-
砷(As)是一种重要的非金属元素,其在自然界中广泛存在。砷可与肌体细胞中的酶结合,使酶失活造成代谢障碍[1]。自然界中的砷可通过食物链在水产品富集,和庆等研究发现,长江三角洲区域处于池塘养殖环境的水产品体内会存在Cd、Cr和As等重金属,养殖池塘内沉积物的重金属污染与其含量有较大关系[2]。严国等研究表明,海蟹的砷含量高富集,158个蟹类样品中含有0.37—35.81 mg·kg−1总砷[3]。所以人体摄入砷的主要途径之一为水产品的摄入[4-5]。水产品中的砷有砷酸根(arsenate,As(Ⅴ))、亚砷酸根(arsenite,As(Ⅲ))、一甲基砷(monomethyl arsenic acid,MMA)、二甲基砷(dimethyl arsenic acid,DMA)、砷甜菜碱(arsenobetaine,AsB)、砷胆碱(arsenocholine,AsC)、砷糖、砷脂等存在形式,其中As(Ⅴ)和As(Ⅲ)为无机砷,其他的为有机砷[6]。食品和环境中砷超标的情况时有发生,砷的总含量和存在形态决定其的生物毒性强弱,其中砷的存在形态占主要作用[7-9]。研究表明,砷元素在水产品种以AsB和砷糖的形式主要存在,其无毒或低毒[10]。所以,砷在环境中的现实残留状况一直是研究关注的热点。
皖中地区大型水域包括巢湖和长江水域,巢湖连淮通江,近年来的“引江济巢”工程将长江提水注入巢湖,形成水体流动,流域区域水安全保障能力得以提高[11]。沈黎等研究发现,一甲基砷在淡水刁子鱼中含量较高,亚砷酸根和砷酸根在淡水胖头鱼、鲇鱼中含量较高,亚砷酸根在海水鱼虾中含量较高,而砷酸根、一甲基砷、二甲基砷的含量在海水鱼虾中几乎没有[12]。鲍方印等研究发现,重金属在巢湖的鱼、虾、贝体内虽然含量极微,,但也存在一定程度的污染,只是程度较轻[13]。以上研究表明,水产品中重金属的含量和水域重金属污染存在着一定关系,可以作为重要的参考指标。开展砷形态的分析研究,可以对水产品质量进行有效保证、对养殖环境的污染进行有效控制。
目前砷形态分析大部分采用原子荧光光谱法、原子吸收光谱法、液相色谱与原子荧光光谱仪或电感耦合等离子体质谱仪联用等技术。与其它分析方法相比, 高效液相色谱-电感耦合等离子体质谱法(HPLC-ICP-MS)具有灵敏性高,分离效果好的特点[14],可以对水产品中含有较低含量的砷进行形态分析。前处理方法是分析方法的关键,相关文献多采用低浓度酸[15-19]、甲醇-水[20-22]、甲醇-氯仿[23]等体系来提取目标物,但针对水产品中砷形态的提取报道较少,原因可能是水产品中的砷形态会随着提取方式的不同而发生改变。
本实验选择了几种方法进行了对比和优化,建立了一种在超声辅助提取下对水产品中砷形态的分析方法。本文利用建立的砷形态分析方法,重点对长江和巢湖水域4种代表性水产品(草鱼、河虾、河蟹、鮰鱼)中的砷形态进行测定,分析了砷在两大水域的淡水养殖水产品中残留状况,对指导水产品生产和食用安全以及风险评估提供了参考依据。
皖中典型水域水产品中砷形态分析及食用安全性评价
Arsenic speciation analysis and edible safety evaluation of aquatic products in typical waters of Central Anhui
-
摘要: 本文建立了针对水产品中砷元素的不同形态分析的高效液相色谱-电感耦合等离子体质谱法。前处理方法采用乙酸-水(1∶19,V/V)作为水产品中砷元素形态分析的提取试剂,15 mmol·L−1 NH4H2PO4作为流动相。5种砷形态化合物在2.5—200 µg·L−1范围内线性良好,相关系数(r)均在0.999以上。水产品中5种砷形态的检出限为0.020—0.045 mg·kg−1,加标回收率为78.0%—104.0%,相对标准偏差低于10%。将该方法用于检测皖中典型水域(长江和巢湖水域)水产品(草鱼、河虾、河蟹、鮰鱼)中砷形态化合物,结果显示,受检水产品以毒性较低的砷甜菜碱(AsB)形式为主,河虾和河蟹检出了高风险的无机砷,最高为0.151 mg·kg−1,鱼类未检出无机砷成分。春季的水产品砷含量略高于其他季节,长江水域的河虾和河蟹中无机砷略高于巢湖水域。安全性评价结果表明砷污染对于长江、巢湖水域河虾、河蟹食用风险性贡献很小。Abstract: A high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method for the analysis of arsenic species in aquatic products was established. The pretreatment method used acetic acid-water (1∶19, V/V) as the extraction reagent for the speciation analysis of arsenic in aquatic products, and 15 mmol·L−1 NH4H2PO4 as the mobile phase. The linear range of the five arsenic compounds was in the range of 2.5—200 µg·L−1 (r≥0.999). The detection limit of five arsenic forms in aquatic products was 0.020—0.045 mg·kg−1, the recovery rate was 78.0% —104.0%, and the relative standard deviation was less than 10%. The method was