透明胞外聚合颗粒物及其膜污染机理的研究进展
A review of transparent exopolymer particles and their membrane fouling mechanisms
-
摘要: 透明胞外聚合颗粒物(transparent exopolymer particles,TEP)是一类主要成分为酸性多糖的高黏性有机微凝胶,普遍存在于海水、淡水和废水中,影响碳元素、微生物和颗粒物等在水环境中的迁移循环.TEP是膜分离系统中一种重要的有机污染物,在过滤过程中附着在膜表面或黏附在膜孔内壁,显著增加膜阻力.研究显示,水环境中的藻类和细菌的种类和生长阶段等因素影响TEP的形成和含量.TEP与膜表面生物膜的形成和早期发育密切相关,是膜生物污染形成的主要成因.颗粒态TEP易在微滤、超滤和反渗透膜表面形成滤饼层,而胶体态TEP和TEP前体易阻塞膜孔或通过超微滤膜孔在反渗透膜表面形成凝胶层.电解质能促进胶体态TEP凝聚形成颗粒态TEP减轻超滤膜污染,同时也能被超滤膜截留去除.絮凝、沉淀、过滤等工艺组合可有效去除TEP,更好地控制膜污染.Abstract: Transparent exopolymer particles (TEP) are highly viscous organic microgels and consist predominantly of acidic polysaccharide. TEP are ubiquitous in most source waters, such as sea, surface water, ground water and wastewater, etc. They affect the migration and circulation of carbon, microorganisms and particles in various water environments. TEP have been identified as important organic foulants in membrane systems. They can attach on the membrane surface or on the inner walls of membrane pores during filtration, significantly increasing the membrane resistance. In order to understand membrane fouling induced by TEP in membrane filtration process, the definition, biotic and abiotic formation and determination methods of TEP were introduced, and the membrane fouling mechanisms of TEP were discussed in this paper. The research evidence showed that the species and growth stages of algae and bacteria influenced the formation of TEP which led to serious membrane fouling. It was identified that TEP correlated strongly with the formation and early development of biofilm, which could potentially lead to biofouling. The processes of flocculation, sedimentation and filtration could improve the TEP removal efficiency and substantially reduce TEP-associated fouling. Finally, the further research areas of TEP in membrane separation process were proposed.
-
Key words:
- transparent exopolymer particles /
- membrane fouling /
- gel layer /
- biofilm /
- biofouling
-
由于含有大量的重金属,不锈钢渣与铜渣中被许多国家归属为危险废物[1-4]。这些危险废物在雨水的淋滤过程中容易进入地下水系统和土壤中,从而对生态环境造成威胁。一般可通过二次回收和固化2种方式解决不锈钢渣与铜渣中的重金属污染问题[5-7]。仪桂兰[8]以粉煤灰和不锈钢渣为原料成功地制备了微晶玻璃为不锈钢渣资源化利用提供了新途径。卜金彪等[9]综合利用不锈钢渣、尾矿及废玻璃制备了主晶相为镁黄长石相微晶玻璃。SOHN等[10]通过改变不锈钢熔渣中Al2O3/SiO2比例,提高富铬尖晶石在熔渣中浸出率,减少熔渣中游离的Cr离子含量,提高了Cr离子的稳定性。MA等[11]以铜渣为原料添加ZnO制备微晶玻璃,研究发现Zn能够有效包裹在晶体结构中,降低了酸碱环境中重金属被浸出的风险。LIU等[12]利用钢渣与粉煤灰制备全固废基微晶玻璃,使Zn、Fe、Mn进入微晶相中对重金属离子进行固化。此外,DENG等[13]、DENG等[14]和DENG等[15]利用铬铁渣制备微晶玻璃使不锈钢渣中的多种重金属结晶为尖晶石,实现多种重金属协同固化。因此,以粉煤灰、不锈钢渣和铜渣制备微晶玻璃可以高值化利用固体废弃物,减少毒性物质的浸出。
微晶玻璃具有较高的机械强度、耐腐蚀性和耐磨性,可替代铸石和耐酸陶瓷板在煤炭、采矿、水泥、机械等工业部门应用。大部分微晶玻璃是通过非均匀形核制备获得,晶核剂是促进玻璃析晶和优化性能的重要物质[16]。DENG等[13]提出了在CaO-MgO-SiO2-Al2O3体系微晶玻璃中Cr2O3容易优先结晶形成尖晶石纳米晶粒作为晶核剂诱导辉石结晶。ZHANG等[17]研究发现Cr2O3能够诱导玻璃分相,降低析晶温度。魏海燕等[18]尝试以微波热处理技术制备微晶玻璃,探究Cr2O3和Fe2O3为晶核剂对微晶玻璃析晶行为的影响。Fe2O3是一种促进微晶玻璃析晶的重要晶核剂,铁离子能够弱化玻璃网络结构,增加非桥氧数量,降低玻璃析晶活化能,促进玻璃析晶[19-20]。因此,金属离子作为形核剂诱导硅酸盐玻璃析晶是制备微晶玻璃的一种优势选择。
