-
沉积物为水生态系统重要部分,是流域重金属和营养物的源或汇。一方面,水中重金属主要富集在沉积物中[1],沉积物中重金属浓度比水中的高且有明显分布规律,可指示水环境中重金属的污染程度[2]。另一方面,当界面条件发生变化时,沉积物中的重金属会释放到水体中[3],成为二次污染源。此外,营养物元素也主要蓄积在沉积物种,界面特性改变可释放营养成分,影响水环境的质量[4]。因此,研究河流沉积物的重金属和营养盐的污染状况对流域水环境管理具有重要意义。
小清河是济南市中心城唯一的排水水道,流域污染治理工作形势严峻。相关研究表明,小清河干支流河段沉积物存在不同程度的重金属累积和生态风险[5-7]。但现有研究主要针对重点支流或某段干流重金属污染,对小清河济南段干流全段的重金属污染状况分析、评估和污染来源分析研究尚属空白;且对小清河济南段干流全段营养盐的分析讨论也是鲜有报道。
为此,本研究采样分析了小清河济南段干流29个点位表层沉积物的8种重金属以及有机碳、总氮、总磷的含量及其空间分布特征,并利用地累积指数法和生态风险评价指数法对沉积物中的重金属进行生态风险评价,解析了重金属和营养盐的来源,以期为小清河济南段水环境管理提供技术支撑。
全文HTML
-
小清河源起槐荫区段店镇睦里庄,自章丘市辛丰庄出境。小清河引玉符河水东流,上游水源补给主要来自济南市内各泉,流经槐荫、天桥、市中、历下、历城和章丘等区县,济南段全长共70.3 km。
-
结合小清河济南段干流实际情况,选取重要支流入口或重要污水入口等关键点位,本研究共设置29个采样点位,于2017年冬采样并用GPS定位采样点。详见图1和表1。
沉积物样品采用抓斗式采泥器采集,将样品装入标准自封袋中密封,通过加装木框木箱和冰袋等,保证样品在运输过程中不会流失、污染。样品一经收集即置于低温条件(0—4 ℃)下保存。然后置于实验室冰柜(−20 ℃)中保存。干燥的沉积物样品经研磨,过200目筛后,取0.25 g加入5 mL HNO3,10 mL HF,2 mL HClO4的消解液,在200 ℃的密闭系统内消解12 h,各重金属和营养盐的检测方法见表2。
-
利用Arcgis 10.0进行制图,利用Excel2010进行数据计算,利用SPSS进行统计、聚类、相关性和主成分分析等。
-
地累积指数法是利用一种重金属的总含量与其他地球化学背景值的关系,定量评价沉积物中的重金属污染程度。该方法由Muller提出[8],公式如下:
其中,
Igeo 为地累积指数,无量纲;Cn 为沉积物中重金属n的含量,mg·kg−1;Bn 为该元素背景值,mg·kg−1。根据Igeo 值大小,沉积物的污染分级标准[8-10]见表3。 -
潜在生态风险指数法用以评价重金属生态危害状况。该方法基于重金属的生物毒性,定量评估潜在生态危害。该方法由瑞典学者Lars Hakanson提出,公式如下:
其中,
RI 是综合潜在生态危害指数,无量纲;Eir 是某i种重金属潜在生态危害指数,无量纲;Tir 为某i种重金属的毒性系数,无量纲,详见表4[11];Cif 为某i种重金属元素的实际含量,mg·kg−1;Cin 为某i种重金属的背景参考值,mg·kg−1[12]。根据RI 和Eir 值的大小,评价标准见表5[9]。 -
采用有机指数和有机氮评价沉积物营养物污染状况,评价标准见表6,公式如下[13]:
-
采用单一因子的标准指数法进行评价,计算方法[14]和评价标准[15]如下:
式中,
Si 为单项评价指数或标准指数;Ci 为沉积物中i的含量;Cs 为沉积物种i的标准值。加拿大安大略省环境和能源部1992年发布沉积物中营养盐的环境质量标准,TN和TP能够引起最低级别生态毒性效应的含量分别为 0.55 mg·g−1和0.60 mg·g−1;严重级含量分别为 4.80 mg·g−1和2.00 mg·g−1。其中,最低级表示沉积物已受污染,但大多数底栖生物可以承受;严重级表示底栖生物群落已遭受明显的损害。
1.1. 研究区域概述
1.2. 样品采集和检测
1.3. 数据处理
1.4. 沉积物中重金属污染评价方法
1.4.1. 地累积指数法
1.4.2. 潜在生态风险指数法
1.5. 沉积物营养物污染评价方法
1.5.1. 有机指数和有机氮评价
1.5.2. 氮、磷污染评价
-
小清河干流29个点位表层沉积物中重金属Hg均未检出,现仅分析除Hg外7种重金属分布特征,结果见表7。