applied to the determination of arsenic compounds in aquatic products (grass carp, shrimp, crab and catfish) from typical waters (Yangtze River and Chaohu Lake) in central Anhui Province. The results showed that the detection rate and concentration range of arsenic in the samples were at a low level. High risk inorganic arsenic was detected in shrimps and crabs, with a maximum of 0.151 mg·kg−1. Inorganic arsenic was not detected in fish. The arsenic content of aquatic products in spring was slightly higher than that in other seasons, and the inorganic arsenic content of shrimp and crab in Yangtze River waters was slightly higher than that in Chaohu Lake waters. The results of safety assessment showed that arsenic pollution had little contribution to the risk of shrimp and crab in the Yangtze River and Chaohu Lake.
-
Key words:
- aquatic products /
- arsenic /
- speciation analysis /
- the Yangtze River /
- Chaohu Lake
-
表 1 水产品基本信息
Table 1. Basic information of aquatic products
地区Area 生物种类Biological species 数量Quantity 体长/cm Body length 体重/g Body weight 脂肪含量/% Fat content 长江The Yangtze Rver 草鱼Grass carp 9 17±0.42 682±35 9.05 河虾Shrimp 120 8.2±0.71 10±1.93 3.57 河蟹River crab 15 6.2±0.53 215±1.8 3.51 鮰鱼Longsnout catfish 9 23±1.2 1207±1.9 4.70 巢湖Chaohu Lake 草鱼Grass carp 9 16±0.61 629±17 8.14 河虾Shrimp 120 9.2±0.51 12±0.49 3.70 河蟹River crab 15 5.67±0.42 198±2.4 3.40 鮰鱼Longsnout catfish 9 20±0.83 1092±2.4 4.58 表 2 检出限、线性范围实验结果
Table 2. The instrument relative standard deviation of the experimental results
化合物
Compound线性范围/(µg·L−1)
Linear range线性方程
Linear equation相关系数(r) RSD/% LOD/(mg·kg−1) As(Ⅲ) 2.5—200 y=12763ρ−413 0.9995 0.65 0.020 As(Ⅴ) 2.5—200 y=6289ρ−2532 0.9997 0.41 0.040 AsB 2.5—200 y=6843ρ−3774 0.9999 0.63 0.045 MMA 2.5—200 y=6574ρ+2036 0.9995 0.53 0.035 DMA 2.5—200 y=11574ρ+1036 0.9994 0.37 0.030 表 3 鱼、蟹样品中五种形态砷的加标回收结果(n=6)
Table 3. Recovery data of five arsenic speciations from spiked fish(n=6)
砷化合物
Arsenic compounds添加水平/(µg·L−1)
Add level)回收率范围/%
Recovery rangeRSD/% As(Ⅲ) 2.5 88.5%—103.0% 9.97% 10.0 87.0%—99.7% 9.42% 50.0 81.0%—97.4% 5.11% As(Ⅴ) 2.5 78.5%—89.9% 9.21% 10.0 79.0%—93.2% 5.33% 50.0 78.0%—99.5% 3.59% AsB 2.5 82.0%—92.2% 3.27% 10.0 78.0%—89.3% 7.69% 50.0 82.5%—94.2% 7.39% MMA 2.5 86.0%—104.0% 5.66% 10.0 84.2%—100.2% 5.73% 50.0 80.0%—97.2% 4.52% DMA 2.5 81.0%—96.0% 3.95% 10.0 80.4%—98.4% 4.09% 50.0 78.4%—92.6% 5.68% 表 4 不同水产品中5种砷形态化合物检测结果(n=6)
Table 4. The results of four arsenic species in different aquatic products(n=6)
