Processing math: 100%

卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价

袁霞, 徐建业, 吕贞, 茆永晶, 杜尔登, 郑璐, 彭明国, 丁朋飞. 卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价[J]. 环境化学, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
引用本文: 袁霞, 徐建业, 吕贞, 茆永晶, 杜尔登, 郑璐, 彭明国, 丁朋飞. 卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价[J]. 环境化学, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
YUAN Xia, XU Jianye, LYU Zhen, MAO Yongjing, DU Erdeng, ZHENG Lu, PENG Mingguo, DING Pengfei. Removal, transformation and toxicity evaluation of carbamazepine by the UV/chlorine advanced oxidation process[J]. Environmental Chemistry, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
Citation: YUAN Xia, XU Jianye, LYU Zhen, MAO Yongjing, DU Erdeng, ZHENG Lu, PENG Mingguo, DING Pengfei. Removal, transformation and toxicity evaluation of carbamazepine by the UV/chlorine advanced oxidation process[J]. Environmental Chemistry, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701

卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价

    通讯作者: Tel:15295080261,E-mail:duerdeng@cczu.edu.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017X07202004),常州市科技支撑计划项目(CE20185027),江苏省国际科技合作项目(BZ2018019),江苏省高校优秀中青年教师和校长境外研修项目和江苏省研究生科研与实践创新计划项目(SJCX19_0690)资助

Removal, transformation and toxicity evaluation of carbamazepine by the UV/chlorine advanced oxidation process

    Corresponding author: DU Erdeng, duerdeng@cczu.edu.cn
  • Fund Project: the National Major Scientific and Technological Program for Water Pollution Control and treatment (2017X07202004),Changzhou Technology Support Programme(CE20185027), Jiangsu International Science and Technology Cooperation Project(BZ2018019), Overseas Study Program for Outstanding Young and Middle-aged Teachers and Principals in Jiangsu Colleges and Universities and Research and Practice Innovation Program for Graduate Students in Jiangsu Province(SJCX19_0690)
  • 摘要: UV/氯作为一种新型高级氧化工艺在新兴污染物控制领域引起了广泛关注。采用UV/氯工艺对典型抗癫痫药物卡马西平(CBZ)进行降解研究。比较单一UV、单一氯和UV/氯对CBZ的降解效果,考察了UV光强、余氯初始浓度、溶液初始pH值和氨氮浓度等因素的影响,解析CBZ在降解过程中的中间产物,提出降解机理,并评估生态风险。结果表明,UV/氯工艺的降解效果明显优于单一UV和单一氯。降解过程遵循准一级反应动力学。降解速率常数随UV光强和余氯初始浓度增大而增大,随氨氮浓度增加而减小,酸性条件更有利于降解过程。采用HRMS Orbitrap和GC-MS鉴定出10种CBZ降解中间产物,CBZ降解主要通过羟基化、氯取代和电子转移等反应实现。发光细菌毒性实验和ECOSAR预测均表明,CBZ在UV/氯工艺中会产生毒性高于母体的中间产物,对水质安全保障造成潜在风险。
  • 塑料制品的使用非常广泛,但在其给人们生活带来便利的同时,大量塑料废物也给环境带来很大压力。塑料废物是难物降解,会在环境中存留长达400~1 000年[1]。经过长时间的物理、化学和生物降解等作用,塑料在自然环境中断裂成塑料碎片或颗粒。当这些塑料碎片或颗粒的粒径小于5 mm时,被定义为微塑料[2]。除此之外,一些化妆品和清洁剂中也会添加微塑料[3]。微塑料广泛存在于生态环境中,与塑料相比,微塑料的化学性能更加稳定,更容易被生物吞食,并通过生物链发生传递、富集,甚至对人体产生危害[4]。因此,微塑料的污染问题逐渐成为研究热点和重点。

    近年来,关于海洋环境中微塑料的研究日益增多。CORDOVA等[5]分析了印度尼西亚泗水海峡北岸微塑料的分布特征,发现聚苯乙烯为主要的微塑料类型。COLLIGNON等[6]发现,地中海北部水体中的微塑料丰度在强风事件前是强风事件后的5倍。内陆河流与湖泊环境与人类活动的关系更为密切,但是相关微塑料污染研究相对较少。JIANG等[7]分析了青藏高原河水和河流沉积物中微塑料的分布特征,发现在人类活动稀少的偏远地区微塑料污染程度小。WANG等[8]研究了浙江温瑞塘河沉积物中微塑料的分布特征,发现粒径小于300 μm的微塑料更容易积聚在河流沉积物中,从而使得进入海洋中的这类微塑料丰度减小。

    白洋淀是我国华北平原最大的淡水湖泊,位于河北省东南部的保定市,地处太行山东麓、永定河冲积扇与滹沱河冲积扇之间的低洼地区,属海河流域大清河水系[9]。白洋淀淀区水域面积为366 km2,平均蓄水量13.2×108 m3,被称为“华北明珠”[10]。府河是白洋淀的最重要供水河流之一,全长62 km,流域面积781 km2[9]。府河沿岸居民众多,生活和农业生产中使用的塑料产品繁多。这些产品形成的塑料废物通过污水排放和地表径流等多种方式输送到府河,最终流入白洋淀或在河道中堆积。目前,还没有关于白洋淀地区微塑料污染状况的研究。本研究通过对府河入淀口段中沉积物进行采样并检测,分析沉积物中微塑料的污染现状及其来源,以期为白洋淀区域微塑料污染方面的治理提供参考。

    在府河入淀口设置15个采样点采集沉积物样品。每个采样点间隔2 km左右。采样点分布如图1所示,同时采用GPS进行定位。采样点南刘庄(F1)、旧大桥(F2)、新大桥(F3)、东向阳(F5)、西向阳(F6)、际头(F7)、大寨(F8)、桥北(F9)、白庄(F11)、建昌(F12)和李庄(F13)均为村庄附近或者人流较为密集区域,F4、F10、F14、F15这4个采样点附近多为农田,少村庄。用不锈钢柱状采样器在以上采样点采集深度为5 cm处的沉积物样品,每个位点分别取3个平行样。将样品分别装入玻璃瓶中密封保存,送回实验室进行进一步分析。

    图 1  府河入淀口段沉积物采样点分布图
    Figure 1.  Sampling sites along Fuhe River estuary into the Baiyangdian Lake
    注:F1~F15表示15个采样点。

    真空抽滤系统(SHZ-DIII,天津市予华仪器科技有限公司);体视显微镜(XTD-7045A,北京世纪科信仪器有限公司);傅里叶变换红外光谱仪(Vertex 70,德国布鲁克科技有限公司)。

    沉积物样品中微塑料提取采用密度浮选法[11-12]。取适量沉积物样品在50 ℃下烘干,至沉积物样品的质量恒定不再变化。称取50 g沉积物干样,加入1 L的饱和氯化钠溶液,摇晃均匀,室温下静置12 h。取上清液置于真空抽滤系统下抽滤,滤膜采用1 μm的混合纤维素滤膜。抽滤完成后,将滤膜置于干净的培养皿中进行下一步检测。将滤膜置于体视显微镜下观察,根据颗粒的外观、颜色等判断其是否为微塑料,拍照计数,测量微塑料的粒径。