研究区域表层沉积物重金属平均含量由高到低依次为Zn>Cr>Cu>Pb>Ni>As>Cd。重金属平均含量排序与济南市大明湖[16]和黄莹等[5]的研究结果一致,与于晓霞等[6]研究结果(Zn>Pb>Ni>Cu>Cr>Cd>As)略有不同。但重金属含量与有其他研究结果差别较大,本研究表层沉积物中Zn、Cr、Cu、Pb、Ni、As、Cd平均含量分别是大明湖[16]的2.27、2.77、1.34、1.14、1.65、2.14、2.58倍,分别是小清河表层沉积物重污染区[5]的0.77、0.46、0.91、0.84、0.80、1.45、0.89倍,分别是小清河流域[6]的0.75、0.67、0.86、0.20、0.56、2.54、0.10倍。
因小清河pH值大于7.5,本研究选取《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618—2018)中风险筛选值(pH>7.5)为标准值。研究区表层沉积物As、Cr、Cu、Ni、Pb 等5种重金属平均含量未超标,Zn和Cd平均含量超标,分别是标准值的1.05倍和1.03倍。As、Ni和Pb无超标点位,Cd、Zn、Cr、Cu的点位超标率依次为58.62%、55.17%、10.34%、3.45%。点位重金属超标率为65.52%,点位1—5、7、13、17、26和29未超标,其他19个点位超标。
研究区域表层沉积物各重金属平均含量均高于背景值。Zn、Cd、Cu、Cr、Pb、As、Ni的平均含量分别是背景值的4.62、4.13、2.62、2.36、2.08、1.11、1.10倍。说明各重金属均存在不同程度的富集。变异系数越大,说明元素分布越不均匀,可能受人为来源的控制和影响[17]。Cr(94.98%)、Zn(43.78%)、Pb(42.73%)、Cd(40.58%)、Cu(38.84%)为高度变异(CV>36%)[18],分布较不均匀,说明可能受人为污染影响较为严重。
为探求研究区表层沉积物重金属空间分布规律,依据各点位7种重金属含量,利用SPSS对29个点位进行系统聚类分析。根据地累计指数法评估结果,Ni和As总体为无污染,因此,本次分析分别对Zn、Cd、Cu、Cr和Pb等 5种重金属以及7种重金属综合数据进行聚类,结果见图2。
结合聚类分析结果,将点位分成3类:A类点位为研究区的上游和下游出境段,包括点1、2、3、4和29;B类点位为研究区中间段的大部分点位,包括点5—10、12—19、23、24、26—28;C类点位为其他特殊点位,包括点11、20、21、22、25。
点20由于Cd、Cu、Cr、Pb为特殊点,点20赵王河上游存在一些化工企业;点11和点21主要是由于Cr成为特殊点,点11裕兴东沟有济南裕兴化工厂老厂区,该场地为Cr污染场地,点21龙脊河上游存在工业区;点25和22主要由于Zn成为特殊点,点25巨野河上游为孙村高新工业园区,点22的石河上游为东部老工业区,历史上聚集着济钢集团等钢铁企业、蓝星石化等石化企业。
3类点位重金属含量存在明显差异。3类点位7种重金属含量均值由高到低均为C类>B类>A类,详见表8。C类点位重金属含量均超标,A类点位重金属含量均未超标。这可能是因为三类点位污染源不同。A类点位周边为农业区,主要为农业面源污染,B类点位周边为城市建成区,主要为生活污水和交通源等城市面源污染;C类点位支流上游历史上或现存不同类型的工业企业或工业园区,主要为工业废水等工业污染。
-
地累积指数评价结果显示,各种金属总体污染程度由高到底依次为Zn>Cd>Cu>Pb>Cr>Ni>As,
Igeo 均值依次为1.47、1.30、0.67、0.37、0.30、−0.47、−0.49。Zn和Cd总体为偏中度污染,Cu、Pb、Cr总体为轻度污染,Ni和As总体为无污染。详见图3。A类点位污染程度较低,除Cd、Zn轻度污染外,其他重金属均为无污染。点位1、2、3的Cd、Zn为轻度污染,点位4的Zn为轻度污染。B类点位主要为Cd和Zn污染,以偏中度污染为主。C类点位污染程度最重,各点位Cd、Cr和Zn的污染程度均为偏中度及以上,Cu和Pb的污染程度为轻度或偏中度污染。其中,点位20的As为轻度污染,Cu和Pb为偏中度污染,Cd和Zn为中度污染,Cr为偏重度污染。
-