水域/Waters 样品/Sample As(Ⅲ)/(mg·kg−1) As(Ⅴ)/(mg·kg−1) AsB/(mg·kg−1) MMA/(mg·kg−1) DMA/(mg·kg−1) 长江(3月)The Yangtze River 草鱼Grass carp ND ND ND—0.301 ND ND 河虾Shrimp ND ND—0.151 ND—2.830 ND—0.0805 ND—0.0532 河蟹River crab ND ND ND—1.192 ND—0.0426 ND 鮰鱼Longsnout catfish ND ND ND—0.642 ND—0.0371 ND 长江(7月)The Yangtze River 草鱼Grass carp ND ND ND—0.240 ND ND 河虾Shrimp ND ND—0.0490 ND—1.293 ND—0.0362 ND—0.0357 河蟹River crab ND ND ND—0.977 ND—0.0751 ND—0.0326 鮰鱼Longsnout catfish ND ND ND—0.369 ND ND 长江(11月)The Yangtze River 草鱼Grass carp ND ND ND—1.383 ND ND 河虾Shrimp ND ND ND—1.606 ND—0.0381 ND—0.0353 河蟹River crab ND ND—0.0570 ND—0.560 ND—0.0410 ND—0.0376 鮰鱼Longsnout catfish ND ND ND—0.498 ND—0.0472 ND 巢湖(3月)Chaohu Lake 草鱼Grass carp ND ND ND—0.191 ND ND 河虾Shrimp ND ND—0.0630 ND—0.630 ND—0.0810 ND—0.0357 河蟹River crab ND ND ND—1.572 ND—0.0512 ND—0.0381 鮰鱼Longsnout catfish ND ND ND—0.472 ND—0.0377 ND 巢湖(7月)Chaohu Lake 草鱼Grass carp ND ND ND—0.183 ND ND 河虾Shrimp ND ND ND—1.573 ND ND 巢湖(7月)Chaohu Lake 河蟹River crab ND ND ND—0.317 ND—0.0433 ND—0.0310 鮰鱼Longsnout catfish ND ND ND—0.257 ND ND 巢湖(11月)Chaohu Lake 草鱼Grass carp ND ND ND—0.192 ND ND 河虾Shrimp ND ND ND—0.497 ND—0.0468 ND 河蟹River crab ND ND ND—0.351 ND ND 鮰鱼Longsnout catfish ND ND ND—0.249 ND—0.0495 ND—0.0380 ND.未检出. ND. not detected. 表 5 长江和巢湖水域虾、蟹可食部分无机砷含量
Table 5. Inorganic arsenic content in shrimp and crab edible parts of the Yangtze River and Chaohu Lakes in March
水域 Waters 样品 Sample 平均值/(mg·kg−1)Mean 长江The Yangtze River 河虾Shrimp 0.0778±0.019 河蟹River crab 0.0897±0.013 巢湖Chaohu Lake 河虾Shrimp 0.0643±0.028 河蟹River crab 0.0694±0.009 表 6 长江和巢湖水域虾、蟹无机砷的污染指数
Table 6. The general composite pollution indexes of inorganic arsenic in shrimp and crab edible parts of the Yangtze River and Chaohu Lakes
水域Waters 样品 Sample 污染指数 Pollution index 长江The Yangtze River 河虾Shrimp 0.16 河蟹River crab 0.18 巢湖Chaohu lake 河虾Shrimp 0.13 河蟹River crab 0.14 表 7 平均每人每周实际重金属摄入量
Table 7. Estimated per capita weekly intakes of heavy metals from shellfish consumption
水域/
Waters样品/
SamplePTWI1/
(mg·kg−1)PTWI2/
mg可食部分重金属平均含量/(mg·kg−1)
Average content of heavy metals
in edible part每周实际摄入量/mg
Actual weekly intake重金属含量占
PTWI2比例/%长江
The Yangtze River河虾Shrimp 0.015 0.9 0.078 0.0316 3.51 河蟹River crab 0.015 0.9 0.090 0.0361 4.01 巢湖
Chaohu Lake河虾Shrimp 0.015 0.9 0.064 0.0257 2.86 河蟹River crab 0.015 0.9 0.069 0.0276 3.07 注:PTWI1.暂定每周可耐受摄入量(mg·kg−1体质量);PTWI2.按照成人体质量为60 kg计算得出的暂定每周可耐受摄入量(mg).