目前,主要采用电阻加热方式对微晶玻璃进行热处理,该方法制备微晶玻璃能耗高、热能利用率低,不利于可持续发展。基于废弃物成分以SiO2、CaO、MgO、Al2O3以及Fe2O3为主,适合制备 CaO-MgO-SiO2-Al2O3-Fe2O3(CMASF)体系微晶玻璃。本研究以粉煤灰、不锈钢渣和铜渣为原料采用微波热处理制备矿渣微晶玻璃,拟探究微波热处理过程重金属迁移与固化机制,并分析Fe2O3对辉石微晶玻璃形成过程中的玻璃网络结构变化与结晶规律。
1. 材料与方法
1.1 实验原料与制备
采用X荧光光谱仪测试确定粉煤灰、铜渣以及不锈钢渣的化学成分,其结果见表1。本实验中固体废弃物利用率达90%,其中粉煤灰与不锈钢渣的利用比例为55%~65%与15%~25%,铜渣的利用率为0%~25%。其他不满足实验配方成分采用石英砂、CaO、MgO和硼砂补充,实验配方与样品编号如表2所示。
表 1 固体废弃物成分Table 1. Composition of waste residues% (质量分数) 成分 粉煤灰 铜渣 不锈钢渣 SiO2 53.34 22.59 37.76 Al2O3 18.18 3.91 13.16 CaO 11.53 2.41 3.68 MgO 3.33 0.68 23.10 Fe2O3 10.83 66.36 6.37 K2O 1.23 0.67 0.20 Na2O 0.56 0.69 0.35 ZnO — 1.00 0.05 Cr2O3 — — 2.90 其他 1.00 1.69 2.41 表 2 基础玻璃的主要化学成分Table 2. The main chemical composition of glasses样品编号 粉煤灰添加质量/g 铜渣添加质量/g 不锈钢渣添加质量/g SiO2添加质量/g CaO添加质量/g MgO添加质量/g B2O5添加质量/g C0 126.72 0 31.68 8.25 9.9 1.65 9.90 C5 120.37 10.00 30.10 7.84 9.41 1.57 9.41 C15 107.69 30.00 26.93 7.01 8.41 1.40 8.41 C25 94.98 50.00 23.76 6.19 7.43 1.23 7.43 将3种废弃物按配方设计比例称量,添加一定比例的石英砂、CaO、MgO和硼砂补充,混合搅拌1 h。然后将混合物放置在刚玉坩埚内在马弗炉中以1 500 °C熔制3 h,随后将玻璃熔液倒入模具中成型,并在650 °C退火1 h。少量玻璃熔液浇注在冷水中制备水淬渣,采用差示扫描量热法 (Differential scanning calorimeter, DSC) 确定玻璃的热力学参数。本实验采用2.45 GHz微波在1~4 Kw功率中对母相玻璃析晶热处理。微波处理方法为一步晶化法,参考DSC曲线将母相玻璃以3 °C·min−1升温到860 °C并保温1 h制备微晶玻璃样品。
1.2 分析与测试
采用DSC差示扫描量热仪 (STA 449F3,耐驰,德国) 对水淬渣进行测试,获得微晶玻璃的玻璃转变温度 (Tg) 和析晶峰温度 (Tp) ;氩气气氛保护,升温速率为5 °C·min−1;试样测试温度范围为20~1 200 °C。
通过X射线衍射 (X-ray diffraction, XRD) 分析仪 (Rigku XRD MiniFlex,日本) 测试获得微晶玻璃的晶相结构信息;Cu靶激发X射线,扫描范围10°~90°。
利用傅里叶红外光谱 (Fourier transform infrared, FTIR) 仪 (Invenio,布鲁克,德国) 测试获得母相玻璃与微晶玻璃在400~4 000 cm−1的红外吸收峰。
通过场发射扫描电子显微镜 (Scanning electron microscope, SEM) (Suppra55,蔡司,德国) 在二次电子相模式中观察获得微晶玻璃的微观形貌,并利用能谱仪获得微晶玻璃样品元素分布。
2. 结果与讨论
2.1 玻璃热力学分析
采用DSC测试了水淬渣的结晶温度的变化,确定了母相玻璃的晶化处理温度。图1显示母相玻璃的转变温度 (Tg) 在650~700 °C,玻璃析晶温度 (Tp) 在830~900 °C。随铜渣质量分数的增加,铜渣中的Fe2O3对母相玻璃的析晶温度产生重要影响,Tg与Tp均呈现先降低后升高。前人研究发现,Fe2O3对玻璃结构有双重调控作用,当微晶玻璃中含有少量的Fe2O3主要以[FeO6]形式存在,其能够破坏Si-O网络结构,降低玻璃网络的连通性,使玻璃发生解聚促进玻璃析晶[19]。当玻璃中含有过多Fe2O3,形成[FeO4]结构单元对玻璃网络进行补充,增加玻璃聚合度抑制玻璃析晶[20]。可见,加入少量的铜渣时,Fe2O3以[FeO6]形式存在,扮演玻璃网络改性剂的角色,降低玻璃析晶温度。当铜渣添加量到15%时,玻璃基体中存在过多的Fe2O3,形成[FeO4]结构对玻璃进行补网,增加玻璃的聚合度,抑制玻璃的析晶。
玻璃的稳定性可以用△T (△T=TP−Tg) 表示,根据DSC测试结果获得的不同样品的玻璃稳定性变化情况列于表3。随着铜渣质量分数增加,△T由183 °C降低到176 °C,当铜渣质量分数为5%,△T值最低。当铜渣质量分数为15%,△T呈现增长趋势为190 °C,当铜渣质量分数为25%,△T为198 °C。△T值越大玻璃的稳定性越强,由此可知玻璃的稳定性先降低后升高。这与通过DSC曲线确定了微晶玻璃结晶温度先降低后升高的趋势一致。玻璃稳定性、结晶温度与玻璃网络聚合度有关,玻璃网络聚合度越高其稳定性越强,并且微晶玻璃析晶温度也会提高。因此,少量Fe离子以[FeO6]破坏玻璃网络连通性,过多的Fe离子以[FeO4]对玻璃进行补网,玻璃稳定性先降低后增加。
表 3 玻璃的稳定性特征Table 3. Stability characteristics of glass温度/ ℃ C0 C5 C15 C25 Tg 680 661 668 698 Tp 863 837 858 896 △T 183 176 190 198 2.2 母相玻璃结构分析
玻璃的结晶行为与玻璃的网络结构密切相关,因此采用红外光谱分析了不同样品的玻璃网络结构,其结果如图2所示。从图2可以看出,红外光谱显示3个典型特征吸收带,430~560 cm−1、600~760 cm−1和730~1 200 cm−1,分别代表了Si-O-Si、Si(T)-O键的弯曲振动和玻璃网络Qn结构单元的对称伸缩振动。随着铜渣质量分数增加到25%时,在580 cm−1形成1个独立的吸收峰,代表Fe-O键的振动。
