单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响

何艳华, 张全喜, 郭东罡. 单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响[J]. 生态毒理学报, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
引用本文: 何艳华, 张全喜, 郭东罡. 单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响[J]. 生态毒理学报, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
HE Yanhua, ZHANG Quanxi, GUO Donggang. Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress[J]. Asian journal of ecotoxicology, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
Citation: HE Yanhua, ZHANG Quanxi, GUO Donggang. Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress[J]. Asian journal of ecotoxicology, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001

单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响

    作者简介: 何艳华(1986—),女,博士,副教授,硕士生导师,研究方向为生态毒理学,E-mail:sxheyanhua@126.com
    通讯作者: 张全喜(1980-),男,博士,教授,博士生导师,主要研究方向为生态环境毒理学。E-mail:qxzhang@sxu.edu.cn;  郭东罡(1980—),男,博士,教授,博士生导师,主要研究方向为生态恢复与治理。E-mail:gdghjkx@126.com
  • 基金项目:

    山西省基础研究计划青年科学研究项目(202203021212390)

  • 中图分类号: X171.5

Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress

    Corresponding authors: ZHANG Quanxi ;  GUO Donggang
  • Fund Project:
  • 摘要: 为探讨羧基化单壁碳纳米管(SWCNTs-COOH)的生物效应,本研究选用“品育8012”小麦为实验材料,采用水培的方式研究不同浓度SWCNTs-COOH(0、5、10、30、50、70和90 mg·L-1)对低钾(K+,0.01 mmol·L-1)胁迫下小麦幼苗生长发育的影响。结果表明:5~50 mg·L-1的SWCNTs-COOH对小麦幼苗的生长指标(株高、根系、叶面积、鲜质量、干质量)、光合作用指标(细胞色素含量、叶绿素荧光参数)、抗氧化酶(SOD、POD)活性均存在一定的促进作用,其中50 mg·L-1浓度时促进效果最明显;当SWCNTs-COOH的浓度达到70 mg·L-1及以上时小麦幼苗的生长指标、光合作用指标、SOD活性、POD活性逐渐降低,丙二醛(MDA)含量明显上升,即高浓度的SWCNTs-COOH加重了低钾胁迫下小麦幼苗的毒理学效应。综上,SWCNTs-COOH对低钾胁迫下小麦幼苗生长发育的影响存在明显的浓度效应,低浓度的SWCNTs-COOH可以缓解低钾胁迫对小麦幼苗造成的部分损伤,高浓度的SWCNTs-COOH会对小麦幼苗产生一定的生理毒性。
  • 加载中
  • Zörb C, Senbayram M, Peiter E. Potassium in agriculture—Status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9): 656-669
    Johnson R, Vishwakarma K, Hossen M S, et al. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance[J]. Plant Physiology and Biochemistry, 2022, 172: 56-69
    Chen B C, Wang P J, Ho P C, et al. Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots[J]. Ecotoxicology, 2017, 26(7): 942-955
    王栋, 冯明伟, 李慧英. 中国钾盐资源发展现状及建议[J]. 中国矿业, 2017, 26(S2): 5-9
    熊明彪, 雷孝章, 田应兵, 等. 钾离子在土壤中吸附和解吸动力学研究进展[J]. 生态环境, 2003, 12(1): 115-118

    Xiong M B, Lei X Z, Tian Y B, et al. Research progress of K+ adsorbing-desorbing kinetics in soils[J]. Ecology and Environment, 2003, 12(1): 115-118(in Chinese)

    李晓云, 赵勇, 王杰, 等. 不同小麦品系耐低钾性的综合评价[J]. 麦类作物学报, 2014, 34(6): 842-846

    Li X Y, Zhao Y, Wang J, et al. Comprehensive evaluation of resistance to low potassium in different wheat varieties[J]. Journal of Triticeae Crops, 2014, 34(6): 842-846(in Chinese)

    冯宇希, 徐明, 阚杰元, 等. 植物毒理学文献计量分析及其研究思路与方法评论[J]. 生态毒理学报, 2023, 18(3): 213-222

    Feng Y X, Xu M, Kan J Y, et al. Bibliometric analysis and review of ideas and methodology in phytotoxicology[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 213-222(in Chinese)