各点位RI在41.99—373.78之间,均值为173.31,中度风险。详见图4。其中8个点位为低度风险,20个点位为中度风险,1个点位为重度风险。从区域分布上看,A类点位全部为低度风险,B类点位全部为中度风险, C类点位为中度和重度风险,其中点20为重度风险,应重点关注。从各重金属构成上看,各点位Cd的平均
Eir 为123.92,较重风险,其他重金属均为低风险。Cd是综合生态危害指数构成的最主要的金属,贡献率为71.50%。这与黄莹等的研究结论基本一致,即小清河重污染区表层沉积物平均RI值为 197. 40,中度风险;Cd的
Eir 的平均值为 139. 99,有强生态风险;Cd 是小清河沉积物的主要风险来源,其生态风险系数对潜在风险指数的贡献达70.92%[5]。与小清河污灌区土壤重金属综合潜在生态风险评价结果相似,即RI值在51.23—199.33,处于轻微-中等风险水平,Cd是土壤重金属的主要风险源之一,综合潜在生态风险指数的贡献率分别为57%[19]。本研究区位于黄河流域,本研究区的RI小于的黄河主干流沉积物和海河主干流沉积物[20];本研究中Cd的Eir 大小与黄河流域主干流的情况基本一致,即Cd的Eir >80,潜在生态风险等级为强。因此应重点关注Cd的生态风险,控制入河污水的重金属特别是Cd含量,重点防控流域范围内Cd产生量较高的工业企业、农业面源和交通源等。
-
研究区表层沉积物中TOC、TN和TP平均值分别为2.55 mg·g−1、0.36 mg·g−1和2.72 mg·g−1(表9)。29个点位的有机氮和有机指数均为清洁水平。TN平均值低于0.55 mg·g−1(最低级含量),以此为标准值,29个点位中有3个点位
Si 值大于1,分别为点6、8和16,Si 值依次为1.78、1.71和1.16。说明TN含量水平较低,基本没有生态毒性效应。按照前文所述的单一因子的标准指数法的方法和标准,TP平均值高于2.00 mg·g−1(严重级含量),依此为标准值,29个点位19个点位Si 值大于1。说明TP污染水平较高,底栖生物群落已遭受明显的危害,结果见图5。从图5可以看出,营养物空间分布特征,营养物浓度从点位6处突然增加,周边为城市建成区的点位普遍较高,出境处降低到源头水平。这说明城市污水可能是营养物的主要来源,包括城市生活污水和城市面源等。
-
本研究通过对各点位重金属和营养盐含量进行相关性分析和主成分分析,推测污染物来源。相关性分析被广泛用于重金属来源识别,若重金属元素质量分数之间呈显著或极显著相关,可推测它们存在相似污染源或伴生污染现象,则其对重金属污染源的解析具有重要意义。主成分分析利用降维的思想进一步鉴定被测重金属的来源。小清河济南段依次流经农村、城市建成区、工业区、农村等,可以初步推测,污染源可能为农业面源、城市和农村生活点源和面源、工业源等。结合地累积指数评价结果研究区表层沉积物中Ni和As为无污染,暂不讨论这两种重金属来源情况。
-
采用Pearson 相关系数法进行相关性分析。判断标准:置信度小于0.05,表明相关系数已达显著,否则就是不显著;相关系数0.8—1.0为极强相关,0.6—0.8为强相关,0.4—0.6为中等程度相关,0.2—0.4为弱相关,0.0—0.2为极弱相关或无相关。
表10可以看出,Cd-Cu、Cd-Pb、Cr-Pb为极强相关,Cd-Cr、Cd-Zn、Cu-Pb、Cu-Zn、Pb-Zn为强相关,Cr-Cu、Cr-Zn为中等程度相关。Cu与营养物指标强相关,Cd、Zn与营养物指标中等程度相关。这说明Cd、Cr、Cu、Pb、Zn这5种重金属可能来源相似。部分Cu、Cd、Zn的来源与营养物来源可能相似。
-
主成分分析结果显示,其KMO值为0.775,Bartlett球形检验统计量的sig<0.001,说明本研究数据适合做因子分析。提取2个主成分,解释总方差为82.41%。详见表11。
