-
近年来,我国一些发达地区的村落建设了分散式农村污水处理设施,并取得了较好的环境效益,但这些村落污水的治理,仍以COD、氨氮、总磷等污染物的降解为考核目标,而农村居民生活水平和医疗条件在不断提高,村落水环境中EDCs浓度水平也相应增加,其对水环境生态和人类健康危害日益严重[1],尤其是农村地区,EDCs通过灌溉形式,直接被稻、麦、瓜果等农作物吸收,进而进入食物链。EDCs是一种能扰乱生物体新陈代谢平衡的化学物质,主要分为天然产生(E1、E2、E3)及人工合成(EE2)[2]。据报道,各种环境基质中均检测到不同浓度的EDCs,水体中其质量浓度可低至10−6(1 μg·L−1)量级和10−9(1 ng·L−1)量级,而EDCs在极低浓度下就可引起水生生物的生殖发育障碍[3-4]。主要原因在于,EDCs与生物体内的雌激素受体结合而干扰生物内分泌系统正常代谢[5]。Legler等[6]研究发现,当自然水体中E2浓度达到1.0 ng·L−1时,可引起生物体内分泌紊乱。Cappiello等[7]发现不少猝死婴儿体内残留的EDCs含量相对普通新生婴儿较高;Clarke等[8]研究表明,妊娠期女性若接触过量EE2,则将増加母女患乳腺癌的风险。由此可见,当EDCs进入动物食物链,再经过层层传递,最终在人类体内积累,对人体健康损害威胁相应不断增大。
国内外众多学者研究表明,耕作型稻田复合生态系统通过“微生物-稻田湿地”耦合的复合系统对村落污水中的有机污染物进行生物降解,其主要依靠水稻复杂的根系及其附着的生物膜协同净化作用,不但可以达到净化村落污水的效果,还可以产生水稻增肥的效益[9]。但存在类固醇类激素(EDCs)环境污染及生态危害问题。现阶段,人为去除环境中雌激素类污染物主要通过吸附[10]、光催化氧化[11]、生物降解[12]的3种途径使EDCs在环境中迁移、降解。阳春等[10]研究表明,污泥对雌激素的吸附主要来自于污泥中的活性成分,而被生物表面所吸附的雌激素才能被生物降解。光解与氧化作用是EDCs真正的分解过程,因为它不可逆的改变了分子结构,强烈影响其在环境中的归趋,但光降解类固醇雌激素极易受pH的影响,近期有一些研究表明类固醇雌激素光氧化降解后产生的代谢产物仍具有雌激素活性[11]。生物降解通过微生物新陈代谢和自身与周围环境进行物质交换,达到将污染物去除或转化为无害无毒的物质[12],日益受到人们的重视。
本文针对村落污水中的类固醇类激素(EDCs)环境污染及生态危害问题,构建耕作型稻田湿地[13],并以本课题组筛选的农药降解菌HD为EDCs生物强化降解菌[14],考察其对EDCs的降解效能,以期为村落水环境中的EDCs降解机制及环境生态影响评价提供参考。
村落耕作型稻田湿地中类固醇类激素HD菌强化降解试验
Study on enhancement degradation of steroid hormone HD bacteria in paddy field wetland cultivated in villages
-
摘要: 农村生活污水中的类固醇类激素(EDCs)通过灌溉形式直接被稻、麦、瓜果等农作物吸收,进而进入食物链,带来的环境污染及生态危害问题日益突出。本研究以水稻田为载体构建耕作型稻田湿地,并以本课题组筛选的农药降解菌HD为EDCs强化降解菌,考察耕作型稻田湿地对EDCs的去除效率。试验设A(空白对照)、B(投加HD菌剂强化)两组,结果表明,A组对雌酮(E1)、雌二醇(E2)、雌三醇(E3)及17α-乙炔基雌二醇(EE2)的平均去除率分别为80.1%、72.4%、51.4%、68.3%,B组平均去除率分别为82.6%、73.4%、60.5%、75.6%,除E3外E1、E2、EE2去除率均在65%以上。经HD菌剂强化后,耕作层、土壤层、填料层等3个生物单元对EDCs(E1、E2、E3、EE2)的去除效果均有提升,其中对E1去除率分别为16.2%、75.1%、28.2%;对E2去除率分别为14.5%、61.8%、18.7%;对E3去除率分别为20.6%、49.8%、10.4%;对EE2去除率分别为8.9%、43.4%、-8.1%。湿地经过5个月的连续运行后,EDCs含量下降明显,投菌组B中的EDCs残留量明显低于未投菌组A,B组湿地出水中E1、E2、E3和EE2含量相比A组可分别降低约26.6%、17.1%、30.3%、13.3%。HD菌剂能有效强化村落耕作型稻田湿地对EDCs的降解。Abstract: Steroid hormones (EDCs) in rural sewage are directly absorbed by crops such as rice, wheat, melon and fruit through irrigation, and then enter the food chain, causing growing serious environmental pollution and ecological hazard. In this study, cultivated paddy field wetlands were established to investigate the removal efficiency of EDCs in cultivated paddy field wetland, with rice field being as the carrier, and the pesticide degrading bacteria HD screened by our research group being used as EDCs strengthening degrading bacteria. Two test were set in this study, named with A and B, which were