玻璃网络的聚合度反应了微晶玻璃的结晶趋势,通常用不同Qn的相对含量 (n,表示[SiO4]的桥接氧量) 来评价。其中,Q0 (SiO44−)、Q1 (Si2O76-) 、Q2 (Si2O64-) 、Q3 (Si2O52−) 、Q4 (SiO2) 结构单元的红外特征吸收峰分别出现在840~890 cm−1、900~950 cm−1、960~1 030 cm−1、1 050~1 100 cm−1和1 160~1 190 cm−1范围[21-22]。采用高斯微积分方法对800~1 200 cm−1的Qn的吸收峰进行解卷积,获得的不同Qn的吸收峰面积,如图3所示。通过玻璃中非桥氧键占总硅氧四面体结构的含量值可以反映玻璃网络的解聚度 (DOP) 。玻璃网络的解聚度由式DOP = 4×Q0+3×Q1+2×Q2+1×Q3+0×Q4计算获得,DOP值见表4。
表 4 Qn的含量与DOP计算结果Table 4. Qncontent and DOP calculation results样品编号 Q0/% Q1/% Q2/% Q3/% Q4/% DOP R2 C0 11.25 13.67 17.16 44.43 13.49 1.65 0.996 C5 14.93 13.91 22.91 42.63 5.62 1.89 0.994 C15 6.92 9.62 17.12 44.92 19.37 1.40 0.994 C25 7.70 8.66 19.16 48.06 18.46 1.39 0.996 从表4可看出,随着铜渣含量的增加,母相玻璃的DOP值先增大后减小。C5样品的DOP值最大是1.89。对比DOP值,可知C15、C25样品的玻璃网络聚合度明显高于C0和C5样品。此外,C15、C25样品中Q4的占比明显多于C0和C5样品,Q4代表了完全聚合的SiO2,其含量增加导致玻璃网络聚合度增强。由此可知,母相玻璃中含少量Fe2O3时,Fe离子能够破坏[SiO4]网络结构,降低玻璃粘度。当玻璃中Fe2O3含量过多时,样品中形成[FeO4]对玻璃补网,从而提高玻璃聚合度。
2.3 晶相与微观结构分析
图4为微波晶化热处理获得微晶玻璃样品的XRD图。XRD图谱显示不同样品均出现明显的结晶峰,形成以辉石相(Mg,Fe,Al)(Ca,Mg,Fe)(Si,Al)2O6 (PDF:88-0856)为主晶相,磁铁矿Fe3O4 (PDF:89-0691)和尖晶石Fe(Cr,Mg)2O4 (PDF:89-2618)为副相的复合相微晶玻璃。随着铜渣质量分数提高,辉石相的衍射峰强度先增强后逐渐降低,并且磁铁矿与尖晶石相的衍射峰强度逐渐增强。由XRD图谱可看出,铜渣质量分数为5%时,其中的Fe2O3可以作为晶核剂促进辉石结晶。然而,随着铜渣质量分数增加,母相玻璃中含有较多的Fe离子,一部分Fe3+与Fe2+结合并结晶形成磁铁矿相,另一部分Fe3+与Mg2+、Cr3+、Zn2+耦合生成尖晶石析出。
图5为微波晶化热处理微晶玻璃样品的微观形貌图。从图中观察到C0、C5、C15样品形成了均匀分布辉石粒状晶,且晶粒尺寸逐渐变小。由于Fe2O3质量分数增加使玻璃中形核质点增多,从而使辉石晶粒细化。此外,微波热处理具有均匀加热的特点,能够促使辉石均匀生长。相关微波法制备微晶玻璃研究表明,微波效应不仅降低了玻璃析晶活化能提高析晶效率,而且促使辉石晶粒均匀分布[23]。然而,C25样品中出现了大量磁铁矿枝状晶,这与玻璃中的铁含量增多有关。微晶玻璃中出现大量磁铁矿枝晶分布,一方面是因为磁铁矿具有较强的析晶能力与较低的结晶温度,能够在母相玻璃中优先析晶;另一方面,磁铁矿的析晶使玻璃中阳离子含量减少,增加玻璃粘度,使辉石的结晶受到抑制。
图6为微晶玻璃样品的红外光谱图。红外光谱中显示在400~600 cm−1、600~650 cm−1、760 cm−1和830~1 250 cm−1形成典型的吸收峰,分别代表Si-O结构的弯曲振动、Si-O-Si结构的对称弯曲振动、Si(T)-O对称伸缩振动以及各个不同Qn结构的伸缩振动[15, 19-20]。样品晶化热处理后,在465 cm−1与 538 cm−1形成强的Si-O-Fe比肩峰。760 cm−1处Si(T)-O结构单元的红外吸收峰减弱,结合XRD可认为,Fe3+在玻璃析晶过程逐渐从母相玻璃中偏析形成了磁铁矿与富铁相尖晶石,使玻璃中的Fe3+减少,导致Si(T)-O结构红外吸收峰强度减弱。另外,830~1 250 cm−1范围的Qn的红外吸收峰向低波数偏移,表明母相玻璃在微波辅助热处理过程发生了结构重组。
在CaO-MgO-SiO2-Al2O3-Fe2O3体系矿渣微晶玻璃结晶过程,铜渣中的氧化铁在高温下不稳定,容易以Fe2SiO4形式存在,破坏硅氧四面体网络连通性,降低玻璃粘度[24]。母相玻璃在结晶过程,铁离子迁移并分相成Fe3O4与Fe2O3,反应过程见式 (1)~式 (3) 。
Fe2SiO4+O2→Fe2O3+SiO2 (1) Fe2O3+MgO+CaO+SiO2→Ca(Mg、Fe)Si2O6 (2) Fe2SiO4+O2→Fe3O4+SiO2 (3) 根据实验结果可以推断,母相玻璃在结晶过程,少量的铁离子发生式 (1) 反应,生成Fe2O3。随着Fe2O3增加,其与玻璃中的MgO、CaO、SiO2耦合反应,发生式 (2) 反应生成辉石相。当铁离子含量过多时,式 (3) 反应优先于式子 (1) 反应生成Fe3O4,在微晶玻璃中结晶形成磁铁矿。
2.4 重金属在微晶玻璃中的富集与固化
图7显示了微波处理微晶玻璃中尖晶石相的微观形貌与元素分布。从图中可看出,尖晶石在微晶玻璃中发生偏析,C0、C5、C15样品中尖晶石形成独立的结晶团聚体分布在辉石相与玻璃相之间。在能谱图中显示尖晶石存在区域,主要以O、Cr、Mn、Fe、Zn、Mg元素富集。由此可推断,不锈钢渣与铜渣中的重金属离子进入尖晶石相。然而,C25样品未发现尖晶石在微晶玻璃中偏析。结合能谱图分析可认为,过多的Fe、O离子富集形成了磁铁矿,而Cr、Mn、Zn、Mg以同构体的形式进入磁铁矿相。进一步观察发现,C0、C5、C15样品尖晶石富集区域出现了较大的辉石晶体。这说明,尖晶石结晶使离子扩散增加了玻璃中结构缺陷,降低玻璃内的局部析晶活化能促进辉石生长发育。
为研究重金属的迁移规律,进一步对重金属离子在微晶玻璃中离子迁移规律建立了模型,如图8所示。从图8 (a) 可见,尖晶石周围密集分布了一层不规则的细小辉石晶粒,辉石晶体依附尖晶石生长并对尖晶石形成了完全包裹状态。根据前人研究可知,在辉石微晶玻璃中添加Cr2O3容易结晶生成富Cr尖晶石相,尖晶石可为辉石析晶提供形核质点,使辉石外延尖晶石结晶[25-26]。在本研究中发现,尖晶石能够作为晶核剂促进辉石析晶。然而,以尖晶石为形核质点结晶的辉石晶粒都较为细小 (图7,C0、C5、C15) ,是由于大颗粒尖晶石的形成消耗了大量的阳离子 Cr3+、Mn4+、Fe3+等,尖晶石周边阳离子缺乏导致玻璃粘度增加,从而辉石晶体生长缓慢晶粒尺寸较小。此外,微波晶化热处理样品中尖晶石为无规则的形态,无规则的边缘提高了晶界结构缺陷程度,增加了辉石外延尖晶石结晶生长的几率。这导致了尖晶石被细小的辉石晶粒包裹,形成稳定的“核-壳”结构,结构模型如图8 (b) 所示。辉石微晶玻璃中重金属Cr、Mn进入尖晶石相被耐腐性优良的辉石包裹降低了重金属离子不易被浸出的效率[14]。本研究中,不锈钢渣与铜渣中的重金属离子迁移进入尖晶石相或磁铁矿,在微晶玻璃中尖晶石、磁铁矿晶体被辉石与玻璃包裹形成双重屏蔽,提高了重金属的固化效率。因此,通过微波热处理工艺制备微晶玻璃是有效的重金属固化方法。
