-
沉积物为水生态系统重要部分,是流域重金属和营养物的源或汇。一方面,水中重金属主要富集在沉积物中[1],沉积物中重金属浓度比水中的高且有明显分布规律,可指示水环境中重金属的污染程度[2]。另一方面,当界面条件发生变化时,沉积物中的重金属会释放到水体中[3],成为二次污染源。此外,营养物元素也主要蓄积在沉积物种,界面特性改变可释放营养成分,影响水环境的质量[4]。因此,研究河流沉积物的重金属和营养盐的污染状况对流域水环境管理具有重要意义。
小清河是济南市中心城唯一的排水水道,流域污染治理工作形势严峻。相关研究表明,小清河干支流河段沉积物存在不同程度的重金属累积和生态风险[5-7]。但现有研究主要针对重点支流或某段干流重金属污染,对小清河济南段干流全段的重金属污染状况分析、评估和污染来源分析研究尚属空白;且对小清河济南段干流全段营养盐的分析讨论也是鲜有报道。
为此,本研究采样分析了小清河济南段干流29个点位表层沉积物的8种重金属以及有机碳、总氮、总磷的含量及其空间分布特征,并利用地累积指数法和生态风险评价指数法对沉积物中的重金属进行生态风险评价,解析了重金属和营养盐的来源,以期为小清河济南段水环境管理提供技术支撑。
小清河济南段表层沉积物重金属和营养盐污染现状评价与来源分析
Pollution assessment and source analysis of heavy metals and nutrients in surface sediments of Jinan section of Xiaoqing River
-
摘要: 本文分析评价了小清河济南段干流29个点位表层沉积物中有机碳、总氮、总磷以及8种重金属空间分布和风险特征,解析了重金属和营养盐污染来源。结果表明,8种重金属中,Hg未检出,7种重金属平均含量由高到低依次为,Zn>Cr>Cu>Pb>Ni>As>Cd;与《土壤环境质量——农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中风险筛选值(pH>7.5)为标准值比较,Zn和Cd两种重金属平均含量超标,其他5种重金属平均含量未超标;各重金属平均含量均高于背景值。地累积指数评价结果为Zn和Cd为偏中度污染,Cu、Pb、Cr为轻度污染,Ni和As为无污染。潜在生态风险为中度风险,其中Cd为较重风险,其他重金属均为低风险。Cd是综合生态危害指数构成的最主要的金属。有机氮和有机指数均为清洁水平。TN含量水平较低,TP污染水平较高。推测沉积物中Cd、Cr、Cu、Pb、Zn主要来源为工业源和城市交通源,营养物主要来源为城市生活源。因此,本研究可为开展小清河济南段环境管理的重金属和营养物的污染防治工作提供技术支撑。Abstract: The spatial distribution and risk characteristics were analyzed including organic carbon, total nitrogen, total phosphorus and eight heavy metals of the surface sediments located 29 sites along the main stream of Xiaoqing River Jinan section. The results showed that among the 8 heavy metals, Hg was lower than detection limit, and the average content of other heavy metals was from high to low as Zn > Cr > Cu > Pb > Ni > As > Cd. Compared with the value under pH > 7.5 in Soil Environmental Quality---Risk Control Standard for Soil contamination of Agricultural Land (GB 15618—2018), the average content of each heavy metal was all higher than the background value, meanwhile, Zn and Cd exceeded the standard. The geoaccumulation index indicated that Zn and Cd were moderately polluted, Cu, Pb and Cr were slightly polluted, and Ni and As were non-polluted. Thus, the potential ecological risk was moderate, in which Cd was heavier and other heavy metals were low. Cd was the most important metal in the comprehensive ecological hazard index. Organic nitrogen and organic index were clean level. TN concentration was low, but TP pollution was high. It was speculated that Cd, Cr, Cu, Pb, Zn in the sediments were mainly from industrial sources and urban traffic sources, while nutrients were mainly from urban life. Therefore, it could provide technical support for the pollution control of heavy metals and nutrients in water environment of Jinan section of Xiaoqing River.