Note: PTWI1. Tentative weekly tolerable intake (mg·kg−1 body mass); PTWI2. Tentative weekly tolerable intake (mg) calculated according to adult body mass of 60 kg. -
[1] KUO C C, MOON K A, WANG S L, et al. The association of arsenic metabolism with cancer, cardiovascular disease and diabetes:A systematic review of the epidemiological evidence environmental health perspectives [J]. Environmental Health Perspectives, 2017, 125(8): 087001. doi: 10.1289/EHP577 [2] 和庆, 彭自然, 张晨, 等. 长三角地区池塘养殖水产品重金属含量及其健康风险评价 [J]. 农业环境科学学报, 2017, 36(6): 1070-1077. doi: 10.11654/jaes.2016-1594 HE Q, PENG Z R, ZHANG C, et al. Heavy metal content and health risk assessment of aquaculture products in the Yangtze River Delta [J]. Journal of Agricultural Environmental Science, 2017, 36(6): 1070-1077(in Chinese). doi: 10.11654/jaes.2016-1594
[3] 严国, 梅光明, 常家琪, 等. 电感耦合等离子体质谱法分析海蟹中的砷元素分布特征 [J]. 食品科学, 2019, 40(12): 332-339. doi: 10.7506/spkx1002-6630-20180424-315 YAN G, MEI G M, CHANG J Q, et al. Analysis of arsenic distribution in sea crab by inductively coupled plasma mass spectrometry [J]. Food Science, 2019, 40(12): 332-339(in Chinese). doi: 10.7506/spkx1002-6630-20180424-315
[4] KALANTZI I, MYLONA K, SOFOULAKI K, et al. Arsenic speciation in fish from Greek coastal areas [J]. Journal of Environmental Sciences, 2017, 56: 300-312. doi: 10.1016/j.jes.2017.03.033 [5] JIA Y, WANG L, MA L, et al. Speciation analysis of six arsenic species in marketed shellfish: Extraction optimization and health risk assessment [J]. Food Chemistry, 2018, 244: 311-316. doi: 10.1016/j.foodchem.2017.10.064 [6] 胥佳佳, 冯鑫, 汤静, 等. 超声辅助提取-高相液相色谱-电感耦合等离子体质谱法测定香菇中6种形态砷化合物 [J]. 食品学, 2016, 37(24): 216-221. XU J J, FENG X, TANG J, et al. Determination of 6 arsenic compounds in letinous edodes by HPLC-ICP-MS with ultrasonic assisted extraction [J]. Food Science, 2016, 37(24): 216-221(in Chinese).
[7] 陈保卫, CHRIS L X. 中国关于砷的研究进展 [J]. 环境化学, 2011, 30(11): 1936-1943. CHEN B W, CHRIS L X. Research progress of arsenic in China [J]. Environmental Chemistry, 2011, 30(11): 1936-1943(in Chinese).
[8] 王松, 崔鹤, 王境堂, 等. 南极磷虾油中总砷含量及砷形态分析 [J]. 分析化学, 2016, 44(5): 767-772. doi: 10.11895/j.issn.0253-3820.150942 WANG S, CUI H, WANG J T, et al. Analysis of total arsenic content and arsenic speciation in Antarctic prawn oil [J]. Analytical chemistry, 2016, 44(5): 767-772(in Chinese). doi: 10.11895/j.issn.0253-3820.150942
[9] SUN M, LIU G, WU Q, et al. Speciation analysis of inorganic arsenic in coal samples by microwave-assisted extraction and high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry [J]. Talanta, 2013, 106: 8-13. doi: 10.1016/j.talanta.2012.12.012 [10] 周秀清. 水产品中砷和汞形态的测定方法及其应用研究[D]. 广州: 华南理工大学, 2014. ZHOU X Q. Determination method and application of arsenic and mercury in aquatic products[D]. Guangzhou: South China University of Technology, 2014(in Chinese).
[11] 高芮, 唐晓先, 蒋晨韵. 引江济巢对巢湖水质及蓝藻水华的影响分析 [J]. 水资源开发与管理, 2018, 36(6): 54-57. GAO R, TANG X X, JIANG C Y. Analysis of the impact of introducing Changjiang River water into Chaohu Lake on the water quality and cyanobacteria bloom of Chaohu Lake [J]. Water resources development and management, 2018, 36(6): 54-57(in Chinese).