blank control and adding the HD bacterium agent improved respectively. Results showed that the average removal rates of estrone (E1), estradiol (E2) and estriol (E3) and 17-α-ethinylestradiol in group A were 80.1%, 72.4%, 51.4%, 68.3%, and 82.6%, 73.4%, 60.5%, 75.6% in group B. the removal rates of E1, E2 and EE2 were all above 65% except E3 in both of group A and B. The removal effect of EDCs (E1, E2, E3 and EE2) by three biological units (tillage layer, soil layer and packing layer et al) was improved after the addition of HD bacteria agent. The removal rates for E1 in these biological unites were 16.2%, 75.1% and 28.2%, respectively. The removal rates for E2 were 14.5%, 61.8% and 18.7%, respectively. The removal rates for E3 were 20.6%, 49.8% and 10.4%, respectively. The removal rates for EE2 were 8.9%, 43.4% and −8.1%, respectively. The content of EDCs decreased significantly after the wetland successive running for 5 months, the residual content of EDCs in the introduced group B was significantly lower than that in the non-introduced group A. the contents of E1, E2, E3 and EE2 in the out water from group B decreased by about 26.6%, 17.1%, 30.3% and 13.3%, respectively. All results showed HD could effectively improve the degradation of EDCs in rural paddy fields and wetlands cultivated.
-
表 1 试验进水水质
Table 1. Test water quality
指标
IndexCODcr/
(mg·L−1)总磷/(mg L−1)
TP氨氮/(mg·L−1) -N${\rm{NH}}_4^{+} $ 总氮/(mg·L−1)
TNpH 范围 87—156 2.23—5.69 8.75—16.34 10.86—18.33 7.39—7.84 表 2 进水内分泌干扰物浓度(μg·L-1)
Table 2. Concentration of endocrine disruptors in water inlet(μg·L-1)
类固醇Steroid estrogen E1 Estrone E2 Estradiol EE2 17-α-ethinylestradiol E3 Estriol 原水浓度 10.13—15.25 0.79—1.1 0.88—1.82 6.31—9.58 模拟进水浓度 38.69—60.13 9.86—14.32 10.89—13.21 33.28—54.36 表 3 主要试验试剂
Table 3. Main experimental reagents
药品名称
Drug names分子式
Molecular formula规格
Specification生产单位
Production unitE1 C18H22O2 — 阿拉丁 E2 C18H24O2 — 阿拉丁 E3 C18H24O3 — 阿拉丁 EE2 C20H24O3 — 阿拉丁 BSTFA C8H18F3NOSi2 — 阿拉丁 吡啶 C5H5N AR 永华化学科技(江苏) 丙酮 CH3COCH3 AR 国药 正己烷 C6H14 AR 江苏强盛功能化学 二氯甲烷 CH2Cl2 AR 永华化学科技(江苏) 雄烷 C19H23 — 北京谱析科技有限公司 表 4 试验主要仪器
Table 4. Experimental main instruments
仪器设备
Instrument and equipment型号
Model number生产单位
Production unit多用途高速离心机 SORVALL Thermo electron corporation 行星式球磨机 QM-1SP2 南京大学仪器厂 超声波细胞粉碎机 JY96-Ⅱ 宁波新芝生物科技股份有限公司 气质联用 Trace ISQLT 美国赛默飞科技有限公司 表 5 衍生产物的相应参数
Table 5. corresponding parameters of derivative products
衍生产物
Derivative product保留时间/min
Retention time特征碎片离子(m/z)
Characteristic fragment ion线性回归方程
