-
过氧乙酰硝酸酯(peroxyacetyl nitrate, PAN)是对流层大气中重要的活性有机含氮化合物,由挥发性有机物(VOCs)和氮氧化物(NOx)光化学反应产生[1],在大气化学过程中发挥着重要作用. PAN不存在天然源,比臭氧更适合作为光化学污染的指示剂[2]. PAN不溶于水、不易光解,但具有热不稳定性质[3-4]. PAN易热解释放氮氧化物(PAN的大气寿命在25 ℃时仅为30 min),是对流层中氮氧化物的重要储库;在低温条件下(PAN的大气寿命在−10 ℃时长达10 d)可远距离传输至偏远背景地区,成为当地大气中氮氧化物的重要来源[5-6],进而影响区域大气氧化性. 此外,PAN还具有显著的环境毒性,可毒害植物、刺激人眼、诱发突变等[7-8]. 鉴于PAN的重要大气化学影响和显著环境健康效应,其相关研究已经成为当前大气化学研究的热点之一.
对流层大气中PAN的体积分数通常处于10−9及以下水平,加之其极易热解,PAN的准确测量已成为当前研究中的难点. 大气中PAN的分析方法[9-14]已有较多报道,其中气相色谱-电子捕获检测法(GC-ECD)具有灵敏度高、抗干扰性强、设备成本低以及运输维修简便等特点,已成为当前国际上使用最广泛的分析方法. 目前基于GC-ECD的PAN分析方法必须通过标准物质的校准才能够进行准确定量. PAN极易热解的性质使其不易长期稳定保存,因此目前国内外仍无法提供稳定的商业化PAN标准物质. 当前PAN的标准物质主要通过湿法制备法[15]和光化学制备法[16-19]合成,而标准气体只能通过现场制备方式获得. 前者首先利用硝酸与过氧乙酸在液态烃中合成纯净PAN,随后通过气化及稀释制备出标准气体. 此种方法操作复杂繁琐、试剂消耗量大、花费时间较长,不适用于PAN的分析仪器外场标定. 后者主要利用丙酮光解与NOx反应合成PAN,操作简单且重复性好,容易在现场稳定制备PAN的标准气体[20],已在PAN分析仪标定中得到广泛应用. 该方法通常采用高浓度NOx与高浓度丙酮进行反应,随后对合成的高浓度PAN进行定量稀释,从而获得不同浓度梯度的PAN标准气体. 该方法必须提供过量[1, 19]丙酮才能够保障NOx向PAN的高效转换,并认为丙酮及其光解产物不会对GC-ECD检测造成影响[18]. 然而,研究表明高浓度NOx与高浓度丙酮光化学反应通常需要15 min至20 min[19]才能实现NOx向PAN的高效转化,所以气体在反应器停留时间内可能会对PAN的合成造成一定影响. 此外,丙酮光解的副产物实际上会在GC-ECD分析仪上有响应,且可能会影响PAN的准确标定.
为了更全面评估光化学制备法对PAN标准气体合成以及PAN分析仪标定的影响,本研究基于丙酮光解与NOx反应合成PAN原理搭建了一套同步稀释光化学合成系统,实现了低浓度NOx与高浓度丙酮快速混合的光化学合成PAN的方法,探讨了不同紫外光源及光照强度、产物残留等因素对PAN光化学合成的影响,获得了光化学稳定合成PAN的制备条件,并将其应用到GC-ECD-PAN分析仪的外场观测标定.