    选取50个颗粒进行红外光谱分析,检测其成分及类型,统计分析微塑料的丰度、形状和粒径大小。每个实验样品设置3个平行。沉积物样品中微塑料丰度以每千克干重沉积物中微塑料的个数计算。府河沉积物中微塑料的平均丰度值用(平均值±标准偏差)表示。

    经过对沉积物样品的检测分析发现,在所有采样点的沉积物样品中均发现微塑料。15个采样点的微塑料平均丰度为(558.4±233.3)个·kg−1,各采样点的丰度见图2。墨水河沉积物中微塑料的丰度范围为0~170 个·kg−1[13];葡萄牙安图河沉积物样品中微塑料的丰度范围为100~629 个·kg−1[14];安大略湖沉积物中微塑料的丰度范围为20~27 830 个·kg−1,平均丰度为760 个·kg−1[15];乐安河沉积物中微塑料的平均丰度为1 366 个·kg−1[16]。与这些文献中报道河流中微塑料污染状况相比,府河入淀口沉积物中微塑料污染处于中等水平。

    图 2  各采样点微塑料的丰度
    Figure 2.  Microplastic abundance in sediments of different sampling sites

    位点F7处微塑料的丰度最大,为1 049 个·kg−1。这是由于采样点位于南际头和北际头2个村庄附近,人口较其他采样点更多,有2 694人,而且离河道比较近,因此,河岸周围的生活垃圾与废水也较多,使得这个区域沉积物中微塑料累积量更大。位点F2和F3处的沉积物样品中微塑料丰度也很高,分别为642 和769 个·kg−1。这可能是由于F2和F3附近餐饮店较多,人类活动比较密集,容易造成一次性塑料垃圾的堆积,如矿泉水瓶、一次性包装袋等。除此之外,在F2和F3附近还有2座桥,桥墩会拦截河中的塑料垃圾,导致沉积物中微塑料积聚。F15处沉积物中微塑料的丰度最小,丰度值为212 个·kg−1,其次是F11(241 个·kg−1)和F10(270 个·kg−1)。F15周围少村庄、多农田,F10和F11附近的白庄村人口为824人,而且这3个采样点周围的村庄离河道远,附近人类活动少。

    以上结果表明,河道沉积物中微塑料的丰度与周围人口密度和人类活动有关。在人口众多、工业发达的浙江温州温瑞塘河沉积物中,发现微塑料丰度高达(32 947±15 342)个·kg−1,而在人口稀少的西藏地区拉萨河流沉积物中,微塑料丰度仅为(180±42)个·kg−1[7-8]。一般来说,人口密度越大,人类活动越密集的地区,微塑料的丰度越大[5, 17-18],与本研究观察的结果一致。

    府河沉积物中微塑料的形状主要为碎片、纤维、薄膜和球状4类,典型图像如图3所示。其中,碎片状微塑料占比最大,约为66.1%;其次为纤维状微塑料,占比为26.4%;薄膜状和球状2种微塑料占比最小,分别为5.5%和2.0%(图4)。球状微塑料仅在3个采样点的沉积物样品中出现,且数量最少。这与文献报道的其他区域微塑料状态不同:如鄱阳湖南矶山支入湖段沉积物中微塑料以发泡类为主,发泡类微塑料多为白色,密度小,组成成分为聚苯乙烯,主要来源于渔民用的发泡浮子、泡沫包装箱和一次性泡沫餐具[1];墨河沉积物中微塑料以纤维状为主,主要来自周围纺织工业园和生活废水中的衣物纤维[13];三峡水库沉积物中微塑料以纤维状为主,主要来自附近渔民使用的捕捞工具以及生活污水中的衣物纤维[19];美国劳伦森大湖沉积物中微塑料以球状为主,主要来自清洁用品(如洗面奶)中的颗粒添加物[20]。这些都表明微塑料形状与研究区域周围环境及微塑料的来源有很大关系。府河周围多为居民村庄与农田,故府河沉积物中的微塑料污染主要来源于生活垃圾、生活污水和农田废物。

    图 3  微塑料的形状
    Figure 3.  Shapes of microplastic
    图 4  各采样点不同形状微塑料的丰度
    Figure 4.  Abundance of microplastic with different shapes in sediments of different sampling sites

    府河入淀口段碎片状的微塑料多为硬质塑料碎片和块/条状的塑料编织袋碎片。这些碎片状塑料大多数为塑料制品在自然条件下裂解成的小碎片,故碎片状微塑料以次生微塑料为主[21]。纤维状微塑料主要呈细线型,府河沉积物中纤维状微塑料主要来源于生活污水中的衣物纤维。除此之外,在农业生产中使用的化肥编织袋容易老化,也可能会断裂形成纤维状微塑料;薄膜状微塑料多为无规则的片状,质地轻,府河入淀口沉积物样品中薄膜多来源于废弃塑料包装袋以及农用地膜。球状微塑料多为个人日常护理产品和某些类型清洁剂中的添加物[22],在府河沉积物样品中的整体含量很少。大部分沉积物样品中碎片状微塑料占比最大,而在F7和F9处的沉积物中,纤维状微塑料的占比最大,其次是碎片状微塑料。这可能因为这2个采样点附近的村庄离河道比较近,生活污水大部分直接排入河中,造成衣物纤维的积累。

    府河沉积物中微塑料粒径分布如图5所示。粒径为0.1~0.5 mm的微塑料占比最大,为44.7%;其次是0.5~1 mm 和1~5 mm的微塑料,占比分别为30.0%和18.5%;粒径小于0.1 mm的微塑料占比最小,为6.8%。府河沉积物中微塑料的粒径范围以0.1~1 mm为主,与大多数研究结果类似[23-26],如湘江、太湖、长江口、黄海和渤海沉积物中,粒径小于1 mm的微塑料占大多数。亓会英等[13]认为,粒径较小的微塑料颗粒容易在水力作用下随水流迁移,而粒径较大的微塑料更容易下沉,并积聚在沉积物中。除此之外,显微镜下目测挑选微塑料的方法尚存在局限性,不易检测出粒径较小的微塑料,故测得丰度值可能比实际丰度较低。研究表明,水生生物的摄食与微塑料的粒径有关,粒径小于1 mm的微塑料可能更易被吞食,通过食物链积累在其他生物体内,造成更大的威胁,这部分微塑料或许将成为未来的研究重点[1]

    图 5  各采样点不同粒径微塑料的丰度
    Figure 5.  Abundance of microplastic with different sizes in sediments of different sampling sites

    进一步分析发现,府河沉积物中纤维状和薄膜状微塑料的粒径比其他2种形状的微塑料大,一般大于1 mm;球状微塑料的粒径较小,一般小于0.1 mm。这可能与塑料的原始状态有关,纤维状和薄膜状微塑料一般由较大的塑料裂解而成,而球状微塑料一般是清洁剂和化妆品的微小添加剂,故纤维状和薄膜状的微塑料粒径大于球状微塑料。