-
Key words:
- Xiaoqing River /
- heavy metal pollution /
- nutrients /
- risk assessment /
- source analysis
-
表 1 监测点位描述汇总表
Table 1. Summary of monitoring point location descriptions
采样点
Sampling point经纬度
Longitude and latitude描述
Description采样点
Sampling point经纬度
Longitude and latitude描述
Description1 N 36° 39′47.000″
E 116° 49′54.000″睦里庄(源头点) 16 N 36° 42′17.390″
E 117° 02′59.226″二环东路 2 N 36° 41′01.451″
E 116° 50′52.001″位里庄 17 N 36° 43′15.635″
E 117° 04′46.464″华山大沟入河口
下游100 m处3 N 36° 41′23.687″
E 116° 52′26.551″京福高速 18 N 36° 43′35.377″
E 117° 05′00.953″洪园闸上游50 m 4 N 36° 41′31.866″
E 116° 54′17.770″腊山河入河口下游100 m处 19 N 36° 44′03.619″
E 117° 05′39.714″大辛河入河口
下游100 m处5 N 36° 41′25.440″
E 116° 56′08.250″兴济河入河口下游100 m处 20 N 36° 45′36.472″
E 117° 07′08.243″赵王河入河口
下游100 m处6 N 36° 41′47.807″
E 116° 57′51.413″曹家圈虹吸干渠入河口
下游100 m处21 N 36° 46′30.729″
E 117° 09′10.645″龙脊河入河口
下游100 m处7 N 36° 41′42.883″
E 116° 56′58.767″北太平河入河口
下游100 m处22 N 36° 46′39.428″
E 117°10′31.959″石河入河口
下游100 m处8 N 36° 42′11.555″
E 116° 59′25.358″西工商河入河口
下游100 m处23 N 36° 48′39.387″
E 117° 12′16.540″机场路桥以东 9 N 36° 42′09.301″
E 117° 00′12.431″东工商河入河口
下游100 m处24 N 36° 48′51.156″
E 117° 13′1.546″临港污水厂排口
下游100 m处10 N 36° 42′06.205″
E 117° 00′41.321″生产路桥东南侧溢流口
下游50 m25 N 36° 49′05.874″
E 117° 13′54.317″巨野河入河口
下游100 m处11 N 36° 42′09.403″
E 117° 00′57.185″裕兴东沟下游50 m 26 N 36° 51′23.861″
E 117° 15′44.303″柴村闸 12 N 36° 42′05.031″
E 117° 01′06.960″西泺河入河口下游100 m处 27 N 36° 53′03.502″
E 117° 19′08.809″梨珩大桥 13 N 36° 42′02.383″
E 117° 01′48.059″东泺河入河口下游100 m处 28 N 36° 54′35.216″
E 117° 21′37.362″S321省道 14 N 36° 42′01.283″
E 117° 02′21.974″柳行河入河口下游100 m处 29 N 36° 56′39.950″
E 117° 23′38.654″辛丰庄(出境断面) 15 N 36° 42′08.551″
E 117° 02′50.308″全福河入河口下游100 m处 表 2 各重金属监测方法汇总表
Table 2. Summary of methods for monitoring heavy metals
分析方法
Analysis method最低检出限
Minimum detection limit检测仪器
Detection instrumentCu 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.003 μg·L− 1 SPECTRO ARCOS EOP Pb 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.001 μg·L− 1 SPECTRO ARCOS EOP Zn 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.003 μg·L− 1 SPECTRO ARCOS EOP Hg 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.001 μg·L− 1 SPECTRO ARCOS EOP Ni 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.005 μg·L− 1 SPECTRO ARCOS EOP As 原子荧光法(HJ 694-2014) 0.03 μg·L− 1 PF52原子荧光光度计 Cd 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.003 μg·L− 1 SPECTRO ARCOS EOP Cr 高分辨率电感耦合等离子体质谱法(HR-ICP-AES) 0.02 μg·L− 1 SPECTRO ARCOS EOP TOC 元素分析仪测定法 0.01 mg·kg− 1 元素分析仪 TN 碱性过硫酸钾消解紫外分光光度法 0.05 mg·kg− 1 TU-19紫外可见光光度计 TP 微波消解ICP-AES法 0.01 mg·kg− 1 电感耦合等离子体原子发射光谱 表 3 地累积指数污染分级表
Table 3.
