μg·g−1(均值5.80 μg·g−1);黄铁矿硫(CRS)含量为3.09—38.14 μg·g−1(均值9.97 μg·g−1);SO42-含量为1.90—129.79 mg·g−1(均值33.20 mg·g−1)。黄屯河沉积物中AVS含量为0.43—131.51 μg·g−1(均值2.40 μg·g−1);CRS含量为5.76—206.33 μg·g−1(均值43.54 μg·g−1);${{\rm{SO}}_4^{2-}} $ 含量为16.42—183.31 mg·g−1(均值42.34 mg·g−1)。失曹河沉积物δ34${{\rm{S}}_{{\rm{SO}}_{\rm{4}}}} $ 范围为−2.8‰—5.3‰;黄屯河沉积物δ34${{\rm{S}}_{{\rm{SO}}_{\rm{4}}}} $ 范围为3.7‰—5.4‰,指示河流中的${{\rm{SO}}_4^{2-}} $ 主要来源于尾矿中黄铁矿的氧化。失曹河S3点位及黄屯河H6、H7点位沉积物的AVS含量高于上游点位,指示了随着河流下游水位增加、还原环境增强,沉积物中部分${{\rm{SO}}_4^{2-}} $ 发生了还原并生成AVS,但δ34${{{\rm{S}}_{{\rm{SO}}_{\rm{4}}}}} $ 未有明显变化。本研究表明,失曹河和黄屯河受酸性矿山废水影响明显,庐江钟山尾矿区需进一步加强酸矿水漏排控制。Abstract: In this study, sulfur species and sulfur isotope of sulfate in sediments from Shicao and Huangtun rivers which affected by Acid Mine Drainage (AMD) near Zhongshan tailing, Lujiang County were analyzed and discussed. Overall, the waters in these two rivers were acidic. The concentration of sulfate (${\rm{SO}}_4^{2-} $ ) in waters of Shicao river ranged from 85.06 mg·L−1 to 1669.04 mg·L−1, with a mean of 347.10 mg·L−1, while that of Huangtun river ranged from 79.05 mg·L−1 to 15348.10 mg·L−1, with a mean of 673.42 mg·L−1; All of them showed a decline trend from upstream to downstream.${\rm{SO}}_4^{2-} $ in sediments was very high, and it was the main species of sulfur in these two rivers. The ranges of${\rm{SO}}_4^{2-} $ , acid volatile sulfur (AVS) and pyrite sulfur (CRS) in Shicao river sediments were 1.90—129.79 mg·g−1, 0.58—577.10 μg·g−1 and 3.09—38.14 μg·g−1, respectively; While those in Huangtun river were 16.42—183.31 mg·g−1, 0.43—131.51 μg·g−1 and 5.76—206.33 μg·g−1, respectively. The stable sulfur isotope ratios of sulfate (δ34${{\rm{S}}_{{\rm{SO}}_{\rm{4}}}} $ ) in Shicao and Huangtun river sediments were −2.8‰—5.3‰ and 3.7‰—5.4‰, indicating a source from the oxidation of local pyrites. High values of AVS in S3, H6 and H7 suggested a possible sulfate reduction in these sediments. The study indicated that more efforts should be made to control the AMD discharge in Zhongshan tailing.-
Key words:
- acid mine drainage /
- tailing /
- river sediments /
- sulfur species /
- sulfur isotope
-
-
[1] 单孝全, 陈斌. 土壤和河流沉积物中硫的形态分析 [J]. 环境科学学报, 1991, 11(2): 172-177. doi: 10.3321/j.issn:0253-2468.1991.02.007 SHAN X Q, CHEN B. Fractionation of sulfur in soil and river sediment [J]. Acta Scientiae Circumstantiae, 1991, 11(2): 172-177(in Chinese). doi: 10.3321/j.issn:0253-2468.1991.02.007
[2] YANG C, LU G, CHEN M, et al. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China [J]. Geoderma, 2016, 281: 21-29. doi: 10.1016/j.geoderma.2016.06.032 [3] 吴惠明, 李晓, 李锦文, 等. 模拟风化过程硫铁矿尾矿的产酸性及污染物的释放行为 [J]. 环境化学, 2014, 33(3): 447-451. doi: 10.7524/j.issn.0254-6108.2014.03.002 WU H M, LI X, LI J W, et al. Acid generation behavior of pyrite tailing and characteristic of pollutant release during simulated weathering process [J]. Environmental Chemistry, 2014, 33(3): 447-451(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.03.002