3. 结论
1) 利用粉煤灰、不锈钢渣和铜渣制备辉石相矿渣微晶玻璃。其中,添加质量分数5%的铜渣降低玻璃聚合度,提高辉石析晶能力。然而,当铜渣质量分数超过15%,铁离子浓度过饱和,促进磁铁矿相结晶,辉石析晶受到抑制。同时,Zn、Mn对[FeO6]或Cr对[FeO4]中的Fe离子进行同构取代,形成(Mg, Fe, Zn, Mn)(Fe, Cr)2O4尖晶石。
2) 微波晶化热处理使不锈钢渣与铜渣中的Cr2O3、MnO2、ZnO、Fe2O3结晶形成尖晶石和磁铁矿。在矿渣微晶玻璃中尖晶石为辉石提供形核质点,诱导辉石外延尖晶石析晶形成“核-壳”结构,使重金属离子有效固化。
-
[1] LIN H, ZHANG M, WANG F, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors:Characteristics, roles in membrane fouling and control strategies[J]. Journal of Membrane Science, 2014, 460(12):110-125. [2] WANG Z, WU Z, YIN X, et al. Membrane fouling in submerged membrane bioreactor (MBR) under subscritical flux operation:membrane foulant and gel layer characterization[J]. Journal of Membrane Science, 2008, 325(2):238-244. [3] GAO D, FU Y, REN N. Tracing biofouling to the structure of the microbial community and its metabolic products:A study of the three-stage MBR process[J]. Water Research, 2013, 47(17):6680-6690. [4] LIANG S, ZHAO Y, LIU C, et al. Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor system[J]. Journal of Membrane Science, 2008, 310(1/2):502-511. [5] TANG S, WANG Z, WU Z, et al. Role of dissolved organic matter (DOM) in membrane fouling of membrane bioreactores for municipal wastewater treatement[J]. Journal of Hazardous Materials, 2010, 178:377-384. [6] LISHMAN L, AQEEL H, BASUVARAJ M, et al. Biofouling of an aerated membrane reactor:Four distinct microbial communities[J]. Environmental Engineering Science, 2020, 37(1):3-12. [7] BAR-ZEEV E, BERMAN-FRANK I, LIBERMAN B, et al. Transparent exopolymer particles:Potential agents for organic fouling and biofilm formation in desalination and water treatment plants[J]. Desalination and Water Treatment, 2009, 3:136-142. [8] BAR-ZEEV E, BERMAN-FRANK I, STAMBLER N, et al. Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba[J]. Aquatic Microbial Ecology, 2009, 56(2/3):217-225. [9] AMY G. Fundamental understanding of organic matter fouling of membranes[J]. Desalination, 2008, 231:44-51. [10] LI S, WINTERS H, JEONG S, et al. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors:Characterization and RO fouling potential[J]. Desalination, 2016, 379(3):68-74. [11] PASSOW U, SWEET J, FRANCIS S, et al. Incorporation of oil into diatom aggregates[J]. Marine Ecology Progress Series, 2019, 612(1):65-86. [12] PASSOW U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4):287-333. [13] PASSOW U, SHIPE R F, MURRAY A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4):327-346. [14] PASSOW U. Production of transparent exopolymer particles (TEP) by phyto-and bacterioplankton[J]. Marine Ecology Progress Series, 2002, 236(11):1-12. [15] JENNINGS M K, PASSOW U, WOZNIAK A S, et al. Distribution of transparent exopolymer particles (TEP) across an organic carbon