    检测的50个颗粒中有43个是微塑料,并发现5种不同的类型。图6为5种微塑料的红外光谱特征图。占比最大的2种微塑料是聚乙烯(PE)和聚丙烯(PP),分别为44.2%和32.6%,其次是聚对苯二甲酸乙二醇酯(PET)、聚酰胺(PA)和聚苯乙烯(PS)(图7)。PE和PP因价格低廉、化学性能稳定等优点,在日常生活中被大量使用,所以许多研究中微塑料类型都以PE和PP为主[18, 27-29]。虽然PP和PE的密度低于河水密度,但微塑料表面可能由于生物污染附着和积累有机物、杂质,使其密度增大,进而积聚到沉积物中[8]。推测府河入淀口段沉积物中PE主要来自塑料包装盒和一次性产品;PP主要来自塑料编织袋和塑料袋;PET主要来自矿泉水瓶的分解,除此之外还可能来自一些衣服纤维;PA主要来自洗衣废水中的衣物纤维;PS主要来自废弃的泡沫塑料制品和清洁用品。沉积物中微塑料的类型与其来源密切相关,除PE和PP等一些常见的微塑料类型外,RODRIGUES等[14]在葡萄牙安图河沉积物样品中检测到聚乙酸乙烯酯(PVA),这类聚合物常用于水性涂料和胶粘剂中;罗雅丹等[30]在青岛海水浴场检测到丁二烯共聚物(SB),这可能来源于钓鱼时使用的泡沫浮子。

    图 6  不同类型微塑料的红外光谱图
    Figure 6.  FT-IR spectrum of different types of microplastic
    图 7  不同类型微塑料的占比
    Figure 7.  Percentage of different types of microplastic

    1)府河入淀口段沉积物样品中微塑料的丰度最大为1 049 个·kg−1,平均丰度为(558.4±233.3) 个·kg−1,与其他河流沉积物中微塑料的丰度值相比,府河入淀口段的微塑料污染处于中等水平。

    2)府河入淀口段沉积物中微塑料主要有4种形状,分别为碎片状、纤维状、薄膜状和球状。其中碎片状微塑料占比最高,约占总数的66.1%。微塑料的粒径以0.1~1 mm为主,占总数的74.7%。微塑料的类型主要是聚乙烯和聚丙烯2种。

    3)微塑料的污染情况与人类活动密切相关,府河入淀口段沉积物中微塑料主要来源于生活污水中的衣物纤维、日常塑料用品以及废弃化肥袋和农用地膜的分解。因此,建议加强对府河周围,甚至整个白洋淀地区生活垃圾的治理,从源头上减少微塑料的产生。

  • 图 1  单一UV、单一氯和UV/氯对CBZ降解的影响

    Figure 1.  Effect of single UV, single chlorine and the UV/chlorine process on CBZ degradation

    图 2  UV光强对CBZ降解的影响

    Figure 2.  Effect of UV intensity on CBZ degradation

    图 3  UV光强对反应速率常数kapp的影响

    Figure 3.  Influence of UV intensity on the reaction rate constant kapp

    图 4  余氯初始浓度对CBZ降解的影响

    Figure 4.  Effect of free chlorine residual on CBZ degradation

    图 5  余氯初始浓度对反应速率常数kapp的影响

    Figure 5.  Influence of various initial residual chlorine dose on the kapp

    图 6  初始pH值对UV/氯工艺降解CBZ反应的影响

    Figure 6.  Effect of initial pH value on CBZ degradation by the UV/chlorine process

    图 7  氨氮浓度对CBZ降解的影响

    Figure 7.  Effect of ammonia concentration on CBZ degradation

    图 8  硝基苯和CBZ在UV/氯(a)和UV/H2O2(b)工艺中的降解

    Figure 8.  Degradation of Nitrobenzene and CBZ in UV/chlorine(a)and UV/H2O2(b)processes

    图 9  中间产物的色谱和质谱图

    Figure 9.  Chromatograms and mass spectrograms of intermediate products

    图 10  CBZ在UV/氯工艺中的反应路径

    Figure 10.  Reaction pathway of CBZ by the UV/chlorine process

    图 11  CBZ在UV/氯工艺中对发光细菌的发光抑制率

    Figure 11.  Inhibition rate of luminescent bacteria during UV/chlorine process

    表 1  不同工况下CBZ的准一级反应动力学模型参数

    Table 1.  Parameters of pseudo-first-order kinetics at different conditions of CBZ degradation

    工况 Operating conditionkapp/min−1R2t1/2/min
    单一UV0.00840.732077.8
    单一氯0.00560.8794154.3
    UV/氯0.26010.98983.8
    工况 Operating conditionkapp/min−1R2t1/2/min
    单一UV0.00840.732077.8
    单一氯0.00560.8794154.3
    UV/氯0.26010.98983.8
    下载: 导出CSV

    表 2  不同UV光强下CBZ的准一级反应动力学模型参数

    Table 2.  Parameters of pseudo-first-order kinetics of CBZ degradation at different UV intensities

    UV光强/(μW·cm-2) UV intensitykapp/min−1R2t1/2/min
    5000.04160.951819.9
    10000.08820.99568.4
    20000.13260.98994.7
    30000.16090.97573.4
    UV光强/(μW·cm-2) UV intensitykapp/min−1R2t1/2/min
    5000.04160.951819.9
    10000.08820.99568.4
    20000.13260.98994.7
    30000.16090.97573.4
    下载: 导出CSV

    表 3  不同余氯初始浓度下准一级反应动力学模型参数

    Table 3.  Parameters of pseudo-first-order kinetics of CBZ degradation at various initial residual chlorine dose

    余氯初始浓度 /(mmol·L−1)Initial concentration of residual chlorinekapp/min−1R2t1/2/min
    0.0850.02520.976829.0
    0.1700.04910.987214.4
    0.2550.08230.99579.0
    0.3400.10190.98668.2
    0.4250.15740.96396.2
    余氯初始浓度 /(mmol·L−1)Initial concentration of residual chlorinekapp/min−1R2t1/2/min
    0.0850.02520.976829.0
    0.1700.04910.987214.4
    0.2550.08230.99579.0
    0.3400.10190.98668.2
    0.4250.15740.96396.2
    下载: 导出CSV

    表 4  溶液不同初始pH值下CBZ的准一级反应动力学模型参数

    Table 4.  Parameters of pseudo-first-order kinetics of CBZ degradation at different pH values

    pHkapp/min−1R2t1/2/min
    34.29910.99980.16
    50.05100.993412.5
    70.05010.89199.4
    90.06810.89906.9
    110.02100.941129.9
    pHkapp/min−1R2t1/2/min
    34.29910.99980.16
    50.05100.993412.5
    70.05010.89199.4
    90.06810.89906.9
    110.02100.941129.9
    下载: 导出CSV

    表 5  不同氨氮浓度下CBZ的准一级反应动力学参数

    Table 5.  Parameters of pseudo-first-order kinetics of CBZ degradation at different ammonia concentrations