[4] 陕亮, 郑有业, 许荣科, 等. 硫同位素示踪与热液成矿作用研究 [J]. 地质与资源, 2009, 18(3): 197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007 SHAN L, ZHENG Y Y, XU R K, et al. Review on sulfur isotopic tracing and hydrothermal metallogenesis [J]. Geology and Resources, 2009, 18(3): 197-203(in Chinese). doi: 10.3969/j.issn.1671-1947.2009.03.007
[5] 吴攀, 刘丛强, 张国平, 等. 矿山环境地表水系的硫同位素研究—以贵州赫章后河为例 [J]. 矿物岩石地球化学通报, 2007, 26(3): 224-227. doi: 10.3969/j.issn.1007-2802.2007.03.005 WU P, LIU C Q, ZHANG G P, et al. Sulfur Isotopic geochemistry of the water system in mine area a case study of the Hou River in Hezhang County, Guizhou, China [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3): 224-227(in Chinese). doi: 10.3969/j.issn.1007-2802.2007.03.005
[6] KILLINGSWORTH B A, BAO H M. Significant human impact on the flux and δ34S of sulfate from the largest river in North America [J]. Environmental Science & Technology, 2015, 49(8): 4851-60. [7] 黄飞, 王泽煌, 蔡昆争, 等. 大宝山尾矿库区水体重金属污染特征及生态风险评价 [J]. 环境科学研究, 2016, 29(11): 1701-1708. HUANG F, WANG Z H, CAI K Z, et al. Pollution characteristics and potential ecological risks of heavy metals in water of tailing zone in Dabaoshan Mine, Guangdong Province, China [J]. Research of Environmental Science, 2016, 29(11): 1701-1708(in Chinese).
[8] 陈明, 李凤果, 陶美霞, 等. 赣南典型矿区河流上覆水与表层沉积物重金属分布特征及风险评价 [J]. 环境化学, 2019, 38(7): 1461-1469. doi: 10.7524/j.issn.0254-6108.2018120706 CHEN M, LI F G, TAO M X, et al. Distribution characteristics and risk assessment of heavy metals in overlying water and surface sediments in rivers in typical mining areas of southern Jiangxi Province [J]. Environmental Chemistry, 2019, 38(7): 1461-1469(in Chinese). doi: 10.7524/j.issn.0254-6108.2018120706
[9] 贺梦醒, 高毅, 孙庆业. 尾矿废水对河流沉积物和稻田土壤细菌多样性的影响 [J]. 环境科学, 2011, 32(6): 1778-1785. HE M X, GAO Y, SUN Q Y. Influence of mine tailings drainage on microbial diversity in the river sediments and paddy soil [J]. Environmental Science, 2011, 32(6): 1778-1785(in Chinese).
[10] 曹爱丽, 周桂平, 胡姝, 等. 崇明东滩湿地沉积物中还原无机硫的形态特征 [J]. 复旦学报(自然科学版), 2010, 49(5): 612-617. CAO A L, ZHOU G P, HU S, et al. The chemical characteristic of reduced inorganic sulfur in the wetland sediments of Chongming Dongtan [J]. Journal of Fudan University (Natural Science), 2010, 49(5): 612-617(in Chinese).
[11] RICKARD D, MORSE J W. Acid volatile sulfide (AVS) [J]. Marine Chemistry, 2005, 97(3): 141-197. [12] WILKIN R T, BAMES H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4 [13] 谢自信, 胡长友, 高一军, 等. 庐江县矿产资源总体规划[R]. 庐江县人民政府, 2010. XIE Z X, HU C Y, GAO Y J, et al. General planning of Lujiang county's mineral resources[R]. Lujiang County People's Government, 2010(in Chinese).