pollution classification table$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 污染程度
Contamination degree无污染
No pollution轻度污染
Light pollution偏中度污染
Moderate pollution中度污染
More than moderate pollution偏重污染
Heavy pollution重度污染
More than heavy pollution严重污染
Severe pollution级别Degree 0 1 2 3 4 5 6 $ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ ≤0 (0,1] (1,2] (2,3] (3,4] (4,5] >5 表 4 沉积物中重金属背景值和毒性系数
Table 4. Background values and toxicity coefficients of heavy metals in sediments
Cu Pb Zn Hg Ni As Cd Cr $ {C}_{\mathrm{n}}^{i}1 $ 24.0 23.6 68 0.030 29.2 10.0 0.150 72.8 $ {C}_{\mathrm{n}}^{i}2 $ 18.45 23.18 57.87 0.019 27.21 8.79 0.047 52.75 $ {T}_{\mathrm{r}}^{i} $ 5 5 1 30 5 10 30 2 表 5 沉积物重金属污染程度和潜在生态风险指数划分标准
Table 5. Standards for classification of heavy metal pollution degree and potential ecological risk index in sediments
生态风险水平 $ {E}_{r}^{i} $ 总生态风险水平 $ \mathrm{R}\mathrm{I} $ 低Light <40 低度Light <150 中Medium [40,80) 中度Medium [150,300) 较重Strong [80,160) 重度Strong [300,600) 重Very strong [160,320) 严重Extremely strong ≥600 严重 Extremely strong ≥320 表 6 沉积物有机指数与有机氮评价标准
Table 6. Sediment evaluation standards by organic index and organic nitrogen
有机指数
Organic index描述
Description等级
Level有机氮
Organic nitrogen描述
Description等级
Level<0.05 清洁 Clean Ⅰ <0.033 清洁 Clean Ⅰ [0.05,0.20) 较清洁 Comparative clean Ⅱ [0.033,0.066) 较清洁 Comparative clean Ⅱ [0.20,0.50) 尚清洁 Still clean Ⅲ [0.066,0.133) 尚清洁 Still clean Ⅲ ≥0.50 有机污染 Organic pollution Ⅳ ≥0.133 有机氮污染 Organic nitrogen pollution Ⅳ 表 7 各金属含量描述性统计
Table 7. Descriptive Statistics of Metal Contents
极小值/ (mg·kg−1)
Minimum极大值/ (mg·kg−1)
Maximum均值/ (mg·kg−1)
Mean value标准差/ (mg·kg−1)
Standard deviation/变异系数/%
Coefficient of variation /$ {C}_{\mathrm{n}}^{i}1 $
(mg·kg−1) /$ {C}_{\mathrm{n}}^{i}2 $
(mg·kg−1)风险筛选值(pH>7.5)/ (mg·kg−1)
Risk screening valuesAs 7.15 22.15 11.10 3.41 30.69 10 8.79 25 Cd 0.09 1.31 0.62 0.25 40.58 0.15 0.047 0.6 Cr 54.60 878.17 171.61 163.00 94.98 72.8 52.75 250 Cu 20.33 116.75 62.77 24.38 38.84 24 18.45 100 Ni 21.73 41.52 31.99 4.66 14.56 29.2 27.21 190 Pb 23.84 136.32 49.06 20.96 42.72 23.6 23.18 170 Zn 91.22 701.89 314.24 137.59 43.78 68 57.87 300 表 8 3类点位各金属均值
Table 8. Mean value of each metal at three types of points
As Cd Cr Cu Ni Pb Zn A类 8.49 0.22 58.21 23.37 24.82 26.72 113.95 B类 10.50 0.67 132.40 68.65 33.08 47.31 323.77 C类 15.97 0.85 434.00 79.83 35.02 78.08 478.33 表 9 TOC、TN、TP含量描述性统计
Table 9. Descriptive Statistics of TOC,TN,TP
极小值/ (mg·g−1)
Minimum极大值/ (mg·g−1)
Maximum均值/ (mg·g−1)
Mean value标准差/ (mg·g−1)
Standard deviation变异系数/%
Coefficient of variationTOC 0.04 6.87 2.55 1.65 64.84 TN 0.04 0.98 0.36 0.22 61.99 TP 0.59 8.29 2.72 1.68 62.03 表 10 Pearson相关性分析
Table 10. Pearson correlation analysis
As Cd Cr Cu Ni Pb Zn TOC TN TP As 1.000 0.680** 0.785** 0.638** 0.643** 0.756** 0.551** 0.27 0.21 0.411* Cd 1.000 0.645** 0.893** 0.696** 0.827** 0.762** 0.524** 0.459* 0.547** Cr 1.000 0.541** 0.427* 0.880** 0.420* 0.045 -0.139 0.088 Cu 1.000 0.759** 0.759** 0.714** 0.734** .614** 0.633** Ni 1.000 0.521** 0.556** 0.482** .464* 0.598** Pb 1.000 0.609** 0.299 0.091 0.213 Zn 1.000 0.461* 0.465* 0.602** TOC 1.000 .876** 0.686** TN 1.000 0.869** TP 1.000 ** P<0.01, *P<0.05. 表 11 沉积物重金属和营养物主成分分析的总方差解释