    氨氮浓度(/mmol·L−1 ) Ammonia concentrationkapp/min−1R2t1/2/min
    00.13150.99324.4
    0.050.07280.95816.4
    0.100.06470.95487.5
    0.200.04440.994514.9
    0.400.03190.990021.4
    氨氮浓度(/mmol·L−1 ) Ammonia concentrationkapp/min−1R2t1/2/min
    00.13150.99324.4
    0.050.07280.95816.4
    0.100.06470.95487.5
    0.200.04440.994514.9
    0.400.03190.990021.4
    下载: 导出CSV

    表 6  通过HRMS检出的CBZ及中间产物

    Table 6.  CBZ and its intermediates detected by HRMS

    序号 Serial number化合物 Compound分子式 Molecular formula结构式 Structural formula保留时间/min Retention time[M+H]+
    理论质荷比 Theoretical mass-charge ratio(m/z)实际质荷比 Actual mass-charge ratio(m/z)Δ(×10−6
    1CBZC15H12N2O8.17237.1022237.10220
    2Pr287C15H11ClN2O27.75287.0582287.05871.7
    3Pr271C15H14N2O34.83271.1077271.10801.1
    4CBZ-ClC15H11ClN2O9.18271.0633271.0632−0.3
    5CBZ-OHC15H12N2O27.11253.0972253.0970−0.8
    6Pr240C15H13NO27.36240.1019240.10210.8
    序号 Serial number化合物 Compound分子式 Molecular formula结构式 Structural formula保留时间/min Retention time[M+H]+
    理论质荷比 Theoretical mass-charge ratio(m/z)实际质荷比 Actual mass-charge ratio(m/z)Δ(×10−6
    1CBZC15H12N2O8.17237.1022237.10220
    2Pr287C15H11ClN2O27.75287.0582287.05871.7
    3Pr271C15H14N2O34.83271.1077271.10801.1
    4CBZ-ClC15H11ClN2O9.18271.0633271.0632−0.3
    5CBZ-OHC15H12N2O27.11253.0972253.0970−0.8
    6Pr240C15H13NO27.36240.1019240.10210.8
    下载: 导出CSV

    表 7  通过GC-MS检出的降解产物

    Table 7.  Degradation products detected by GC-MS

    序号 Serial number产物Product分子量 Molecular weightCAS号 CAS number保留时间/min Retention time匹配度/% Degree of match分子式 Molecular formula分子结构 Molecular structure
    1乳酸(2TMS)9079-33-410.687.2C3H6O3
    2乙醇酸(2TMS)7679-14-111.183.4C2H4O3
    3草酸(2TMS)89144-62-712.980.5C2H2O4
    4苯甲酸(TMS)12265-85-015.988.2C7H6O2
    5丁二酸(2TMS)118110-15-618.583.1C4H6O4
      注:TMS表明为小分子酸硅烷化物质.  Note: TMS stands for silylated small molecule acid.
    序号 Serial number产物Product分子量 Molecular weightCAS号 CAS number保留时间/min Retention time匹配度/% Degree of match分子式 Molecular formula分子结构 Molecular structure
    1乳酸(2TMS)9079-33-410.687.2C3H6O3
    2乙醇酸(2TMS)7679-14-111.183.4C2H4O3
    3草酸(2TMS)89144-62-712.980.5C2H2O4
    4苯甲酸(TMS)12265-85-015.988.2C7H6O2
    5丁二酸(2TMS)118110-15-618.583.1C4H6O4
      注:TMS表明为小分子酸硅烷化物质.  Note: TMS stands for silylated small molecule acid.
    下载: 导出CSV

    表 8  利用ECOSAR预测CBZ及其中间产物的急性毒性(mg·L−1)

    Table 8.  Estimated acute toxicity of CBZ and its intermediates by ECOSAR software

    鱼 Fish水蚤 Daphnid绿藻 Green Algae
    96 h-LC5048 h-LC5096 h-EC50
    CBZ116.1364.4059.82
    CBZ-Cl36.5922.8421.29
    CBZ-OH1317.45588.22542.75
    Pr2710.240.240.22
    Pr24043.6826.5324.71
    Pr287120.8767.9963.17
    鱼 Fish水蚤 Daphnid绿藻 Green Algae
    96 h-LC5048 h-LC5096 h-EC50
    CBZ116.1364.4059.82
    CBZ-Cl36.5922.8421.29
    CBZ-OH1317.45588.22542.75
    Pr2710.240.240.22
    Pr24043.6826.5324.71
    Pr287120.8767.9963.17
    下载: 导出CSV
  • [1] 吕小明. 典型新兴环境污染物的研究进展 [J]. 中国环境监测, 2012, 28(4): 118-123. doi: 10.3969/j.issn.1002-6002.2012.04.029

    LV X M. Research progress of endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products(PPCPs) [J]. Environmental Monitoring In China, 2012, 28(4): 118-123(in Chinese). doi: 10.3969/j.issn.1002-6002.2012.04.029

    [2] 李怡帆, 孙剑辉, 孙胜鹏. Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平 [J]. 环境化学, 2017, 36(11): 2319-2324. doi: 10.7524/j.issn.0254-6108.2017040502

    LI Y F, SUN J H, SUN S P, el al. Degradation of carbamazepine in aqueous solutions by Mn2+-mediated Fenton-like reaction of Fe3+-EDTA complex at neutral pH [J]. Environmental Chemistry, 2017, 36(11): 2319-2324(in Chinese). doi: 10.7524/j.issn.0254-6108.2017040502

    [3] CALISTO V, DOMINGUES M R M, ERNY G L, et al. Direct photodegradation of carbamazepine followed by micellar electrokinetic chromatography and mass spectrometry [J]. Water Research, 2011, 45(3): 1095-1104. doi: 10.1016/j.watres.2010.10.037
    [4] 谭娜, 卜龙利, 高波, 等. ZnIn2S4光催化降解水中痕量药物卡马西平的特性 [J]. 环境工程学报, 2017, 11(1): 223-229. doi: 10.12030/j.cjee.201508197

    TAN N, BO L L, GAO B, el al. Characteristics of photocatalytic degradation by ZnIn2S4 for trace pharmaceutical carbamazepine in aqueous solution [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 223-229(in Chinese). doi: 10.12030/j.cjee.201508197

    [5] 郭倩, 唐光贝, 彭稳, 等. 卡马西平及其衍生物的环境行为及其去除研究进展 [J]. 环境化学, 2019, 38(8): 1708-1715. doi: 10.7524/j.issn.0254-6108.2018102701

    GUO Q, TANG G B, PENG W, el al. Environmental fate and removal of carbamazepine and its derivatives [J]. Environmental Chemistry, 2019, 38(8): 1708-1715(in Chinese). doi: 10.7524/j.issn.0254-6108.2018102701

    [6] 陈建, 王朋, 曹艳贝, 等. 生物炭的制备温度及酸处理对卡马西平的吸附动力学影响 [J]. 环境化学, 2016, 35(7): 1461-1467. doi: 10.7524/j.issn.0254-6108.2016.07.2015112401

    CHEN J, WANG P, CAO Y B, el al. Impact of pyrolytic temperature and acid wash on adsorption kinetics of carbamazepine on biochar [J]. Environmental Chemistry, 2016, 35(7): 1461-1467(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.07.2015112401

    [7] 姬小平, 缪恒锋, 任洪艳, 等. 饮用水中卡马西平的臭氧和二氧化氯降解研究 [J]. 安全与环境学报, 2015, 15(4): 261-267.