gradient in the western North Atlantic Ocean[J]. Marine Chemistry, 2017, 190(3):1-12. [16] CHIN W C, ORELLANA M V, VERDUGO P. Spontaneous assembly of marine dissoved organic matter into polymer gels[J]. Nature, 1998, 391(6667):568-572. [17] BAR-ZEEV E, BERMAN T, RAHAV E, et al. Teansparent expolymer particles (TEP) dynamics in the eastern Mediterranean Sea[J]. Marine Ecology Progress Series, 2011, 431(6):107-118. [18] HONG Y, SMITH W O, WHITE A M. Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3):368-376. [19] MARI X, PASSOW U, MIGON C, et al. Transparent exopolymer particles:Effects on carbon cycling in the ocean[J]. Progress in Oceanography, 2017, 151(2):13-37. [20] AZETSU-SCOTT K, PASSOW U. Ascending marine particles:Significance of transparent exopolymer particles (TEP) in the upper ocean[J]. Limnology and Oceanography, 2004, 49(3):741-748. [21] ROBINSON T B, STOLLE C, WURL O. Depth is relative:The importance of depth for transparent exopolymer particles in the near-surface environment[J]. Ocean Science, 2019, 15(6):1653-1666. [22] BERMAN T, HOLENBERG M A. Don't fall foul of biofilm through high TEP levels[J]. Filtration & Separation, 2005, 42(4):30-32. [23] BERMAN T. Biofouling:TEP-a major challenge for water filtration[J]. Filtration & Separation, 2010, 47(2):20-22. [24] TORRE T D L, LESJEAN B, DREWS A, et al. Monitoring of transparent exopolymer particles (TEP) in a membrane bioreactor (MBR) and correlation with other fouling indicators[J]. Water Science and Technology, 2008, 58(10):1903-1909. [25] VILLACORTE L O, SCHURER R, KENNEDY M D, et al. Removal and deposition of transparent exopolymer particles in a seawater UF-RO system[J]. IDA Journal of Desalination and Water Reuse, 2010, 2(1):45-55. [26] KENNEDY M D, TOBAR F P M, AMY G, et al. Transparent exopolymer particle (TEP) fouling of ultrafiltration membrane systems[J]. Desalination and Water Treatment, 2009, 6:169-176. [27] BERMAN T, VINER-MOZZINI Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret[J]. Aquatic Microbial Ecology, 2001, 24(3):255-264. [28] PASSOW U, ALLDREDGE A L. Aggregation of a diatom bloom in a mesocosm:The role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part Ⅱ:Tropical Studies in Oceanography, 1995, 42(1):99-109. [29] 马丽丽, 陈敏, 郭劳动, 等. 北白令海透明胞外聚合颗粒物的含量与来源[J]. 海洋学报(中文版), 2012, 34(5):81-90. MA L, CHEN M, GUO L, et al. Distribution and source of tranapartent exopolymer particles in the northern Bering Sea[J]. Acta Oceanologica Sinica, 2012, 34(5):81-90(in Chinese). [30] THORNTON D C O. Formation of transparent exopolymeric particles (TEP) from macroalgal detritus[J]. Marine Ecology Progress Series, 2004, 282(17):1-12. [31] NEVEL S V, HENNEBEL T, BEUF K D, et al. Transparent exopolymer particle removal in different drinking water production centers[J]. Water Research, 2012, 46(11):3603-3611. [32] BAR-ZEEV E, BERMAN-FRANK I, GIRSHEVITZ O, et al. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23):9119-9124. [33] BERMAN T, PASSOW U. Transparent exopolymer particles (TEP):An overlooked factor in the process of biofilm formation in aquatic environments[J]. Nature Precedings, 2007, DOI:10.1038/npre.2007.1182.1 [34] SANTSCHI P H, BALNOIS E, WILKINSON K J, et al. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy[J]. Limnology and Oceanography, 1998, 43(5):896-908. [35] LI S, WINTERS H, VILLACORTE L O, et al. Compositional similarities and differences between transparent exopolymer particles (TEPs) from two marine bacteria and two marine algae:Significience to surface biofouling[J]. Marine Chemistry, 2015, 174(7):131-140. [36] PASSOW U, ALLDREDGE A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7):1326-1335. [37] ALLDREDGE A L, PASSOW U, LOGAN B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep Sea Research Part I:Oceanographic Resarch Papers, 1993, 40(6):1131-1140. [38] XU C, CHIN W C, LIN P, et al. Comparison of microgels, extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP) determined in seawater with and without oil[J]. Marine Chemistry, 2019, 215(8):103667. [39] 刘丽贞, 黄琪, 秦伯强, 等. 透明胞外聚合颗粒物在水处理中的应用研究进展[J]. 水处理技术, 2015, 41(12):15-19. LIU L, HUANG Q, QIN B, et al. Advances in the application of transparent exopolymer particle (TEP) in water treatment[J]. Technology of Water Treatment, 2015, 41(12):15-19(in Chinese).
[40] BERMAN T. Transparent exopolymer particles as critical agents in aquatic biofilm formation:implications for desalination and water treatment[J]. Desalination and Water Treatment, 2013, 51:1014-1020. [41] STODEREGGER K E, HERNDL G J. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions[J]. Marine Ecology Progress Series, 1999, 189(14):9-16. [42] RADIĆ T, KRAUS R, FUKS D, et al. Transparent exopolymeric particles' distribution in the northern Adriatic and their relation to microphytoplankton biomass and composition[J]. Science of the Total Environment, 2005, 353(1):151-161. [43] PRAIRIE J C, MONTGOMERY Q W, PROCTOR K W, et al. Effects of phytoplankton growth phase on settling properties of marine aggregates[J]. Journal of Marine Science and Engineering, 2019, 7(8):265. [44] 郭康丽, 陈洁, 王小冬, 等. 两种海洋硅藻透明胞外聚合颗粒物的产生及其生态学意义[J]. 海洋环境科学, 2019, 38(5):649-655. GUO K L, CHEN J, WANG X D, et al. Production of transparent exopolymer particles from two marine diatoms and its ecological significance[J]. Chinese Journal of Marine Environmental Science, 2019, 38(5):649-655(in Chinese).
[45] FUKAO T, KIMOTO K, KOTANI Y. Produciton of transparent exopolymer particles by four diatom species[J]. Fisheries Science, 2010, 76(5):755-760. [46] 孙翠慈, 王友绍, 吴梅林, 等. 夏季珠江口透明胞外聚合颗粒物分布特征[J]. 热带海洋学报, 2010, 29(5):81-87. SUN C C, WANG Y S, WU M L, et al. Distribution of transparent exopolymer particles in the pearl River Estuary in summer[J]. Journal of Tropical Oceanography, 2010, 29(5):81-87(in Chinese).