[14] 吴旭升. 安徽省庐江县钟山铁矿床地质特征及找矿方向 [J]. 华东地质, 2016, 37(3): 214-220. WU X S. Geological feature and exploration direction of the Zhongshan iron ore deposit in Lujiang County, Anhui Province [J]. East China Geology, 2016, 37(3): 214-220(in Chinese).
[15] 王小芳, 李方晓, 黄涛, 等. 安徽铜陵铜尾矿硫形态及硫同位素分布特征 [J]. 中国环境科学, 2019, 39(4): 1664-1671. doi: 10.3969/j.issn.1000-6923.2019.04.039 WANG X F, LI F X, HUANG T, et al. Distribution characteristics of sulfur species and isotopes in a copper tailing at Tongling, Anhui Province [J]. China Environmental Science, 2019, 39(4): 1664-1671(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.04.039
[16] 郭照冰, 董琼元, 陈天, 等. 硫稳定同位素对环境污染物的示踪 [J]. 南京信息工程大学学报(自然科学版), 2010, 2(5): 426-430. GUO Z B, DONG Q Y, CHEN T, et al. Identification of pollutants using sulfur isotope [J]. Journal of Nanjing University of Information Science and Technology (Natural Science), 2010, 2(5): 426-430(in Chinese).
[17] CHEN M, LU G, GUO C, et al. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China [J]. Chemosphere, 2015, 119: 734-743. doi: 10.1016/j.chemosphere.2014.07.094 [18] 杨成方. 金属硫化物矿区稻田土壤中硫素的迁移转化及次生硫酸盐矿物中重金属的溶出机制[D]. 广州: 华南理工大学, 2016. YANG C F. Migration and transformation of sulfur in paddy soil and dissolution of mechanism of heavy metal in secondary iron sulfate mineral in metal sulfide mine area[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
[19] 陈梅芹. 硫酸根在金属硫化物矿区AMD污染河流中的迁移过程及其作用机制[D]. 广州: 华南理工大学, 2015. CHEN M Q. Sulfate migration and its mechanism in a river affected by acid mine drainage in metal sulfide mining area[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
[20] 张国平. 贵州典型矿山的水环境地球化学特征[D]. 北京: 中国科学院研究生院, 2005. ZHANG G P. Case studies of the water envrionmental geochemistry of mines in Guizhou Province[D]. Graduate University of Chinese Academay of Science, 2005(in Chinese).
[21] GLOVER F, WHITWORTH K L, KAPPEN P, et al. Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray-Darling Basin, Australia [J]. Environmental Science & Technology, 2011, 45(7): 2591-2597. [22] JANAAEN G M, TEMMINGHOFF E J. In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction [J]. Environmental Science Technology, 2004, 38(14): 4002-4011. [23] 叶焰焰. 罗源湾滨海湿地沉积物中还原性无机硫的分布特征及影响研究[D]. 北京: 中国地质大学, 2017. YE Y Y. Study on the distribution and the effects of reduced inorganic sulfur in the sediment of Luoyuan Bay coastal wetland[D]. Beijing: China University of Geosciences, 2017(in Chinese).
[24] PESTER M, KNORR K H, FRIEDRICH M W, et al. Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change [J]. Frontiers in Microbiology, 2012, 3: 1-19. [25] EGGER M, KRAAL P, JILBERT T, et al. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea [J]. Biogeosciences, 2016, 13(18): 5333-5355. doi: 10.5194/bg-13-5333-2016 [26] CHEN Y, SHEN L, HUANG T, et al. Transformation of sulfur species in lake sediments at Ardley Island and Fildes Peninsula, King George Island, Antarctic Peninsula [J]. Science of the Total Environment, 2020, 703: 135591. doi: 10.1016/j.scitotenv.2019.135591 [27] CHEN Y, GE J, HUANG T, et al. Restriction of sulfate reduction on the bioavailability and toxicity of trace metals in Antarctic lake sediments [J]. Marine Pollution Bulletin, 2020, 151: 110807. doi: 10.1016/j.marpolbul.2019.110807 [28] 韩珣, 任杰, 陈善莉, 等. 基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径 [J]. 环境科学, 2010, 39(5): 2010-2014. HAN X, REN J, CHEN S L, et al. Sulfur sources and oxidation pathways in summer Aerosol from Nanjing Northern suburb using S and O isotopes [J]. Environmental Science, 2010, 39(5): 2010-2014(in Chinese).