    JI X P, MIAO H F, REN H Y, el al. On the approach to degrading the carbamazepine in drinking water via ozone and chlorine dioxide [J]. Journal of Safety and Environment, 2015, 15(4): 261-267(in Chinese).

    [8] 方远航. 紫外LED协同TiO2光催化降解阿替洛尔及卡马西平研究 [D]. 沈阳: 沈阳建筑大学, 2018.

    FANG Y H. Degradation of atenolol and carbamazepine by ultraviolet light emitting diode combined with TiO2 photocatalytic[D]. Shenyang: JianZhu University, 2018 (in Chinese).

    [9] 邓靖, 邵益生, 高乃云, 等. UV/H2O2工艺对水中典型药物卡马西平的光化学降解研究 [J]. 中南大学学报(自然科学版), 2013, 44(9): 3933-3939.

    DENG J, SHAO Y S, GAO N Y, el al. Photochemical degradation of typical pharmaceutical carbamazepine in water by UV/H2O2 process [J]. Journal of Central South University (Science and Technology), 2013, 44(9): 3933-3939(in Chinese).

    [10] ALIA F, KHAN J A, SHAH N S, et al. Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations [J]. Process Safety and Environmental Protection, 2018, 117(Part B): 307-314.
    [11] FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
    [12] KONG X J, JIANG J, MA J, et al. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products [J]. Water Research, 2016, 90: 15-23. doi: 10.1016/j.watres.2015.11.068
    [13] XIANG Y, FANG J, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
    [14] LI J Q, ZHOU S Q, LI M, et al. Mechanism insight of acetaminophen degradation by the UV/chlorine process: kinetics, intermediates, and toxicity assessment [J]. Environmental science and pollution research international, 2019, 26(24): 25012-25025. doi: 10.1007/s11356-019-05747-1
    [15] GB/T 5750.11—2006, 生活饮用水标准检验方法 消毒剂指标 [S]. 北京: 中国标准出版社, 2007.

    GB/T 5750.11—2006, Standard examination methods for drinking water-Disinfectants parameters[S]. Beijing: Standards Press of China, 2007 (in Chinese).

    [16] SAPOZHNIKOVA Y, HEDGESPETH M, WIRTH E, et al. Analysis of selected natural and synthetic hormones by LC-MS-MS using the US EPA method 1694 [J]. Analytical Methods, 2011, 3(5): 1079-1086. doi: 10.1039/c0ay00748j
    [17] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and Radical Species [J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015
    [18] KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment [J]. Environment International, 2009, 35(5): 793-802. doi: 10.1016/j.envint.2009.01.003
    [19] PAN Y, CHENG S, YANG X, et al. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics [J]. Water Research, 2017, 116: 254-265. doi: 10.1016/j.watres.2017.03.033
    [20] 马艳, 高乃云, 郑琪, 等. UV-C辐照降解水中2, 4, 6-三氯酚 [J]. 华中科技大学学报(自然科学版), 2012, 40(6): 128-132.

    MA Y, GAO N Y, ZHENG Q, el al. Degradation of 2, 4, 6-trichlorophenol in water by UV-C irradiation [J]. J. Huazhong Unvi of Sci& Tech (Natural Science Edition), 2012, 40(6): 128-132(in Chinese).

    [21] ZHOU S, XIA Y, LI T, et al. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products [J]. Environmental Science & Pollution Research, 2016, 23(16): 16448-16455.
    [22] FENG Y, SMITH D W, BOLTON. J R Photolysis of aqueous free chlorine species (HOCl and OCl-) with 254 nm ultraviolet light1 [J]. Journal of Environmental Engineering and Science, 2007, 6(3): 277-284. doi: 10.1139/s06-052
    [23] GALLARD H, VON G U. Chlorination of phenols: kinetics and formation of chloroform [J]. Environmental Science and Technology, 2002, 36(5): 884-890. doi: 10.1021/es010076a
    [24] 孙中兴, 陈鑫, 姜永根, 等. 2006-2013年黄浦江支流水源水氨氮及高锰酸盐指数检测分析 [J]. 上海预防医学, 2016, 28(2): 119-121.

    SUN Z X, CHEN X, JIANG Y G, el al. Determination and analysis of ammonia nitrogen and permanganate index in source water of Huangpu River branch in 2006-2013 [J]. Shanghai Journal of Preventive Medicine, 2016, 28(2): 119-121(in Chinese).

    [25] 张欣然, 李伟光, 公绪金, 等. 紫外/氯耦合处理饮用水中氨氮的响应面优化 [J]. 化工学报, 2014, 65(3): 1049-1055. doi: 10.3969/j.issn.0438-1157.2014.03.039

    ZHANG X R, LI W G, GONG X J, el al. Optimization on combined UV/chlorine process for removal of ammonia in drinking water [J]. CIESC Journal, 2014, 65(3): 1049-1055(in Chinese). doi: 10.3969/j.issn.0438-1157.2014.03.039

    [26] 李佳琦, 杜尔登, 樊鑫鑫, 等. 氯消毒中有机防晒剂BP9的去除转化与风险评价 [J]. 中国环境科学, 2018, 38(3): 968-976. doi: 10.3969/j.issn.1000-6923.2018.03.021

    LI J Q, DU E D, FAN X X, el al. Removal, transformation and risk assessment of UV-filter BP9 during chlorination disinfection [J]. China Environmental Science, 2018, 38(3): 968-976(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.03.021

    [27] XIANG H, SHAO Y, GAO N, et al. Degradation of diuron by chlorination and UV/chlorine process: Degradation kinetics and the formation of disinfection by-products [J]. Separation and Purification Technology, 2018, 202: 365-372. doi: 10.1016/j.seppur.2018.03.073
    [28] YIN K, HE Q, LIU C, et al. Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism [J]. Chemosphere, 2018, 212: 55-66.
    [29] GUO K, WU Z, SHANG C, et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water [J]. Environmental Science & Technology, 2017, 51(18): 10431-10439.
    [30] BU L, ZHOU S, ZHU S, et al. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation [J]. Water Research, 2018, 146: 288-297. doi: 10.1016/j.watres.2018.09.036
    [31] YAN C, YANG Y, ZHOU J, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013, 175: 22-29. doi: 10.1016/j.envpol.2012.12.008
  • 加载中
图( 11) 表( 8)
计量
  • 文章访问数:  4810
  • HTML全文浏览数:  4810
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-27
  • 刊出日期:  2021-10-27
袁霞, 徐建业, 吕贞, 茆永晶, 杜尔登, 郑璐, 彭明国, 丁朋飞. 卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价[J]. 环境化学, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
引用本文: 袁霞, 徐建业, 吕贞, 茆永晶, 杜尔登, 郑璐, 彭明国, 丁朋飞. 卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价[J]. 环境化学, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
YUAN Xia, XU Jianye, LYU Zhen, MAO Yongjing, DU Erdeng, ZHENG Lu, PENG Mingguo, DING Pengfei. Removal, transformation and toxicity evaluation of carbamazepine by the UV/chlorine advanced oxidation process[J]. Environmental Chemistry, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701
Citation: YUAN Xia, XU Jianye, LYU Zhen, MAO Yongjing, DU Erdeng, ZHENG Lu, PENG Mingguo, DING Pengfei. Removal, transformation and toxicity evaluation of carbamazepine by the UV/chlorine advanced oxidation process[J]. Environmental Chemistry, 2021, 40(10): 3158-3170. doi: 10.7524/j.issn.0254-6108.2020062701