[47] GUERRINI F, MAZZOTTI A, BONI L, et al. Bacterial-algal interactions in polysaccharide production[J]. Aquatic Microbial Ecology, 1998, 15(3):247-253. [48] BERMAN-FRANK I, ROSENBERG G, LEVITAN O, et al. Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium[J]. Environmental Microbiology, 2007, 9(6):1415-1422. [49] ENGEL A, PASSOW U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their alcian blue adsorption[J]. Marine Ecology Progress Series, 2001, 219(11):1-10. [50] PASSOW U. Formation of transparent exoplymer particles TEP, from dissoloved precursor material[J]. Marine Ecology Progress Series, 2000, 192(1):1-11. [51] CHANDRASEKARAN R, RADHA A. Molecular modeling of xanthan:Galactomannan interactions[J]. Carbohydrate Polymer, 1997, 32(3):201-208. [52] MENG S, WINTERS H, LIU Y. Ultrafiltration behaviors of alginate blocks at various calcium concentration[J]. Water Research, 2015, 83(16):248-257. [53] WANG R, LIANG D, LIU X, et al. Effect of magnesium ion on polysaccharide fouling[J]. Chemical Engineering Journal, 2020, 379(1):122351. [54] VILLACORTE L O, KENNEDY M D, AMY G L, et al. The fate of transparent exopolymer particles (TEP) in integrated membrane systems:Removal through pre-treatment processes and deposition on reverse osmosis membranes[J]. Water Research, 2009, 43(20):5039-5053. [55] VILLACORTE L O, SCHURER R, KENNEDY M D, et al. The fate of transparent exopolymer particles (TEP) in seawater UF-RO system:A pilot plant study in Zeeland, The Netherlands[J]. Desalination and Water Treatment, 2010, 13:109-119. [56] LI X, SKILLMAN L, LI D, et al. Comparison of alcian blue and total carbohydrate assays for quantitation of transparent exopolymer particles (TEP) in biofouling studies[J]. Water Research, 2018, 133(6):60-68. [57] MENG S, RZECHOWICZ M, WINTERS H, et al. Transparent exopolymer particles (TEP) and their potential effect on membrane biofouling[J]. Applied Microbiology and Biotechnology, 2013, 97(13):5705-5710. [58] MENG S, FAN W, LI X, et al. Intermolecular interactions of polysaccharides in membrane fouling during microfiltration[J]. Water Research, 2018, 143(16):38-46. [59] LI S, LEE S T, SINHA S, et al. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling[J]. Water Research, 2016, 102(15):485-493. [60] KOMLENIC R. Rethinking the causes of membrane biofouling[J]. Filtration & Separation, 2010, 47(5):26-28. [61] MENG S, LIU Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios[J]. Scientific Reports, 2016, 6(1):19747. [62] SIM L N, SUWARNO S R, LEE D Y S, et al. Online monitoring of transparent exopolymer particles (TEP) by a novel membrane-based spectrophotometric method[J]. Chemosphere, 2019, 220(7):107-115. [63] BERMAN T, PARPAROVA R. Visualization of transparent exopolymer particles (TEP) in various source waters[J]. Desalination and Water Treatment, 2010, 21:382-289. [64] WETZ M S, ROBBINS M C, PAERL H W. Transparent exopolymer particles (TEP) in a river-dominated estuary:Spatial-temporal distributions and an assessment of controls upon TEP formation[J]. Estuaries and Coasts, 2009, 32(3):447-455. [65] SUN C C, WANG Y S, LI Q P, et al. Distribution characteristics of transparent exopolymer particles in the Pearl River estuary, China[J]. Journal of Geophysical Research:Biogeosciences, 2012,G00N17,doi:10.1029/2012JG001951. [66] ZAMANILLO M, ORTEGA-RETUERTA E, NUNES S, et al. Distribution of transparent exopolymer particles (TEP) in distinct regions of the Southern Ocean[J]. Science of the Total Environment, 2019, 691(46):736-748. [67] GUO S, SUN X. Concentrations and distribution of transparent exopolymer particles in a eutrophic coastal sea:A case study of the Changjiang (Yangtze River) estuary[J]. Marine & Freshwater Research, 2019, 70(10):1389-1401. [68] 舒逸, 张桂成, 孙军. 东海PN断面透明胞外聚合颗粒物分布特征及来源研究[J]. 海洋学报, 2018, 40(8):110-119. SHU Y, ZHANG G, SUN J. The distribution and origin of transparent exopolymer particles at the PN section in the East China Sea[J]. Acta Oceanologica Sinica, 2018, 40(8):110-119(in Chinese).