Equation of linear regressionTMS-E1 24.28 342、327、285 Y=(9.43×108)x+(1.02×109);R2=0.91 di-TMS-E2 25.43 416、401、285 Y=(1.08×107))x+(7.55×106);R2=0.91 di-TMS-EE2 27.03 440、425、285 Y=(1.90×107))x+(3.92×106);R2=0.92 Tri-TMS-E3 28.43 504、489、285 Y=(1.14×106)x+(2.38×106);R2=0.90 注:x为目标产物的实际浓度,单位mg·L−1,Y为色谱峰面积.
Note:x is the actual concentration of the target product, unit: mg·L−1, Y is the peak area. -
[1] 周开茹, 龚剑, 熊小萍, 等. 污水处理厂中典型内分泌干扰物的降解效果研究 [J]. 生态环境学报, 2018, 27(9): 1732-1740. ZHOU K R, GONG J, XIONG X P, et al. Study on removal effect of typical endocrine disruptors in sewage treatment plants [J]. Ecology and Environmental Sciences, 2018, 27(9): 1732-1740(in Chinese).
[2] MAO L, HUANG Q, LU J, et al. Ligninase-mediated removal of natural and synthetic estrogens from water: I. reaction behaviors [J]. Environmental Science & Technology, 2009, 43(2): 374-379. [3] TUAN FAUZAN TUAN OMAR, AZRILAWANIAHMAD, AHMAD ZAHARIN ARIS, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds [J]. Trends in Analytical Chemistry, 2016, 85: 241-259. doi: 10.1016/j.trac.2016.08.004 [4] RICHARD HAMPL, JANA KUBÁTOVÁ, LUBOSLAV STÁRKA. et al Steroids and endocrine disruptors-History, recent state of art and open questions [J]. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155: 217-223. doi: 10.1016/j.jsbmb.2014.04.013 [5] 陈栋, 王烁阳, 王玉玺, 等. 典型内分泌干扰物在城市污水处理过程中的降解研究进展 [J]. 青岛理工大学学报, 2018, 39(6): 1-9. doi: 10.3969/j.issn.1673-4602.2018.06.001 CHEN D, WANG S Y, WANG Y X, et al. Research progress on removal of typical endocrine disruptors in municipal wastewater treatment [J]. Journal of Qingdao University of Technology, 2018, 39(6): 1-9(in Chinese). doi: 10.3969/j.issn.1673-4602.2018.06.001
[6] LEGLER J, JONAS A, LAHR J, et al. Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-Calus reporter gene assay [J]. Environmental Toxicology & Chemistry, 2010, 21(3): 473-479. [7] CAPPIELLO A, FAMIGLINI G, PALMA P, et al. Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS [J]. Analytical and Bioanalytical Chemistry, 2014, 406(12): 2779-2788. doi: 10.1007/s00216-014-7692-0 [8] LEENA HILAKIVI-CLARKE, SONIA ASSIS, ANNI WARRI. et al Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk [J]. Journal of Mammary Gland Biology and Neoplasia, 2013, 18(1): 25-42. doi: 10.1007/s10911-013-9274-8 [9] 谢宁宁. 武汉市稻田生态系统服务功能评价[D]. 哈尔滨: 东北林业大学, 2008. XIE N N. Evaluation of ecosystem service function of rice field in wuhan[D]. Harbin: Northeast Forestry University, 2008(in Chinese).