Table 11. Total variance of heavy metals and nutrients in sediments explained using principal component analysis
初始特征值
Initial eigenvalue提取平方和载入
Extract square sum load旋转平方和载入
Rotate square sum load合计
Total累积/%
Accumulate合计
Total累积/%
Accumulate合计
Total累积/%
Accumulate1 6.021 60.213 6.021 60.213 4.397 43.969 2 2.219 82.407 2.219 82.407 3.844 82.407 3 0.528 87.689 4 0.471 92.404 5 0.357 95.978 6 0.174 97.721 7 0.110 98.818 8 0.053 99.346 9 0.041 99.761 10 0.024 100.000 表 12 沉积物各成分主成分分析的因子载荷矩阵
Table 12. Loadings of components in sediments based on principal component analysis
成份矩阵
Component matrix旋转成份矩阵
Rotation component matrix成份1
Component 1成份2
Component 2成份1
Component 1成份2
Component 2As 0.773 −0.407 0.852 0.197 Cd 0.923 −0.152 0.798 0.488 Cr 0.616 −0.729 0.943 −0.149 Cu 0.951 0.044 0.691 0.655 Ni 0.803 0.026 0.591 0.544 Pb 0.784 −0.545 0.949 0.100 Zn 0.803 0.011 0.601 0.533 TOC 0.687 0.575 0.144 0.884 TN 0.624 0.753 −0.020 0.978 TP 0.722 0.548 0.188 0.887 提取方法: 主成份。旋转法: 具有Kaiser标准化的正交旋转法。旋转在3次迭代后收敛。 -
[1] HANG X S, WANG H Y, ZHOU J M, et al. Char-acteristics and accumulation of heavy metals in sediments originated from an electroplating plan [J]. Journal of Hazardous Materials, 2009, 163: 922-930. doi: 10.1016/j.jhazmat.2008.07.045 [2] 杨丽原, 沈吉, 张祖陆, 等. 南四湖表层底泥重金属污染及其风险性评价 [J]. 湖泊科学, 2003, 15(3): 252-256. doi: 10.3321/j.issn:1003-5427.2003.03.009 YANG L Y, SHEN J, ZHANG Z L, et al. Distribution and ecological risk assessment for heavy metals in superficial sediments of Nansihu Lake [J]. Journal of Lake Sciences, 2003, 15(3): 252-256(in Chinese). doi: 10.3321/j.issn:1003-5427.2003.03.009
[3] LIVETT E A. Geochemical monitoring of atmospheric heavy metal pollution: theory and application [J]. Advances in Ecological Research, 1988, 18: 65-177. [4] 程先, 孙然好, 孔佩儒, 等. 海河流域水体沉积物碳、氮、磷分布与污染评价 [J]. 应用生态学报, 2016, 27(8): 2679-2686. CHENG X, SUN R H, KONG P R, et al. Spatial distribution characteristics of carbon, nitrogen and phosphorous and pollution status eva-luation of sediments in the Haihe River Basin, China [J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2679-2686(in Chinese).
[5] 黄莹, 李永霞, 高甫威, 等. 小清河表层沉积物重污染区重金属赋存形态及风险评价 [J]. 环境科学, 2015, 36(6): 2046-2053. HUANG Y, LI Y X, GAO F W, et al. Speciation and Risk Assessment of Heavy Metals in Surface Sediments from the Heavily Polluted Area of Xiaoqing River [J]. Environmental Science, 2015, 36(6): 2046-2053(in Chinese).
[6] 于晓霞, 赵学强, 孙滨峰, 等. 济南市小清河流域表层沉积物中重金属的空间分布、生态风险及源解析 [J]. 西南师范大学学报(自然科学版), 2017, 42(2): 78-84. YU X X, ZHAO X Q, SUN B F, et al. Spatial distribution, ecological risk and source apportionment of heavy metals in sediments from Xiaoqinghe watershed of Jinan [J]. Journal of Southweat China Normal University (Natural Science Edition), 2017, 42(2): 78-84(in Chinese).