主成分1贡献率为43.97%,各重金属载荷均较高,其中 Pb、Cr、Cd、Cu、Zn载荷分别达到0.949、0.943、0.798、0.691、0.601,详见表12,这与相关性分析推测的这几种重金属来源相似结论一致。而营养物荷载均较低。已有研究表明, Cu的人为来源主要为钢铁冶炼以及化肥农药的施用[21]。Cr及其化合物是常用的工业原料,主要用于冶金、金属加工、电镀、制革、颜料等,六价铬是电镀行业产生的典型污染物[23]。Cd是农药化肥的标识元素[24],可来源工业中的化学工业[20]。原油本身含有的金属,石油裂解、精细化学品等使用含Cd和Cu等金属的催化剂[22],所以石化企业“三废”中含有Cd、Cu等重金属。钢铁生产过程中的转炉工序和电炉工序对 Pb、Cd、Cr 等重金属的排放有相当大的贡献率[23] ,钢铁冶炼的“三废”排放是土壤中Cd、Pb和Zn的重要来源。生产彩钢、管材过程中的镀锌工艺会导致Zn的排放[23]。研究区域中点11裕兴东沟有济南裕兴化工有限责任公司老厂区,该企业主要生产铬盐产品,搬迁后场地为Cr(Ⅵ)污染土壤。点22的石河上游为济南东部老工业区,历史上聚集着济钢集团等钢铁产业链上下游企业、蓝星石化等石化企业以及盛源化肥等化工企业,此外,小清河流域范围现存济南炼化和临港工业园区等工业企业。因此,推测主成分1为石化、钢铁冶炼加工等化工企业为主的工业源。
主成分2贡献率为38.44%,营养物有较高载荷,TOC、TN和TP载荷分别达到0.884、0.978和0.887;重金属仅有Cu、Zn、Cd载荷较高,分别为0.655、0.533和0.488。详见表12。这与相关性分析推测的这几种重金属来源相似结论一致。有研究表明, Zn、Cd、Pb、Cu等为常见的来自于交通源的重金属[25-26]。Zn主要来源于轮胎的磨损,润滑剂等,Cu主要来源于柴油燃烧及刹车片等汽车金属部件的磨损[7]。轮船、汽车等所需的合金材料、镀锌金属、硫化轮胎等均含Cd[17, 27] ,Cd主要来源于汽车轮胎磨损及尾气排放[23]。因此,初步推断Cu、Zn、Cd可能来自机动车尾气排放及道路灰尘为主的城市交通源。此外,有研究表明,有机质主要来自生活废水[24],结合研究区营养物的空间分布,推测营养物主要来自城市生活污水。城市交通源通过大气沉降、初期雨水等途径汇入生活污水后入河。因此,推测主成分2为城市交通源和生活源。
综上,推测沉积物中Cd、Cr、Cu、Pb、Zn主要来源为工业源和城市交通源,营养物主要来源为城市生活源。
2.1. 重金属分布及评价
2.1.1. 重金属分布特征
2.1.2. 地累积指数法评价
2.1.3. 潜在生态风险评价
2.2. 营养物分布特征和污染评价
2.3. 污染物来源分析
2.3.1. 相关性分析
2.3.2. 主成分分析
-
研究区域表层沉积物的8种重金属中,Hg未检出,7种重金属平均含量由高到低依次为,Zn>Cr>Cu>Pb>Ni>As>Cd,平均值分别为314.24、171.61、62.77、49.06、31.99、11.10、0.62 mg·kg−1。As、Cr、Cu、Ni、Pb等5种重金属平均含量未超标,Zn和Cd等2种重金属平均含量超标。研究区域表层沉积物各重金属平均含量均高于背景值。Zn、Cd、Cu、Cr、Pb、As、Ni的平均含量分别是背景值的4.62、4.13、2.62、2.36、2.08、1.11、1.10倍。
地累积指数评价结果显示,各种金属总体污染程度由高到底依次为Zn>Cd>Cu>Pb>Cr>Ni>As,
Igeo 均值依次为1.47、1.30、0.67、0.37、0.30、−0.47、−0.49,Zn和Cd为偏中度污染,Cu、Pb、Cr为轻度污染,Ni和As为无污染。潜在生态风险指数评价结果显示,各点位RI在41.99—373.78之间,均值为173.31,为中度风险。Cd为较重风险,其他重金属均为低风险。Cd是综合生态危害指数构成的最主要的金属,对其贡献率为71.50%。
TOC、TN和TP平均值分别为2.55 mg·g−1、0.36 mg·g−1和2.72 mg·g−1。有机氮和有机指数均为清洁水平。TN含量水平较低,基本没有生态毒性效应。TP污染水平较高,底栖生物群落已遭受明显的危害。
根据相关性分析和主成分分析结果,推测沉积物中Cd、Cr、Cu、Pb、Zn主要来源为工业源和城市交通源,营养物主要来源为城市生活源。
建议小清河济南段定期开展沉积物重金属和营养盐的检测和风险评估;开展C类点位的上游支流和局部干流底泥清淤的可行性研究和工程;因地制宜增加中心城城市生活污水处理厂的深度处理环节,例如增加人工湿地等,减少城市生活污水中重金属和营养物入河量;探索收集中心城区初期雨水并进行深度处理,减少城市面源中重金属和营养物的入河量;重点关注C类点位涉及的工业企业,开展清洁生产和重金属减排工作。