卡马西平在UV/氯高级氧化工艺中的去除、转化与毒性评价

    通讯作者: Tel:15295080261,E-mail:duerdeng@cczu.edu.cn
  • 1. 常州大学环境与安全工程学院,常州,213164
  • 2. 常州市排水管理处,常州,213016
基金项目:
国家水体污染控制与治理科技重大专项(2017X07202004),常州市科技支撑计划项目(CE20185027),江苏省国际科技合作项目(BZ2018019),江苏省高校优秀中青年教师和校长境外研修项目和江苏省研究生科研与实践创新计划项目(SJCX19_0690)资助

摘要: UV/氯作为一种新型高级氧化工艺在新兴污染物控制领域引起了广泛关注。采用UV/氯工艺对典型抗癫痫药物卡马西平(CBZ)进行降解研究。比较单一UV、单一氯和UV/氯对CBZ的降解效果,考察了UV光强、余氯初始浓度、溶液初始pH值和氨氮浓度等因素的影响,解析CBZ在降解过程中的中间产物,提出降解机理,并评估生态风险。结果表明,UV/氯工艺的降解效果明显优于单一UV和单一氯。降解过程遵循准一级反应动力学。降解速率常数随UV光强和余氯初始浓度增大而增大,随氨氮浓度增加而减小,酸性条件更有利于降解过程。采用HRMS Orbitrap和GC-MS鉴定出10种CBZ降解中间产物,CBZ降解主要通过羟基化、氯取代和电子转移等反应实现。发光细菌毒性实验和ECOSAR预测均表明,CBZ在UV/氯工艺中会产生毒性高于母体的中间产物,对水质安全保障造成潜在风险。

English Abstract

  • 药用活性化合物(PhACs)包括抗生素、消炎止痛药、β-阻滞剂、抗菌药和雌激素类,广泛用于疾病治疗,常通过固体废物和废水进入环境中,成为一类新兴环境污染物[1]。卡马西平(carbamazepine,CBZ)是一种常见药用活性化合物,主要用于治疗癫痫、精神运动性发作和三叉神经痛等疾病[2]。据报道全球CBZ年均消耗量高达1014t[3],但人体对CBZ的吸收只有78%[4],剩余部分则直接排出体外,从而导致自然环境中存在CBZ药物残留,在污水处理厂出水、地表水、地下水、土壤和污泥中广泛检出[5]。当前传统水处理工艺很难去除CBZ[6],使得CBZ可能对生态系统和人类健康构成潜在威胁,因此需要一种有效去除水中CBZ的方法。

    已有研究者使用O3[7]、UV/TiO2[8]、UV/H2O2[9]和UV/H2O2/Fe2+[10]等高级氧化工艺(AOPs)进行卡马西平的控制与去除。UV/氯是一种新型的高级氧化工艺,它通过紫外线激发游离氯(HClO/ClOˉ)产生高氧化能力的羟基自由基·OH(2.8 V)和氯自由基·Cl(2.4 V)[11],能有效去除水中有机污染物和病原微生物,应用前景广阔。研究表明,UV/氯工艺对布洛芬、双氯芬酸和莠去津等有良好的去除效果[12-13]。然而UV/氯降解过程中可能会生成含氯副产物[14],表现出比母物质更强的潜在毒性。因此UV/氯工艺降解副产物的潜在危害亟待引起重视。

    本研究以CBZ为目标污染物,考察UV光强、余氯初始浓度、溶液初始pH值和氨氮浓度等因素对UV/氯工艺降解效果的影响。利用高分辨率质谱HRMS Orbitrap(Q-E Plus)对CBZ降解中间产物进行鉴定,探讨CBZ降解机制,提出降解路径,评估降解过程中的毒性变化,为水中PhACs新兴污染物的去除与控制、水质安全保障提供理论依据和技术支撑。

    • CBZ(纯度>98%)、硝基苯和次氯酸钠NaClO(含14%活性氯)购自于阿拉丁试剂(上海)。衍生剂N,O-双(三甲基硅)三氟乙酰胺(含三甲基氯硅烷)(98% BSTFA+1% TMCS)购自于阿拉丁试剂(上海)。甲醇(HPLC级)购自于Sigma公司(美国)。二氯甲烷(CH2Cl2)购自于永华化学(江苏)。其他分析纯试剂(NH42SO4、NaOH、HCl、Na2HPO4·12H2O、Na2HPO4、Na2SO3和NaCl购自于上海国药集团,试剂用水均采用超纯水(电导率18.3 MΩ·cm)。

    • UV/氯降解反应在50 mL玻璃表面皿反应器中进行,表面皿上面悬挂波长254 nm UV汞灯(上海飞利浦),通过调节灯管与反应液表面的距离来改变UV强度,使用磁力搅拌器(HJ-6,江苏金怡)确保反应均匀,使用紫外辐照计(UV-B,北师大光电仪器厂)测定紫外光强。

    • 取50 mL一定浓度CBZ溶液于玻璃反应器中,用0.2 mol·L−1磷酸盐缓冲液、氢氧化钠和稀盐酸调节溶液初始pH值。然后投加一定浓度的NaClO溶液,打开UV汞灯,开始降解反应。在不同反应时间取样,立即投加过量Na2SO3溶液(40 mmol·L−1)终止反应,用HPLC-MS/MS测定剩余CBZ浓度。用DPD分光光度法[15]测定游离余氯含量。考察单一UV、单一氯和UV/氯工艺对CBZ的降解效果的影响,探究不同因素(UV光强、余氯初始浓度、溶液初始pH值和氨氮浓度)对CBZ降解的影响。用准一级反应动力学方程拟合实验数据,见式(1)和(2)。半衰期计算见式(3)。所有反应均进行3次平行实验,取平均值。

      式中,[CBZ]t表示t时刻反应体系中CBZ浓度,mmol·L−1;[CBZ]0表示CBZ初始浓度,mmol·L−1kapp为准一级表观动力学速率常数,min−1

      式中,C0为反应物初始浓度;k表示反应速率常数;b为截距。

    • 使用HPLC-MS/MS(Thermo TSQ Quantum Access Max)测定剩余CBZ浓度,色谱条件:Thermo Accucore C18色谱柱(3.0 mm×50.0 mm,2.6 μm);采用梯度洗脱,流动相为水和甲醇,流速1.0 mL·min−1;柱温25 ℃。质谱条件:SRM扫描,正离子模式,CBZ子母离子对为237.0/193.9,碎裂电压41 V。