[7] 王冬莹, 庄涛, 李迎霞, 等. 济南市东泺河底泥及其雨水汇水区地表灰尘中重金属的污染特征研究 [J]. 安全与环境学报, 2018, 18(4): 1586-1592. WANG D Y, ZHUANG T, LI Y X, et al. Heavy metal pollution features in the sediment and surface dust of the rain-water catchment area of Dongluo River in Jinan City [J]. Journal of Safety and Environment, 2018, 18(4): 1586-1592(in Chinese).
[8] MULLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geo Journal, 1969, 2(3): 108-118. [9] 姜会敏, 郑显鹏, 李文. 中国主要湖泊重金属来源及生态风险评估 [J]. 中国人口·资源与环境, 2018, 28(S1): 108-112. JIANG H M, ZHENG X P, LI W. Source and risk assessment of heavy metal in sediment of China [J]. China Population · Resources and Environment, 2018, 28(S1): 108-112(in Chinese).
[10] 李法松, 韩铖, 林大松, 等. 安庆沿江湖泊及长江安庆段沉积物重金属污染特征及生态风险评价 [J]. 农业环境科学学报, 2017, 36(3): 574-582. doi: 10.11654/jaes.2016-1325 LI F S, HAN C, LIN D S, et al. Pollution characteristics and ecological risk assessment of heavy metals in the sediments from lakes of Anqing City and Anqing section of Yangtze River [J]. Journal of Agro-Environment Science, 2017, 36(3): 574-582(in Chinese). doi: 10.11654/jaes.2016-1325
[11] 赵斌, 朱四喜, 杨秀琴, 等. 草海湖沉积物中重金属污染现状及生态风险评价 [J]. 环境科学研究, 2019, 32(2): 235-245. ZHAO B, ZHU S X, YANG X Q, et al. Pollution status and ecological risk assessment of heavy metals in sediments of Caohai Lake [J]. Environmental Science Research, 2019, 32(2): 235-245(in Chinese).
[12] 王存龙, 夏学齐, 赵西强, 等. 山东省小清河沿岸土壤重金属污染分布及迁移规律 [J]. 中国地质, 2012, 39 (2): 530-538. doi: 10.3969/j.issn.1000-3657.2012.02.024 WANG C L, XIA X Q, ZHAO X Q, et al. Distribution and migration regularity of soil heavy metal pollution along the Xiaoqing watershed, Shandong Province [J]. Geology in China, 2012, 39 (2): 530-538(in Chinese). doi: 10.3969/j.issn.1000-3657.2012.02.024
[13] 隋桂荣. 太湖表层沉积物中OM、TN、TP的现状与评价 [J]. 湖泊科学, 1996(4): 319-324. SUI G R. Statement and evaluation of organic matter, total nitrogen and total phosphate in surface layer sediments in Taihu Lake [J]. Journal of Lake Sciences, 1996(4): 319-324(in Chinese).
[14] 岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价 [J]. 海洋与湖沼, 2007, 38(2): 111-117. doi: 10.3321/j.issn:0029-814X.2007.02.003 YUE W Z, HUANG X P, SUN C C. Distribution and pollution of nitrogen and phosphorus in surface sediments from the Pearl River Estuary [J]. Oceanologia et Limnologia Sinica, 2007, 38(2): 111-117(in Chinese). doi: 10.3321/j.issn:0029-814X.2007.02.003
[15] 汪敬忠, 刘卓, 魏浩, 等. 白洋淀表层沉积物元素的空间特征、风险评价及来源分析 [J]. 环境科学, 2020, 41(1): 224-231. WANG J Z, LIU Z, WEI H, et al. Spatial characteristics, risk assessment, and source analysis of elements in surface sediments from the Baiyangdian Lake [J]. Environmental Science, 2020, 41(1): 224-231(in Chinese).