[10] 阳春, 胡碧波, 张智. 类固醇雌激素在生活污水处理中的去除过程 [J]. 中国给水排水, 2008, 24(10): 11-15. doi: 10.3321/j.issn:1000-4602.2008.10.003 YANG C, HU B B, ZHANG Z. Removal process of steroid estrogen in sewage treatment [J]. China Water Supply and Drainage, 2008, 24(10): 11-15(in Chinese). doi: 10.3321/j.issn:1000-4602.2008.10.003
[11] 黄诗蓓. 人工湿地根区微环境调控强化雌激素去除的研究[D]. 南京: 东南大学, 2015. HUANG S P. Study on estrogen removal enhanced by microenvironmental regulation in root area of constructed wetland[D]. Nanjing: Southeast University, 2015 (in Chinese).
[12] 林泳墨, 秦玉莹, 李明堂. 雌激素类污染物的微生物降解研究进展 [J]. 广州化工, 2016, 44(11): 3-4, 25. doi: 10.3969/j.issn.1001-9677.2016.11.002 LIN Y M, QIN Y Y, LI M T. Advances in microbial degradation of estrogenic pollutants [J]. Guangzhou Chemical Industry, 2016, 44(11): 3-4, 25(in Chinese). doi: 10.3969/j.issn.1001-9677.2016.11.002
[13] 胡林潮, 周新程, 邓文, 等. 潜流式人工湿地消纳城市污水厂尾水微生物特性及机制 [J]. 土木建筑与环境工程, 2016, 38(6): 135-141. HU L C, ZHOU X C, DENG W, et al. Microbiological characteristics and mechanism of subsurface flow constructed wetland in wastewater treatment plant [J]. Journal of Chongqing Jianzhu University, 2016, 38(6): 135-141(in Chinese).
[14] 张文艺, 黄彬, 郭惠娟, 等. 一株2, 4-二氯苯酚降解菌及降解方法[P]. 江苏: CN108823122A, 2018-11-16. ZHANG W Y, HUANG B, GUO H J, et al. A strain of 2, 4-dichlorophenol degrading bacteria and its degradation method[P]. JIANG SU: CN108823122A, 2018-11-16(in Chinese).
[15] 刘通, 闫刚, 姚立荣, 等. 沸石的改性及其对水源水中氨氮降解的研究 [J]. 水文地质工程地质, 2011, 38(2): 97-101. doi: 10.3969/j.issn.1000-3665.2011.02.017 LIU T, YAN G, YAO L R, et al. Modification of zeolite and removal of ammonia nitrogen from water source [J]. Hydrogeology Engineering Geology, 2011, 38(2): 97-101(in Chinese). doi: 10.3969/j.issn.1000-3665.2011.02.017
[16] 黄成, 姜理英, 陈建孟, 等. 固相萃取-衍生化气相色谱/质谱法测定制药厂污水中的环境雌激素 [J]. 色谱, 2008, 26(5): 618-621. doi: 10.3321/j.issn:1000-8713.2008.05.018 HUANG C, JIANG L Y, CHEN J M. et al Determination of environmental estrogens in pharmacy wastewater using solid-phase extraction-gas chromatography/mass spectrometry with derivatization [J]. Chinese Journal of Chromatography, 2008, 26(5): 618-621(in Chinese). doi: 10.3321/j.issn:1000-8713.2008.05.018
[17] BARONTI C. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water [J]. Environ Sci Technol, 2000, 34(24): 5059-5066. doi: 10.1021/es001359q [18] 钟文辉. 降解2,4-二氯酚微生物的分离及其2,4-二氯酚羟化酶基因的克隆和表达 [J]. 生物工程学报, 2004, 20(2): 209-214. doi: 10.3321/j.issn:1000-3061.2004.02.011 ZHONG W H. Isolation of microorganisms degrading 2,4-dichlorophenol and cloning and expression of 2,4-dichlorophenol hydroxylase gene [J]. Journal of Biological Engineering, 2004, 20(2): 209-214(in Chinese). doi: 10.3321/j.issn:1000-3061.2004.02.011