[29] 夏迪. 基于硫氧双同位素的矿区河流中硫酸根来源识别及微生物转化研究[D]. 广州: 华南理工大学, 2018. XIA D. Minning river sulfate source identification and microbial transformation-Based on sulfur and oxygen isotopes[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
[30] 蒋颖魁, 刘丛强, 陶发祥. 贵州乌江水系河水硫同位素组成特征研究 [J]. 水科学进展, 2007, 18(4): 558-565. doi: 10.3321/j.issn:1001-6791.2007.04.013 JANG Z K. Sulfur isotope composition characters of Wujiang river water in Guizhou province [J]. Advances in Water Science, 2007, 18(4): 558-565(in Chinese). doi: 10.3321/j.issn:1001-6791.2007.04.013
[31] 张伟, 刘丛强, 梁小兵. 硫同位素分馏中的生物作用及其环境效应 [J]. 地球与环境, 2007, 35(3): 223-227. ZHANG W, LIU C Q, LIANG X B. Biological function in sulfur isotope fractionation and environmental effect [J]. Earth and Environment, 2007, 35(3): 223-227(in Chinese).
[32] FRY B, COX J, GEST H, et al. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds [J]. Journal of Bacteriology, 1986, 165(1): 328-330. doi: 10.1128/JB.165.1.328-330.1986 [33] JUTTA K, MARTIN H S, STEFANO M B, et al. Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4891-4904. doi: 10.1016/j.gca.2004.05.034 [34] KAPLAN I R, RITTENBERG S C. Microbiological fractionation of sulfur isotopes [J]. Journal of General Microbiology, 1964, 34(2): 195-212. doi: 10.1099/00221287-34-2-195 [35] 张舒, 吴明安, 赵文广, 等. 安徽庐江泥河铁矿矿床地球化学特征及其对成因的制约 [J]. 岩石学报, 2014, 30(5): 1382-1396. ZHANG S, WU M A, ZHAO G W, et al. Geochemistry characteristics of Nihe iron deposit in Lujiang, Anhui Province and their constrains to ore genesis [J]. Acta Petrologica Sinica, 2014, 30(5): 1382-1396(in Chinese).
[36] 储雪蕾, 陈锦石, 王守信. 安徽罗河铁矿的硫同位素温度及意义 [J]. 地球化学, 1984(4): 350-356. doi: 10.3321/j.issn:0379-1726.1984.04.007 CHU X L, CHEN J S, WANG S X. Sulfur isotopic temperatures and their significance of Luohe iron deposit in Anhui Province [J]. Geochemistry, 1984(4): 350-356(in Chinese). doi: 10.3321/j.issn:0379-1726.1984.04.007
[37] 温冰冰, 张招崇, 谢秋红, 等. 安徽庐枞盆地小包庄铁矿的矿床地质特征和成矿机制以及与罗河铁矿的关系 [J]. 地质学报, 2018, 92(7): 1474-1492. doi: 10.3969/j.issn.0001-5717.2018.07.010 WEN B B, ZHANG Z C, XIE Q H, et al. Geological characteristics and metallogenic mechanism of the Xiaobaozhuang iron deposit and their genetic relationship with the Luohe iron deposit in the Lujiang-Zongyang basin, Anhui Province [J]. Acta Geologica Sinica, 2018, 92(7): 1474-1492(in Chinese). doi: 10.3969/j.issn.0001-5717.2018.07.010
[38] 吴明安, 汪青松, 郑光文, 等. 安徽庐江泥河铁矿的发现及意义 [J]. 地质学报, 2011, 85(5): 802-809. WU M A, WANG Q S, ZHEN G W, et al. Discovery of the nihe iron deposit in Lujiang, Anhui, and its exploration significance [J]. Acta Geologica Sinica, 2011, 85(5): 802-809(in Chinese).