    Srilatha B. Nanotechnology in agriculture[J]. Journal of Nanomedicine & Nanotechnology, 2011, 2(7): 1-5
    Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant[J]. Applied Nanoscience, 2015, 5(5): 609-616
    Bhati A, Gunture, Tripathi K M, et al. Exploration of nano carbons in relevance to plant systems[J]. New Journal of Chemistry, 2018, 42(20): 16411-16427
    郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11(5): 94-102

    Guo M, Gong J L, Zeng G M. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(5): 94-102(in Chinese)

    章军, 杨军, 朱心强. 纳米材料的环境和生态毒理学研究进展[J]. 生态毒理学报, 2006, 1(4): 350-356

    Zhang J, Yang J, Zhu X Q. The advancement of environmental and ecotoxicological research of nanomaterials[J]. Asian Journal of Ecotoxicology, 2006, 1(4): 350-356(in Chinese)

    Cañas J E, Long M, Nations S, et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1922-1931
    吴康, 苏安琪, 田雪娇, 等. 叶面喷施羧基化碳纳米管对平邑甜茶幼苗生长及抗氧化系统的影响[J]. 山东农业科学, 2023, 55(9): 121-127

    Wu K, Su A Q, Tian X J, et al. Effects of foliar application of carboxylated carbon nanotubes on growth and antioxidant system of Malus hupehensis[J]. Shandong Agricultural Sciences, 2023, 55(9): 121-127(in Chinese)

    Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009, 43(24): 9473-9479
    袁刚强, 龚继来, 曾光明. 单壁碳纳米管材料对水稻幼苗的毒性效应[J]. 环境科学学报, 2015, 35(12): 4143-4149

    Yuan G Q, Gong J L, Zeng G M. Phytotoxicity of single-walled carbon nanotubes to rice seedling (Oryza sativa L.)[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4143-4149(in Chinese)

    Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12): 3907-3919
    Shen C X, Zhang Q F, Li J, et al. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes[J]. American Journal of Botany, 2010, 97(10): 1602-1609
    李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016: 50-213
    王慧敏, 陈莉荣, 任文杰, 等. 单壁碳纳米管对紫花苜蓿根际土壤中PAHs降解及微生物群落的影响[J]. 农业环境科学学报, 2021, 40(12): 2647-2659

    Wang H M, Chen L R, Ren W J, et al. Effects of single-walled carbon nanotubes on degradation of polycyclic aromatic hydrocarbons and microbial community in rhizosphere soil of Medicago sativa[J]. Journal of Agro-Environment Science, 2021, 40(12): 2647-2659(in Chinese)

    刘晓红, 郭波红, 许丹翘, 等. 冬凌草甲素-单壁碳纳米管载药体系的制备及其吸附动力学[J]. 医药导报, 2017, 36(10): 1170-1174

    Liu X H, Guo B H, Xu D Q, et al. Preparation of oridonin-single-walled carbon nanotubes and study on its adsorption kinetics[J]. Herald of Medicine, 2017, 36(10): 1170-1174(in Chinese)

    李鸽子, 刘金, 张丹丹, 等. TaHIPP32通过调控TaHAK1表达参与小麦缺钾胁迫耐性研究[J]. 麦类作物学报, 2023, 43(2): 1-11
    张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924

    Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924(in Chinese)

    杜琪, 赵跃, 周东英, 等. 低钾胁迫下不同耐低钾玉米品种(系)开花后根系生长和结构的变化[J]. 植物营养与肥料学报, 2021, 27(2): 301-311

    Du Q, Zhao Y, Zhou D Y, et al. Response of root growth and structure of different potassium sensitive maize cultivars (lines) to low potassium stress after flowering stage[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 301-311(in Chinese)

    李海云, 司东霞, 吕福堂, 等. 不同耐性大白菜苗期根系形态对低钾胁迫的响应[J]. 中国蔬菜, 2015(7): 49-52, 53

    Li H Y, Si D X, Lyu F T, et al. Response of Chinese cabbage seedling’s root morphology with different tolerance to potassium deficiency[J]. China Vegetables, 2015(7): 49-52, 53(in Chinese)

    李艳芬, 郑君岗, 尹美强, 等. 低钾胁迫对谷子幼苗叶片光合作用的影响[J]. 西北植物学报, 2022, 42(6): 1021-1024
    杨然, 郭树勋, 杨小慧, 等. 硅对低钾胁迫下番茄幼苗生长及生理特性的影响[J]. 山东农业科学, 2022, 54(9): 55-63