[12] 沈黎, 陈晓园, 路磊, 等. 液相色谱-原子荧光光谱联用检测小龙虾和鱼中不同形态砷的研究 [J]. 绿色科技, 2013, 12(11): 160-162. doi: 10.3969/j.issn.1674-9944.2013.11.063 SHEN L, CHEN X Y, LV L, et al. Determination of arsenic in crawfish and fish by liquid chromatography-atomic fluorescence spectrometry [J]. Green Technology, 2013, 12(11): 160-162(in Chinese). doi: 10.3969/j.issn.1674-9944.2013.11.063
[13] 鲍方印, 肖月阳, 肖明松, 等. 巢湖水产品体内重金属含量测定与评价 [J]. 现代农业科技, 2016, 37(8): 263-264, 266. doi: 10.3969/j.issn.1007-5739.2016.08.152 BAO F Y, XIAO Y Y, XIAO M S, et al. Determination and evaluation of heavy metals in aquatic products of Chaohu Lake [J]. Modern Agricultural Science and Technology, 2016, 37(8): 263-264, 266(in Chinese). doi: 10.3969/j.issn.1007-5739.2016.08.152
[14] LAI G X, CHEN G Y, CHEN T W. Speciation of As (Ⅲ) and As (Ⅴ) in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry [J]. Food Chemistry, 2016, 190(5): 158-163. [15] 吕超, 刘丽萍, 董慧茹, 等. 高效液相色谱-电感耦合等离子体质谱联用技术测定水产膳食中5种砷形态的方法研究 [J]. 分析测试学报, 2010, 29(5): 465-468. doi: 10.3969/j.issn.1004-4957.2010.05.008 LV C, LIU L P, DONG H R, et al. A study on the determination of five arsenic forms in aquatic diet by HPLC-ICP-MS [J]. Journal of Analysis and Test, 2010, 29(5): 465-468(in Chinese). doi: 10.3969/j.issn.1004-4957.2010.05.008
[16] 王庚, 荆淼, 曹煊, 等. 高效液相色谱-电感耦合等离子体质谱测定蟾酥中铜、砷、镉、汞、铅含量及砷化学形态 [J]. 分析化学, 2008, 36(9): 1182-1186. doi: 10.3321/j.issn:0253-3820.2008.09.006 WANG G, JIN M, CAO X, et al. Determination of copper, arsenic, cadmium, mercury and lead in toadfish by HPLC-ICP-MS and their chemical forms [J]. Analytical Chemistry, 2008, 36(9): 1182-1186(in Chinese). doi: 10.3321/j.issn:0253-3820.2008.09.006
[17] THOMAS P, FINNIE J K, WILLIAMS J G. Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled high-performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. Anal. AtSpectrom, 1997, 12: 1367-1372. doi: 10.1039/a704149g [18] DEMESMAY C, OLLE M. Application of microwave digestion to the preparation of sediment samples for arsenic speciation [J]. Fresenius' Journal of Analytical Chemistry, 1997, 357: 1116-1121. doi: 10.1007/s002160050316 [19] 唐增煦, 薛颖, 张勐, 等. 树脂分离-氢化物发生-原子荧光光谱法测定食品中无机砷、一甲基砷和二甲基砷 [J]. 分析试验室, 2007, 26(9): 106-109. doi: 10.3969/j.issn.1000-0720.2007.09.028 TANG Z X, XUE X, ZHANG M, et al. Determination of inorganic arsenic, monomethylarsenic and dimethylarsenic in food by resin separation hydride generation-atomic fluorescence spectrometry [J]. Analytical Laboratory, 2007, 26(9): 106-109(in Chinese). doi: 10.3969/j.issn.1000-0720.2007.09.028
[20] ARIZA J L G, RODAS D S, GIRALDEZ I, et al. Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS [J]. Analyst, 2000(125): 401-407. [21] ALBERTI J, RUBIO R, RAURET G. Extraction method for arsenic speciation in marine organisms [J]. Anal Chem, 1995(351): 415-419. [22] BRANCH S, EBDON L, NEILL O, et al. Determination of arsenic species in fish by directly coupled high-performance liquid chromatography-inductively coupled plasma mass spectrometry [J]. J Anal AtSpectrom, 1994(9): 33-37. [23] 国家卫生和计划生育委员会. 水产品抽样规范: GB/T 30891-2014[S]. 北京: 中国标准出版社, 2014(in Chinese). National Health and Family Planning Commission. Standards for sampling of aquatic products: GB/ T 30891-2014[S]. Beijing: China Standard Press, 2014(in Chinese).