      CBZ降解中间产物的反应液制备方法:按照1.3节的方法进行CBZ降解反应,分别在1、5、20、120 min取样,对应降解初期、中期和末期等反应阶段,降解液混合后进行浓缩和脱盐处理,同时取0 min样品作为空白对照。CBZ降解反应溶液均使用超纯水配置。

      使用HRMS Orbitrap(Q-E Plus)鉴定降解中间产物,进样前需对反应液进行预处理。根据美国EPA 1694的标准预处理方法[16],通过全自动固相萃取仪SPE432(北京普立泰科)对CBZ反应液进行萃取、浓缩和脱盐。色谱条件为:Waters HSS T3色谱柱(2.1 mm×50.0 mm,1.7 μm);流动相为甲醇和水。正离子扫描。离子源参数设定为:鞘气流速12 mL·min−1,毛细管温度320 ℃,喷雾电压4 kV。其他MS条件:扫描范围为m/z 70—600,动态排除5 s,HCD碰撞能量值(CE%)35.0,质量分辨率为70000。使用Xcalibur 4.1软件进行数据分析。

      使用GC-MS(Thermo ISQ)鉴别CBZ小分子降解产物。样品前预处理方法为:将反应液通过旋转蒸发器(XD-5000ADQ上海贤德)蒸干,加入BSTFA/TMCS硅烷化试剂进行硅烷化反应。GC-MS分析条件为:Thermo TG-624色谱柱(30.0 m×0.25 mm×1.4 μm),载气流量1.0 mL·min−1,进样口温度280.0 ℃,无分流进样。全扫模式,范围为m/z 50—500。升温程序设置如下:在50 ℃保持3 min,以20.0 ℃·min−1的速率上升到150.0 ℃,以10.0 ℃·min−1的速率上升到280.0 ℃并保持3 min。

    • 选用费氏弧菌Vibrio fischeri作指示细菌,考察CBZ降解反应液的毒性变化。菌种冻干粉由北京金达清创提供。采用生物毒性分析仪(ATD-P1,北京金达清创)测定发光细菌与CBZ降解液接触前后的发光强度,利用样品对发光细菌的相对抑制率评估急性毒性,每个样品测定3组平行数据,以NaCl(2%)溶液为空白对照,前后各设置两组。由公式(4)计算发光细菌发光强度的相对抑制率(I):

      式中,I为相对抑制率;Lt为样品发光强度;L0为阴性对照发光强度。

    • 在光强1000 μW·cm−2,CBZ初始浓度0.017 mmol·L−1,余氯初始浓度0.340 mmol L−1和溶液初始pH值为7的条件下,考察单一UV、单一氯和UV/氯组合工艺条件对CBZ降解的影响。结果见图1表1

      表1图1可知,单一氯条件下对CBZ几乎没有降解效果,20 min内降解率仅为12.0%。这主要因为HClO的氧化电位仅为1.61 V,氧化能力较低,不足以破坏CBZ的化学键而使其得到降解,这与Wang等[17]观察结果一致。而单一UV也不能有效地降解CBZ,20 min内仅有16.0%的CBZ被降解,这是因为CBZ结构式中存在酰胺键,对紫外光具有较强的抵抗性[18]。相比之下,CBZ在UV/氯工艺中迅速降解,反应20 min降解率可达99.0%,准一级反应速率常数为0.2601 min−1。由此可知UV/氯工艺的降解效果远远大于单一UV和单一氯。

      由式(5)—(7)可知,NaClO在水溶液中以HClO和ClOˉ两种形式存在。在UV照射下,HClO和ClOˉ光解产生·OH和·Cl等具有强氧化能力的自由基,氧化电位分别为2.8 V和2.4 V[19],从而加速了CBZ降解过程。

    • 考察CBZ初始浓度0.017 mmol·L−1,余氯初始浓度0.170 mmol·L−1,溶液初始pH值为7的条件下,不同光强对CBZ降解的影响,结果见图2表2

      图2表2结果表明,提高UV光强能显著加速CBZ降解过程。当UV光强为500 μW·cm−2时,20 min内CBZ的降解率为52.0%;而当UV光强增大到3000 μW·cm−2时,降解率达到95.0%;且当光强从500 μW·cm−2增加到3000 μW·cm−2时,反应速率常数由0.0416 min−1升高为0.1609 min−1,半衰期也由19.9 min下降到3.4 min。从图3可以发现,反应速率常数和光强具有明显的线性相关性(kapp=5×10−5R2=0.9486)。这主要是因为UV光强在自由基形成过程中起着重要作用。UV光强增大提高了单位体积内的光子流量,使得单位时间内产生的自由基数量增多[20]。因此在余氯初始浓度一定的条件下,单位时间内光强越大,产生的活性自由基越多,从而加快CBZ的降解速率。

    • 改变余氯初始浓度,考察其对CBZ降解的影响,其他反应条件包括:CBZ初始浓度0.017 mmol·L−1,光强500 μW·cm−2,溶液初始pH值7,结果见图4表3

      图4表3可知,余氯初始浓度增加,CBZ降解反应速率常数逐渐增大。当余氯初始浓度从0.085 mmol·L−1提高到0.425 mmol·L−1时,反应速率常数由0.0252 min−1增加到0.1574 min−1,半衰期也由29.0 min减小到6.2 min。余氯初始浓度和反应速率常数kapp的拟合相关系数为0.969,呈现明显的线性关系(图5),这在Wang等[17]和Zhou等[21]的研究中亦有相似发现。说明余氯初始浓度增加对CBZ降解呈显著促进作用,主要原因是增加余氯初始浓度可以产生更多有效的·OH和·Cl自由基来攻击卡马西平分子,从而加速CBZ的降解速率。

    • 在光强500 μW·cm−2,CBZ初始浓度0.017 mmol·L−1,余氯初始浓度0.255 mmol·L−1的条件下,用氢氧化钠和盐酸调节pH值,考察不同溶液初始pH值对反应的影响。结果见图6表4

      图6表4可知,溶液不同初始pH值对CBZ降解有明显影响。强酸条件下的降解效果远远大于碱性和弱酸条件。当溶液pH值从11.0减小到3.0时,反应速率常数由0.0210 min−1升高到4.2991 min−1,此时降解率可达98.0%。

      HClO是一种弱酸,因此pH值对酸(HClO)及其共轭碱(ClOˉ)的分布有显著影响。根据HClO的pka(式(8)),当pH<7.5时,HClO是主要的活性氯成分;当pH>7.5时,ClOˉ是主要的活性氯成分[22]。溶液偏碱性时ClOˉ比例更高,由于ClOˉ被认为是一种自由基捕获剂,会消耗水中活性自由基,从而抑制反应过程,见式(9)。在酸性条件下HClO比例高,从而在紫外激发下产生更多·OH和·Cl自由基,加速反应过程。此外CBZ分子中含有氨基,在酸性条件下以离子态为主。研究表明与分子态物质相比,离子态物质更容易被降解[23]。因此UV/氯工艺中酸性条件比碱性条件更利于CBZ的降解。