    Yang R, Guo S X, Yang X H, et al. Effects of silicon on growth and physiological characteristics of tomato seedlings under low potassium stress[J]. Shandong Agricultural Sciences, 2022, 54(9): 55-63(in Chinese)

    Zhang H, Yue M X, Zheng X K, et al. Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings[J]. IEEE Transactions on Nanobioscience, 2017, 16(7): 563-570
    Martínez-Ballesta M C, Zapata L, Chalbi N, et al. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity[J]. Journal of Nanobiotechnology, 2016, 14(1): 42
    Fan X J, Xu J H, Lavoie M, et al. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana[J]. Environmental Pollution, 2018, 233: 633-641
    Nair R, Varghese S H, Nair B G, et al. Nanoparticulate material delivery to plants[J]. Plant Science, 2010, 179(3): 154-163
    Wang C R, Liu H T, Chen J Y, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274: 404-412
    刘玲, 戴慧芳, 唐凤雪, 等. 水稻幼苗根对羧基化多壁碳纳米管复合镉胁迫的生长生理响应[J]. 生态学杂志, 2020, 39(1): 252-259

    Liu L, Dai H F, Tang F X, et al. Responses of growth and physiology of rice (Oryza sativa L.) seedling roots to MWCNTs-COOH combined with Cd stress[J]. Chinese Journal of Ecology, 2020, 39(1): 252-259(in Chinese)

    Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32(5): 577-584
    Yan S H, Zhao L, Li H, et al. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression[J]. Journal of Hazardous Materials, 2013, 246/247: 110-118
    汪雨茜, 李大婧, 何伟伟, 等. 高等植物叶黄素合成代谢与调控机制[J]. 食品工业科技, 2018, 39(15): 322-328

    Wang Y Q, Li D J, He W W, et al. Biosynthesis metabolism and regulation mechanism of lutein in higher plants[J]. Science and Technology of Food Industry, 2018, 39(15): 322-328(in Chinese)

    王运强, 肖炼, 邹正康, 等. 碳量子点对甜瓜幼苗镉胁迫的缓解作用[J]. 中国瓜菜, 2019, 32(6): 19-26

    Wang Y Q, Xiao L, Zou Z K, et al. Alleviation of carbon quantum dots on cadmium stress of melon seedlings[J]. China Cucurbits and Vegetables, 2019, 32(6): 19-26(in Chinese)

    Molaei M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J].Talanta, 2019, 196: 456-478
    张健龙, 易科, 张一岚, 等. 干旱胁迫对不同彩粒小麦苗期生长发育的影响[J]. 西北农业学报, 2020, 29(6): 842-850

    Zhang J L, Yi K, Zhang Y L, et al. Effects of drought stress on development of different colored wheat at seedling stage[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(6): 842-850(in Chinese)

    于婵, 张依琳, 李秋莹, 等. 盐碱胁迫对牛至种子萌发和幼苗生理生化特性的影响[J]. 草地学报, 2024, 32(6): 1882-1892

    Yu C, Zhang Y L, Li Q Y, et al. Effects of saline-alkali stresses on seed germination and seedling physiological and biochemical characteristics of Origanum vulgare[J]. Acta Agrestia Sinica, 2024, 32(6): 1882-1892(in Chinese)

    Wang P J, Xu Z J, Zhang Y, et al. Over-expression of spermidine synthase 2(SlSPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis[J]. Plant Physiology and Biochemistry, 2022, 192: 172-185
    陈珏, 殷志敏, 裴晓丽, 等. 天然低共熔溶剂对植物种子萌发及幼苗抗氧化特性的影响[J]. 生态毒理学报, 2024, 19(4): 416-428

    Chen J, Yin Z M, Pei X L, et al. Effect of natural deep eutectic solvents on plant seed germination and seedling antioxidant properties[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 416-428(in Chinese)

    贾若凌. 铜胁迫对菊芋幼叶生理生化指标的影响[J]. 河南农业科学, 2012, 41(8): 154-156

    Jia R L. Effects of Cu treatment on physiological and biochemical characters of Jerusalem artichoke (Helianthus tuberosus) leaves[J]. Journal of Henan Agricultural Sciences, 2012, 41(8): 154-156(in Chinese)