过氧乙酰硝酸酯分析仪的光化学合成标定方法研究及应用
Study and application in calibration method of photochemical synthesis for peroxyacetyl nitrate analyzer
-
摘要: 搭建了一套过氧乙酰硝酸酯(PAN)同步稀释光化学合成系统,就光源及光照强度、产物残留等因素对PAN光化学合成与PAN分析仪标定的影响进行了分析与探讨. 最终选用遮挡3/4长度的312 nm紫外灯管作为系统光照条件,确保PAN的高效率合成且丙酮光解副产物对标定干扰最小. 系统内产物残留影响PAN合成的稳定性,实验前应当采用零级空气清洗反应池以降低残留的影响. 优化的同步稀释光化学合成系统可在半小时后实现PAN的连续稳定合成,不同浓度梯度PAN的合成相对标准偏差值均小于2%. 利用本套系统对北京市2019年3月大气PAN外场观测中的PAN在线分析仪进行了标定,获得观测期间北京大气中PAN体积分数范围为0.20 × 10−9—7.34 × 10−9,平均值为(1.88 × 10−9 )± (1.63 × 10−9),显著高于2011年同期平均浓度水平. 大气污染物在静稳天气条件下的累积增强了大气氧化性,促进了大气中PAN和PM2.5的生成与积累,使得春季大气PAN与PM2.5浓度呈现显著正相关.Abstract: A synchronous diluted photochemical synthesis system of peroxyacetyl nitrate (PAN) was established. The influence of ultraviolet wavelength, intensity as well as the residues of product on the photochemical synthesis of PAN and the calibration of PAN analyzer were discussed. Finally, 312 nm UV lamp with 3/4 length shielding was determined as the irradiation condition of the system, ensuring the efficient synthesis of PAN and the minimum interference of the by-product. It was found that the residual gas in the reaction vessel would affect the stability of the synthesis. Therefore, zero air should be used to clean the reaction vessel reducing the effect of the residues before the experiments. This optimized synchronous diluted photochemical synthesis system could achieve long-term stable synthesis after half an hour. The relative standard deviations of the synthesis of PAN with different concentrations were less than 2%. This system was used to the calibration of the PAN analyzer in the field observation of atmospheric PAN in March 2019 in Beijing. During the period, the concentration of PAN in the atmosphere ranged from 0.20 × 10−9 to 7.34 × 10−9, with an average value of (1.88 × 10−9 )± (1.63 × 10−9), significantly higher than the average concentration level in the same period of 2011. The accumulation of air pollutants in stagnant weather enhanced the atmospheric oxidation and promoted the formation and accumulation of PAN and PM2.5 in the atmosphere. There was a significant positive correlation between the concentration of PAN and PM2.5 in spring.
-
Key words:
- PAN /
- photochemical synthesis /
- calibration method
-
-
[1] STEPHENS E R. Chemistry of atmospheric oxidants [J]. Journal of the Air Pollution Control Association, 1969, 19(3): 181-185. doi: 10.1080/00022470.1969.10466475 [2] SINGH H B. Reactive nitrogen in the troposphere [J]. Environmental Science & Technology, 1987, 21(4): 320-327. [3] GAFFNEY J S, MARLEY N A, PRESTBO E W. Peroxyacetyl nitrates (PANs): their physical and chemical properties[M]. Berlin: Springer-Verlag, 1989. [4] ROBERTS J M, BERTMAN S B. The thermal decomposition of peroxyacetic nitric anhydride (PAN) and peroxymethacrylic nitric anhydride (MPAN) [J]. International Journal of Chemical Kinetics, 1992, 24(3): 297-307. doi: 10.1002/kin.550240307 [5] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. New York: Wiley, 1998. [6] 杨光, 张剑波, 王斌. 2006年夏季北京大气中PAN与PPN浓度变化和相关性分析 [J]. 北京大学学报(自然科学版), 2009, 45(1): 144-150. YANG G, ZHANG J B, WANG B. Analysis on correlation and concentration variation of atmospheric PAN and PPN in Beijing [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 144-150(in Chinese).
[7] STEPHENS E R, PRICE M A. Analysis of an important air pollutant: peroxyacetyl nitrate [J]. Journal of Chemical Education, 1973, 50(5): 351-354. doi: 10.1021/ed050p351 [8] VYSKOCIL A, VIAU C, LAMY S. Peroxyacetyl nitrate: review of toxicity [J]. Human & Experimental Toxicology, 1998, 17(4): 212-220. [9] MULLER K P, RUDOLPH J. An automated technique for the measurement of peroxyacetyl nitrate in ambient air at PPB and PPT levels [J]. International Journal of Environmental Analytical Chemistry, 1989, 37(4): 253-262. doi: 10.1080/03067318908026902 [10] SCHRIMPF W, MULLER K P, JOHNEN F J, et al. An optimized method for airborne peroxyacetyl nitrate (PAN) measurements [J]. Journal of Atmospheric Chemistry, 1995, 22(3): 303-317. doi: 10.1007/BF00696640 [11] TANIMOTO H, HIROKAWA J, KAJII Y, et al. A new measurement technique of peroxyacetyl nitrate at parts per trillion by volume levels: gas chromatography/negative ion chemical ionization mass spectrometry [J]. Journal of Geophysical Research Atmospheres, 1999, 104(D17): 21343-21354. doi: 10.1029/1999JD900345 [12] HANSEL A, WISTHALER A. A method for real-time detection of PAN, PPN and MPAN in ambient air [J]. Geophysical Research Letters, 2000, 27(6): 895-898. doi: 10.1029/1999GL010989 [13] WANG X F, WANG T, XUE L K, et al. Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations [J]. Frontiers of Environmental Science & Engineering, 2017, 11(4): 3. [14] HASTIE D R, GRAY J, LANGFORD V S, et al. Real-time measurement of peroxyacetyl nitrate using selected ion flow tube mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2010, 24(3): 343-348. doi: 10.1002/rcm.4400 [15] NIELSEN T, HANSEN A M, THOMSEN E L. A convenient method for preparation of pure standards of peroxyacetyl nitrate for atmospheric analyses [J]. Atmospheric Environment, 1982, 16(10): 2447-2450. doi: 10.1016/0004-6981(82)90134-2 [16] STEPHENS E R, BURLESON F R, CARDIFF E A. The production of pure peroxyacetyl nitrates [J]. Journal of the Air Pollution Control Association, 1965, 15(3): 87-89. doi: 10.1080/00022470.1965.10468346 [17] GAY B W, NOONAN R C, BUFALINI J J, et al. Photochemical synthesis of peroxyacetyl nitrates in gas phase via chlorine-aldehyde reaction [J]. Environmental Science & Technology, 1976, 10(1): 82-85. [18] MEYRAHN H, HELAS G, WARNECK P. Gas chromatographic determination of peroxyacetyl nitrate: two convenient calibration techniques [J]. Journal of Atmospheric Chemistry, 1987, 5(4): 405-415. doi: 10.1007/BF00113903 [19] WARNECK P, ZERBACH T. Synthesis of peroxyacetyl nitrate in air by acetone photolysis [J]. Environmental Science & Technology, 1992, 26(1): 74-79. [20] RIDER N D, TAHA Y M, ODAME-ANKRACH C A, et al. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes [J]. Atmospheric Measurement Techniques, 2015, 8: 2737-2748. doi: 10.5194/amt-8-2737-2015 [21] ZHANG L, JAFFE D A, GAO X, et al. A quantification method for peroxyacetyl nitrate (PAN) using gas chromatography (GC) with a non-radioactive pulsed discharge detector (PDD) [J]. Atmospheric Environment, 2018, 179: 23-30. doi: 10.1016/j.atmosenv.2018.02.008 [22] MEYRAHN H, PAULY J, SCHNEIDER W, et al. Quantum yields for the photodissociation of acetone in air and an estimate for the life time of acetone in the lower troposphere [J]. Journal of Atmospheric Chemistry, 1986, 4(2): 277-291. doi: 10.1007/BF00052006 [23] 陈志强, 黄伟, 华道柱, 等. 大气PAN在线分析系统的研制 [J]. 现代科学仪器, 2016, 5: 33-37. CHEN Z Q, HUANG W, HUA D Z, et al. Development of on-line analytic system of atmospheric peroxyacetyl nitrate [J]. Modern Scientific Instruments, 2016, 5: 33-37(in Chinese).
[24] FISCHER E V, JAFFE D A, REIDMILLER D R, et al. Meteorological controls on observed peroxyacetyl nitrate at Mount Bachelor during the spring of 2008 [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D3): D03302. [25] ZHANG G, MU Y J, ZHOU L X, et al. Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing: understanding the sources and major sink of PAN [J]. Atmospheric Environment, 2015, 103: 289-296. doi: 10.1016/j.atmosenv.2014.12.035 [26] 张根. 大气过氧乙酰基硝酸酯(PAN)自动化分析仪的研制与外场观测[D]. 北京: 中国科学院大学, 2013. ZHANG G. The development of automatic analyzer for atmospheric peroxyacetyl nitrate (PAN) and field measurements[D]. Beijing: Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, 2013 (in Chinese).
[27] ZHANG H L, XU X B, LIN W L, et al. Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing:Role of photochemical and meteorological processes [J]. Journal of Environmental Sciences, 2014, 26: 83-96. doi: 10.1016/S1001-0742(13)60384-8 [28] 马志强, 王跃思, 孙扬, 等. 北京市与香河县大气臭氧及氮氧化合物的变化特征 [J]. 环境化学, 2007, 26(6): 832-837. doi: 10.3321/j.issn:0254-6108.2007.06.024 MA Z Q, WANG Y S, SUN Y, et al. Characteristics of ozone and oxides of nitrogen in Beijing and Xianghe [J]. Environmental Chemistry, 2007, 26(6): 832-837(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.06.024
[29] 张华龙. 华北地区与青藏高原过氧乙酰硝酸酯(PAN)的观测研究[D]. 北京: 中国气象科学研究院, 2013. ZHANG H L. Measurement and analysis of peroxyacetyl nitrate (PAN) in the North China region and the Tibetan Plateau[D]. Beijing: Chinese Academy of Meteorological Sciences, 2013 (in Chinese).
[30] LIU C T, MA Z B, Mu Y J, et al. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China [J]. Atmospheric Chemistry and Physics, 2017, 17: 10633-10649. doi: 10.5194/acp-17-10633-2017