[24] 熊文明, 冯敏玲, 周秀清, 等. 珠江三角洲典型地区水产品中砷形态调查 [J]. 现代农业科技, 2013(13): 278-284. doi: 10.3969/j.issn.1007-5739.2013.13.184 XIONG W M, FEN M L, ZHOU X Q, et al. A survey of arsenic forms in aquatic products in typical areas of the Pearl River Delta [J]. Modern Agricultural Science and Technology, 2013(13): 278-284(in Chinese). doi: 10.3969/j.issn.1007-5739.2013.13.184
[25] GB/T 5009.11—2003 食品中总砷及无机砷的测定方法[S]. 北京: 中国标准出版社, 2003. GB/ T 5009.11—2003 Determination of total arsenic and inorganic arsenic in foods[S]. Beijing: China Standard Press, 2003(in Chinese).
[26] 张晓文, 邵柳逸, 连宾. 4种太湖水产品体内重金属富集特征及食用安全性评价 [J]. 食品科学, 2018, 39(2): 310-314. doi: 10.7506/spkx1002-6630-201802049 ZHANG X W, SHAO L Y, LIAN B. Enrichment characteristics of heavy metals in four kinds of Taihu aquatic products and edible safety evaluation [J]. Food Science, 2018, 39(2): 310-314(in Chinese). doi: 10.7506/spkx1002-6630-201802049
[27] 卫生部. 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017: 2-4. Ministry of Health. Limits of contaminants in food: GB 2762—2017[S]. Beijing: China Standard Press, 2017: 2-4(in Chinese).
[28] WANG S S, LAY S, YU H N, et al. Dietary guidelines for Chinese residents(2016): Comments and comparisons [J]. Journal of Zhejiang University-Science B: Biomedicine & Biotechnology, 2016, 17(9): 649-656. [29] 王艳, 施波, 苟体忠. 三板溪水库鱼体中的汞分布特征研究 [J]. 广东化工, 2017, 44(3): 41-42. doi: 10.3969/j.issn.1007-1865.2017.03.018 WANG Y, SHI B, GOU T Z. Distribution characteristics of mercury in fish of Sanbanxi reservoir [J]. Guangdong chemical industry, 2017, 44(3): 41-42(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.03.018
[30] SIGNES-PASTOR A J, CAREY M, MEHARG A A. Inorganic arsenic in rice-based products for infants and young children [J]. Food Chemistry, 2016, 191(3): 128-134. [31] 陆奕娜, 陈建伟, 张林田, 等. 高效液相色谱-电感耦合等离子体质谱同时测定虾类中6种砷形态 [J]. 分析科学学报, 2016, 32(1): 141-144. LU Y N, CHEN J W, ZHANG L T, et al. Simultaneous determination of six arsenic species in shrimps by HPLC-ICP-MS [J]. Journal of Analytical Science, 2016, 32(1): 141-144(in Chinese).
[32] 王素芬, 陈芳, 王鹏, 等. HPLC-HG-AFS联用技术检测蜂花粉中砷形态 [J]. 食品科学, 2013, 34(12): 189-193. WANG S F, CHEN F, WANG P, et al. Determination of arsenic in bee pollen by HPLC-HG-AFS [J]. Food Science, 2013, 34(12): 189-193(in Chinese).
[33] 汤施展, 陈中祥, 黄晓丽, 等. 水产品中砷形态分析研究进展 [J]. 水产学杂志, 2019, 32(2): 55-60. TANG S Z, CHEN Z X, HUANG X L. et al Progress in speciation analysis of arsenic in aquatic products [J]. Journal of Aquaculture, 2019, 32(2): 55-60(in Chinese).
[34] 谢文平, 朱新平, 马丽莎, 等. 珠江三角洲4种淡水养殖鱼类重金属的残留及食用风险评价 [J]. 生态毒理学报, 2017, 12(5): 294-303. doi: 10.7524/AJE.1673-5897.20170105001 XIE W P, ZHU X P, MA L S, et al. Heavy metal residues and food risk assessment of four freshwater cultured fishes in the Pearl River Delta [J]. Journal of Ecotoxicology, 2017, 12(5): 294-303(in Chinese). doi: 10.7524/AJE.1673-5897.20170105001