    王娟, 李德全, 谷令坤. 不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J]. 西北植物学报, 2002, 22(2): 285-290

    Wang J, Li D Q, Gu L K. The response to water stress of the antioxidant system in maize seedling roots with different drought resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 285-290(in Chinese)

    Hong J, Wang C, Wagner D C, et al. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts[J]. Environmental Science: Nano, 2021, 8(5): 1196-1210
    Imtiaz H, Shiraz M, Mir A R, et al. Nano-priming techniques for plant physio-biochemistry and stress tolerance[J]. Journal of Plant Growth Regulation, 2023, 42(11): 6870-6890
    Zhong M, Yue L Q, Chen Q Q, et al. Spermidine carbon dots enhance thermotolerance by modulating photosynthesis and cellular redox homeostasis in tomato[J]. Environmental Science: Nano, 2023, 10(2): 595-610
    鞠晓影, 赵勇, 陈桂顺, 等. 小麦苗期抗氧化酶活性及丙二醛含量QTL定位[J]. 河北农业大学学报, 2017, 40(3): 1-7

    Ju X Y, Zhao Y, Chen G S, et al. QTL mapping for antioxidant enzyme activity and malondialdehyde content in wheat seedling stage[J]. Journal of Hebei Agricultural University, 2017, 40(3): 1-7(in Chinese)

  • 加载中
计量
  • 文章访问数:  312
  • HTML全文浏览数:  312
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-08-09
何艳华, 张全喜, 郭东罡. 单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响[J]. 生态毒理学报, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
引用本文: 何艳华, 张全喜, 郭东罡. 单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响[J]. 生态毒理学报, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
HE Yanhua, ZHANG Quanxi, GUO Donggang. Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress[J]. Asian journal of ecotoxicology, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001
Citation: HE Yanhua, ZHANG Quanxi, GUO Donggang. Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress[J]. Asian journal of ecotoxicology, 2024, 19(6): 140-151. doi: 10.7524/AJE.1673-5897.20240809001

单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响

    通讯作者: 张全喜(1980-),男,博士,教授,博士生导师,主要研究方向为生态环境毒理学。E-mail:qxzhang@sxu.edu.cn;  郭东罡(1980—),男,博士,教授,博士生导师,主要研究方向为生态恢复与治理。E-mail:gdghjkx@126.com
    作者简介: 何艳华(1986—),女,博士,副教授,硕士生导师,研究方向为生态毒理学,E-mail:sxheyanhua@126.com
  • 1. 山西大学环境与资源学院山西省黄河实验室, 太原 030006;
  • 2. 山西电子科技学院, 临汾 041000;
  • 3. 山西师范大学, 太原 030000
基金项目:

山西省基础研究计划青年科学研究项目(202203021212390)

摘要: 为探讨羧基化单壁碳纳米管(SWCNTs-COOH)的生物效应,本研究选用“品育8012”小麦为实验材料,采用水培的方式研究不同浓度SWCNTs-COOH(0、5、10、30、50、70和90 mg·L-1)对低钾(K+,0.01 mmol·L-1)胁迫下小麦幼苗生长发育的影响。结果表明:5~50 mg·L-1的SWCNTs-COOH对小麦幼苗的生长指标(株高、根系、叶面积、鲜质量、干质量)、光合作用指标(细胞色素含量、叶绿素荧光参数)、抗氧化酶(SOD、POD)活性均存在一定的促进作用,其中50 mg·L-1浓度时促进效果最明显;当SWCNTs-COOH的浓度达到70 mg·L-1及以上时小麦幼苗的生长指标、光合作用指标、SOD活性、POD活性逐渐降低,丙二醛(MDA)含量明显上升,即高浓度的SWCNTs-COOH加重了低钾胁迫下小麦幼苗的毒理学效应。综上,SWCNTs-COOH对低钾胁迫下小麦幼苗生长发育的影响存在明显的浓度效应,低浓度的SWCNTs-COOH可以缓解低钾胁迫对小麦幼苗造成的部分损伤,高浓度的SWCNTs-COOH会对小麦幼苗产生一定的生理毒性。

English Abstract

参考文献 (48)

返回顶部

目录

/

返回文章
返回