[69] RIEBESELL U, REIGSTAD M, WASSMANN P, et al. On the trophic fate of Phaeocystis pouchetii (Hariot):VI. significience of Phaeocystis-derived mucus for vertical flux[J]. Nertherlands Journal of Sea Research, 1995, 33(2):193-203. [70] PRIETO L, COWEN J P. Transparent exopolymer particles in a deep-sea hydrothermal system:Guaymas Basin, Gulf of California[J]. Marine Biology, 2007, 150(6):1093-1101. [71] ENGEL A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part I, 2003, 51(1):83-92. [72] GROSSART H P, SIMON M, LOGAN B E. Formation of macroscopic organic aggregates (lake snow) in a large lake:The significance of transparent exopolymer particles, plankton, and zooplankton[J]. Limnology and Oceanography, 1997, 42(8):1651-1659. [73] DISCART V, BILAD M R, NEVEL S V, et al. Role of transparent exopolymer particles on membrane fouling in a full-scale ultrafiltration plant:Feed parameter analysis and membrane autopsy[J]. Bioresource Technology, 2014, 173(23):67-74. [74] MARI X, BURD A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory[J]. Marine Ecology Progress Series, 1998, 163(2):63-76. [75] VICENTE I D, ORTEGA-RETUERTA E, MAZUECOS I P, et al. Variation in transparent exopolymer particles in relation to biological and chemical factors in two contrasting lake districts[J]. Aquatic Sciences, 2010, 72(4):443-453. [76] HUANG Q, LIU L, QIN B, et al. Abundance, characteristics, and size spectra of transparent exopolymer particles and coomassie stainable particles during spring in a large shallow lake, Taihu, China[J]. Journal of Great Lakes Research, 2016, 42(2):455-463. [77] ARNOUS M B, COURCOL N, CARRIAS J F. The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin[J]. Aquatic Sciences, 2010, 72(2):245-253. [78] ORTEGA-RETUERTA E, DUARTE C M, RECHE I. Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean Sea[J]. Microbial Ecology, 2010, 59(4):808-818. [79] ORTEGA-RETUERTA E, MARRAS C, MU OZ-FERN NDEZ A, et al. Seasonal dynamics of transparent exopolymer particles (TEP) and their drivers in the coastal NW Mediterranean Sea[J]. Science of the Total Environment, 2018, 631/632(16):180-190. [80] 彭安国, 黄奕普. 九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报(自然科学版), 2007, 46(Z1):38-42. PENG A G, HUANG Y P. Study on TEP and its relationships with uranium, thorium, polonium isotopes in Jiulong Estuary[J]. Journal of Xiamen University(Natural Science), 2007, 46(Z1):38-42(in Chinese). [81] PARINOS C, GOGOU A, KRASAKOPOULOU E, et al. Transparent exopolymer particles (TEP) in the NE Aegean Sea frontal area:Seasonal dynamics under the influence of Black Sea water[J]. Continental Shelf Research, 2017, 149(18):112-123. [82] NAGARAJ V, SKILLMAN L, LI D, et al. Review-bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes[J]. Journal of Environmental Management, 2018, 223(19):586-599. [83] HABIMANA O, SEMIAO A J C, CASEY E. The role of cell-surface interations in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membrane[J]. Journal of Membrane Science, 2014, 454(6):82-96. [84] LEE H, PARK C, KIM H, et al. Role of transparent exopolymer particles (TEP) in initial bacterial deposition and biofilm formation on reverse osmosis (RO) membrane[J]. Journal of Membrane Science, 2015, 494(22):25-31. [85] VERDUGO P, ALLDREDGE A L, AZAM F, et al. The oceanic gel phase:A bridge in the DOM-POM continuum[J]. Marine Chemistry, 2004, 92:67-85. [86] BAR-ZEEV E, PASSOW U, CASTRILL N S R V, et al. Transparent exopolymer particles:From aquatic environments and engineered systems to membrane biofouling[J]. Environmental Science & Technology, 2015, 49(2):691-707. [87] FLEMMING H C, WINGENDER J. The bioflim matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633. [88] YIN X, LI X, HUA Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research, 2020, 171(4):115452. [89] BERMAN T, MIZRAHI R, DOSORETZ C G. Transparent exopolymer particles (TEP):A critical factor in aquatic biofilm initiation and fouling on filtration membranes[J]. Desalination, 2011, 276:184-190. [90] ZHANG Z, CHEN M, LI J, et al. Significance of transparent exopolymer particles derived from aquatic algae in membrane fouling[J]. Arabian Journal of Chemistry, 2020, 13(3):4577-4585. [91] LI S, HEIJMAN S G J, VERBERK J Q J C, et al. Fouling control mechanisms of demineralized water backwash:Reduction of charge screenning and calcium bridging effects[J]. Water Research, 2011, 45(19):6289-6300. [92] VILLACORTE L O, KENNEDY M D, AMY G L, et al. Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water[J]. Desalination and Water Treatment, 2009, 5:207-212. [93] LIN J C T, WU C Y, CHU Y L, et al. Effects of high turbidity seawater on removal of boron and transparent exopolymer particles by chemical oxo-precipitation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94(1):109-118. [94] SHAO S, FU W, LI X, et al. Membrane fouling by the aggregations formed from oppositely charged organic foulants[J]. Water Research, 2019, 159(12):95-101. 期刊类型引用(1)
1. 周志刚,李顺. 微生物除臭剂对育肥羊场除臭效果的研究. 中国畜禽种业. 2024(03): 82-85 . 百度学术
其他类型引用(4)
-

计量
- 文章访问数: 3163
- HTML全文浏览数: 3163
- PDF下载数: 51
- 施引文献: 5