[16] 代静, 李欣, 王小燕, 等. 大明湖表层沉积物重金属污染特征及生态风险评价 [J]. 环境化学, 2020, 39(1): 249-263. doi: 10.7524/j.issn.0254-6108.2019021401 DAI J, LI X, WANG X Y, et al. Pollution characteristics and ecological risk assessment of heavy metals for surface sediments of Daming Lake [J]. Environmental Chemistry, 2020, 39(1): 249-263(in Chinese). doi: 10.7524/j.issn.0254-6108.2019021401
[17] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价 [J]. 地理学报, 2012, 67(7): 971-984. doi: 10.11821/xb201207010 LU J S, ZHANG Z L, LIU Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City [J]. Acta Geographica Sinca, 2012, 67(7): 971-984(in Chinese). doi: 10.11821/xb201207010
[18] WILDING L P. Spatial variability its documentation, accommodation and implication to soil surveys[C]. Wageningen: Soil Spatial Variability, 1985: 166-194. [19] 杨新明, 庄涛, 韩磊, 等. 小清河污灌区农田土壤重金属形态分析及风险评价 [J]. 环境化学, 2019, 38(3): 644-652. doi: 10.7524/j.issn.0254-6108.2018051001 YANG X M, ZHUANG T, HANG L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River [J]. Environmental Chemistry, 2019, 38(3): 644-652(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051001
[20] 朱青青, 王中良. 中国主要水系沉积物中重金属分布特征及来源分析 [J]. 地球与环境, 2012, 403(3): 305-313. ZHU Q Q, WANG Z L. Distribution characteristics and source analysis of heavy metals in sediments of the main river systems in China [J]. Earth and environment, 2012, 403(3): 305-313(in Chinese).
[21] 戴彬, 吕建树, 战金成, 等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价 [J]. 环境科学, 2015, 36(2): 507-515. DAI B, LU J S, ZHAN J C, et al. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, Eastern China [J]. Environmental Science, 2015, 36(2): 507-515(in Chinese).
[22] 赵秀峰, 王强盛, 石宁宁, 等. 石化园区周边农田土壤重金属污染分析与评价 [J]. 环境科学学报, 2010, 30(1): 507-141. ZHAO X F, WANG Q S, SHI N N, et al. Analysis and assessment of soil heavy metals around a petrochemical industry park [J]. Acta Scientiae Circumstantiae, 2010, 30(1): 507-141(in Chinese).
[23] 杨倩, 鲁新川, 殷建国, 等. 甘肃嘉峪关市表层土壤重金属空间分布与评价 [J]. 沉积学报, 2019, 37(5): 1006-1015. YANG Q, LU X C, YIN J G, etal. Spatial distribution and assessment of heavy metals in surface soil, Jiayuguan City, Gansu Province [J]. Acta Sedimentologica Sinica, 2019, 37(5): 1006-1015(in Chinese).
[24] 施沁璇, 盛鹏程, 房伟平, 等. 钱塘江杭州段表层沉积物中重金属的生态风险及其生物累积 [J]. 上海海洋大学学报, 2018, 27(5): 710-717. doi: 10.12024/jsou.20171102176 SHI Q X, SHENG P C, FANG W P, et al. Ecological risk and bioaccumulation of heavy metals in the surface sediments in Qiantang River [J]. Journal of Shanghai Ocean University, 2018, 27(5): 710-717(in Chinese). doi: 10.12024/jsou.20171102176
[25] 刘春华, 岑况. 北京市街道灰尘的化学成分及其可能来源 [J]. 环境科学学报, 2007, 27(7): 1181-1188. doi: 10.3321/j.issn:0253-2468.2007.07.018 LIU C H, CEN K. Chemical composition and possible sources of elements in street dusts in Beijing [J]. Acta Scientiae Circumstantiae, 2007, 27(7): 1181-1188(in Chinese). doi: 10.3321/j.issn:0253-2468.2007.07.018
[26] 王永刚, 伍娟丽, 王旭, 等. 北京市中心城河流表层沉积物重金属污染评价 [J]. 南水北调与水利科技, 2017, 15(6): 74-80, 107. WANG Y G, WU J L, WANG X, et al. Assessment of heavy metal pollution of the surface sediments from rivers in Beijing central district [J]. South-to-North Water Transfers and Water Science&Technology, 2017, 15(6): 74-80, 107(in Chinese).
[27] 郭笃发. 环境中铅和镉的来源及其对人和动物的危害 [J]. 环境科学进展, 1994, 2(3): 71-76. GUO D F. Environmental sources of Pb and their toxicity to man and animals [J]. Advances in Environmental Science, 1994, 2(3): 71-76(in Chinese).