[19] HUANG C, XU P, ZENG G, et al. The rapid degradation of bisphenol A induced by the response of indigenous bacterial communities in sediment [J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3919-3928. doi: 10.1007/s00253-017-8154-3 [20] 冀泽华, 冯冲凌, 吴晓芙, 等. 人工湿地污水处理系统填料及其净化机理研究进展 [J]. 生态学杂志, 2016, 35(8): 2234-2243. JI Z H, FENG Z L, WU X F, et al. Research progress on packing and purification mechanism of constructed wetland wastewater treatment system [J]. Journal of Ecology, 2016, 35(8): 2234-2243(in Chinese).
[21] G D’ASCENZO, A Di CORCIA, Alessandra GENTILI, et al. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities [J]. Science of the Total Environment, 2003, 302(1-3): 199-209. doi: 10.1016/S0048-9697(02)00342-X [22] LI Y M, ZENG S J. Removal and fate of estrogens in an anaerobic-anoxic-oxic activated sludge system [J]. Water Science and Technology, 2011, 63(1): 51-56. doi: 10.2166/wst.2011.008 [23] 王薇, 蔡祖聪, 钟文辉, 等. 好氧反硝化菌的研究进展 [J]. 应用生态学报, 2007, 18(11): 2618-2625. WANG W. CAI Z C. ZHONG W H. et al Advances in aerobic denitrifying bacteria [J]. Journal of Applied Ecology, 2007, 18(11): 2618-2625(in Chinese).
[24] LUCAS S D, JONES D L. Biodegradation of estrone and 17 β-estradiol in grassland soils amended with animal wastes [J]. Soil Biology and Biochemistry, 2006, 38(9): 2803-2815. doi: 10.1016/j.soilbio.2006.04.033 [25] TERNES T A, P KREKEL J MUELLER. Behaviour and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil [J]. Science of the Total Environment, 1999, 225(1-2): 81-90. doi: 10.1016/S0048-9697(98)00334-9 [26] SCHROEDER L M, BLACKWELL B, KLEIN D, et al. Rate uptake of three common pharmaceuticals in Celery, Apium Graveolens [J]. Water Air & Soil Pollution, 2015, 226(4): 1-20. [27] 任海燕, 纪淑兰, 崔成武, 等. 鞘氨醇杆菌(Sphingobacterium sp.)JCR5降解17α-乙炔基雌二醇的代谢途径 [J]. 环境科学, 2006, 27(9): 1835-1840. doi: 10.3321/j.issn:0250-3301.2006.09.025 REN H Y, JI S L, CUI C W. et al Metabolic pathway of 17-α-ethinylestradiol degradation by sphingobacterium sp. JCR5 [J]. Environmental Science, 2006, 27(9): 1835-1840(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.09.025
[28] ANDROLINI F, BORRA C, CACCAMO F, et al. Estrogen conjugates in late-pregnancy fluids: extraction and group separation by a graphitized carbon black cartridge and quantification by high-performance liquid chromatography [J]. Analytical Chemistry, 1987, 59(13): 1720-1725. doi: 10.1021/ac00140a029 [29] YOUNG K C, DOCHERTY K M, MAURIICE P A, et al. Degradation of surface-water dissolved organic matter: influences of DOM chemical characteristics and microbial populations [J]. Hydrobiologia, 2005, 539(1): 1-11. doi: 10.1007/s10750-004-3079-0