    • 在长三角等较为发达的区域,氨氮经常是水环境和饮用水源地水质超标的指标之一。检测发现黄浦江支流水源氨氮指标合格率仅有53%(氨氮限值1.0 mg·L−1[24-25]。此外水处理过程中氨氮会与氯消毒剂反应从而影响消毒效率。因此考察氨氮浓度对UV/氯工艺降解CBZ的影响十分必要。考察光强500 μW·cm−2,CBZ初始浓度0.017 mmol·L−1,余氯初始浓度0.340 mmol·L−1,溶液初始pH值为7时,氨氮浓度对降解的影响。结果见图7表5

      图7表5可知,随着氨氮浓度增大,CBZ降解反应速率常数逐渐降低。当氨氮浓度从0升高到0.4 mmol·L−1,反应速率常数从0.1315 min−1减少至0.0319 min−1,CBZ的降解率从94.0%下降至47.7%。这说明氨氮对CBZ的降解有明显抑制作用,主要原因是氨氮会和HClO快速反应生成氯胺[26],降低了HClO的浓度,进而减少活性自由基的产生[14]

    • UV/氯降解工艺过程中存在多种活性自由基,其中以·OH和·Cl为主。作为·OH捕获剂,硝基苯选择性地和·OH反应,而不会和·Cl发生反应。以硝基苯为自由基探针,进行UV/氯和UV/H2O2工艺降解硝基苯和CBZ的动力学实验,来定量分析不同活性自由基的相对贡献。基于自由基稳态模型,·OH和·Cl的相对贡献可以由式(10)—(12)确定[27-28]

      式中,kNBkCBZ分别代表UV/氯工艺中硝基苯和CBZ的准一级反应速率常数(图8a);[·OH]ss代表·OH的稳态浓度;kOHNB为硝基苯和·OH的二级反应速率常数,为3.90×109(mol·L−1−1s−1kOHCBZ为CBZ与·OH的二级反应速率常数,为5.0×109(mol·L−1−1s−1图8b);kchlorineCBZkUVCBZkotherradicalsCBZ分别为单一氯、单一UV和其他活性自由基降解CBZ的准一级反应速率常数,通常认为是次要降解因素而忽略不计[29]。UV/氯工艺降解硝基苯和CBZ的反应动力学结果见图8a,UV/H2O2工艺降解硝基苯和CBZ的反应动力学结果见图8b。基于降解反应结果,结合动力学公式(10)—(12),最终得到硝基苯和CBZ在UV/氯中的准一级反应动力学常数分别为0.0598和0.1208。因此·Cl和·OH对CBZ降解的相对贡献分别为31.6%和68.4%。这表明,·OH对CBZ降解的贡献远远大于·Cl,·OH在UV/氯工艺去除CBZ中起到主要作用。

    • 在CBZ降解过程中总共鉴定出10种中间产物,其中高分辨液质Orbitrap解析出5种产物(表6),GC-MS鉴定出5种小分子酸产物(表7)。CBZ及典型中间产物的总离子流图、色谱图和质谱图见图9。从图9a图9c图9d可以看出,CBZ出峰时间为8.17 min,分子离子质荷比为m/z 237.1022,有1个主要碎片离子m/z 194.0965。

      UV/氯反应体系受到大量产生的·Cl和·OH自由基所驱动,推动CBZ降解过程。CBZ在·Cl自由基攻击下发生氯取代反应,生成氯代产物CBZ-Cl(m/z 271.0633,图9e图9f),出峰时间为9.18 min,二级质谱中有1个主要碎片m/z 193.0887,氯取代反应主要发生卡马西平的杂环结构上,氯代产物CBZ-Cl是主要的降解中间产物,该物质在前人研究中亦多次被检出[30]

      溶液中存在的大量·OH自由基也会参与CBZ降解过程。CBZ杂环分子结构中的双键具有较高的反应活性[30],·OH攻击杂环双建生成产物CBZ-OH(m/z 253.0972,见图9g图9h)。随后通过产生杂环自由基和电子转移反应,形成含有两个羟基的产物Pr271(m/z 271.1077),并且在过量·OH持续攻击下进一步脱除(-HNO)生成Pr240(m/z 240.1019)。此外在·OH和·Cl的共同作用下,产物CBZ-Cl通过羟基化反应生成Pr287(m/z 287.0582)。在降解末期CBZ分子结构进一步醚键和苯环碎裂生成小分子有机酸,包括乳酸、乙醇酸、草酸、苯甲酸和丁二酸等(表7)。在UV/氯降解CBZ过程中主要发生羟基化、氯取代和电子转移等反应,基于以上分析最终提出CBZ降解反应路径(图10)。

    • 通过费氏弧菌发光抑制率(%)来评估反应过程中溶液的急性毒性变化,结果见图11。降解反应条件与2.1节反应条件相同。CBZ空白溶液对发光细菌的相对抑制率为50.7%。随着降解反应发光抑制率反而增大。降解15 min时CBZ去除率为83.6%,但发光抑制率升高到80.1%;降解20 min时CBZ已基本去除(去除率91.8%),反应液发光抑制率降低为46.1%;延长反应时间至60 min,发光抑制率逐渐升高,达到64.8%。在降解过程中CBZ溶液的发光抑制率没有随CBZ去除同步下降,反而逐步升高,这表明CBZ在降解过程中可能产生了毒性高于母物质的中间产物,CBZ的去除并不代表生态风险的降低。

      使用ECOSAR(美国EPA)软件对CBZ及其中间产物的水生生物(鱼类、水蚤和绿藻)急性毒性进行预测[31],结果见表8。除CBZ-OH和Pr287外,所有其它产物的LC50(鱼96 h)值均低于CBZ,其中产物Pr271的LC50(鱼96 h)为0.24 mg·L−1,明显低于母物质LC50(鱼96 h)3个数量级。此外LC50(水蚤48 h)和EC50(绿藻96 h)这两个指标也有相似的特征分布,表明部分CBZ降解中间产物对水生生物的急性毒性明显高于母物质,这与发光细菌毒性实验结论相似。因此CBZ在UV/氯过程中生成毒性副产物的潜在危害亟待引起关注,以确保水质安全。

    • (1)UV/氯对CBZ的降解符合准一级反应动力学,反应20 min降解率达99.0%。

      (2)降解速率常数随UV光强和余氯初始浓度增加而增加,随氨氮浓度增大而减小。酸性溶液中CBZ降解率显著增加。

      (3)使用HRMS Orbitrap和GC-MS共解析出10种中间产物。UV/氯降解CBZ主要通过羟基化、氯取代和电子转移等反应来实现。

      (4)发光细菌急性毒性实验和ECOSAR软件预测表明,UV/氯工艺中产生了毒性高于母物质的中间产物,对水质安全存在潜在威胁。

    参考文献 (31)

返回顶部

目录

/

返回文章
返回