单壁碳纳米管对钾胁迫下小麦幼苗生长发育的影响
Effect of Single-walled Carbon Nanotubes on Growth and Development of Wheat Seedlings Under Potassium Stress
-
摘要: 为探讨羧基化单壁碳纳米管(SWCNTs-COOH)的生物效应,本研究选用“品育8012”小麦为实验材料,采用水培的方式研究不同浓度SWCNTs-COOH(0、5、10、30、50、70和90 mg·L-1)对低钾(K+,0.01 mmol·L-1)胁迫下小麦幼苗生长发育的影响。结果表明:5~50 mg·L-1的SWCNTs-COOH对小麦幼苗的生长指标(株高、根系、叶面积、鲜质量、干质量)、光合作用指标(细胞色素含量、叶绿素荧光参数)、抗氧化酶(SOD、POD)活性均存在一定的促进作用,其中50 mg·L-1浓度时促进效果最明显;当SWCNTs-COOH的浓度达到70 mg·L-1及以上时小麦幼苗的生长指标、光合作用指标、SOD活性、POD活性逐渐降低,丙二醛(MDA)含量明显上升,即高浓度的SWCNTs-COOH加重了低钾胁迫下小麦幼苗的毒理学效应。综上,SWCNTs-COOH对低钾胁迫下小麦幼苗生长发育的影响存在明显的浓度效应,低浓度的SWCNTs-COOH可以缓解低钾胁迫对小麦幼苗造成的部分损伤,高浓度的SWCNTs-COOH会对小麦幼苗产生一定的生理毒性。Abstract: To explore the biological effects of carboxylated single-walled carbon nanotubes (SWCNTs-COOH), this work selected “Pinyu 8012” wheat as the experimental material and used hydroponics cultivation method to investigate the effects of various concentrations of SWCNTs-COOH (0, 5, 10, 30, 50, 70, and 90 mg·L-1) on the growth and development of wheat seedlings under low potassium stress (K+, 0.01 mmol·L-1). With the most notable impact being observed at a concentration of 50 mg·L-1, the results revealed that SWCNTs-COOH concentrations ranging from 5 to 50 mg·L-1 positively affected growth parameters (plant height, root system, leaf area, fresh weight, dry weight), photosynthetic indicators (cytochrome content, chlorophyll fluorescence parameters), and antioxidant enzyme (SOD, POD) activities in wheat seedlings. However, at doses of 70 mg·L-1 or higher, growth indicators, photosynthetic parameters, SOD activity, and POD activity in wheat seedlings dropped while the malondial-dehyde (MDA) content rose dramatically. This implies that high quantities of SWCNTs-COOH exacerbate the toxicological effects of low potassium stress on wheat. In summary, there is a significant concentration effect of SWCNTs-COOH on the growth and development of wheat seedlings under low potassium stress. Low concentrations of SWCNTs-COOH can help to reduce some of the low potassium stress-induced damage in wheat seedlings, while high concentrations of SWCNTs-COOH can cause certain physiological toxicity to wheat seedlings.
-
-
Zörb C, Senbayram M, Peiter E. Potassium in agriculture—Status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9): 656-669 Johnson R, Vishwakarma K, Hossen M S, et al. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance[J]. Plant Physiology and Biochemistry, 2022, 172: 56-69 Chen B C, Wang P J, Ho P C, et al. Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots[J]. Ecotoxicology, 2017, 26(7): 942-955 王栋, 冯明伟, 李慧英. 中国钾盐资源发展现状及建议[J]. 中国矿业, 2017, 26(S2): 5-9 熊明彪, 雷孝章, 田应兵, 等. 钾离子在土壤中吸附和解吸动力学研究进展[J]. 生态环境, 2003, 12(1): 115-118 Xiong M B, Lei X Z, Tian Y B, et al. Research progress of K+ adsorbing-desorbing kinetics in soils[J]. Ecology and Environment, 2003, 12(1): 115-118(in Chinese)
李晓云, 赵勇, 王杰, 等. 不同小麦品系耐低钾性的综合评价[J]. 麦类作物学报, 2014, 34(6): 842-846 Li X Y, Zhao Y, Wang J, et al. Comprehensive evaluation of resistance to low potassium in different wheat varieties[J]. Journal of Triticeae Crops, 2014, 34(6): 842-846(in Chinese)
冯宇希, 徐明, 阚杰元, 等. 植物毒理学文献计量分析及其研究思路与方法评论[J]. 生态毒理学报, 2023, 18(3): 213-222 Feng Y X, Xu M, Kan J Y, et al. Bibliometric analysis and review of ideas and methodology in phytotoxicology[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 213-222(in Chinese)
Srilatha B. Nanotechnology in agriculture[J]. Journal of Nanomedicine & Nanotechnology, 2011, 2(7): 1-5 Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant[J]. Applied Nanoscience, 2015, 5(5): 609-616 Bhati A, Gunture, Tripathi K M, et al. Exploration of nano carbons in relevance to plant systems[J]. New Journal of Chemistry, 2018, 42(20): 16411-16427 郭敏, 龚继来, 曾光明. 多壁碳纳米管对水稻幼苗的植物毒性研究[J]. 生态毒理学报, 2016, 11(5): 94-102 Guo M, Gong J L, Zeng G M. Comprehensive phytotoxicity assessment of multi-wall carbon nanotubes on rice seedlings[J]. Asian Journal of Ecotoxicology, 2016, 11(5): 94-102(in Chinese)
章军, 杨军, 朱心强. 纳米材料的环境和生态毒理学研究进展[J]. 生态毒理学报, 2006, 1(4): 350-356 Zhang J, Yang J, Zhu X Q. The advancement of environmental and ecotoxicological research of nanomaterials[J]. Asian Journal of Ecotoxicology, 2006, 1(4): 350-356(in Chinese)
Cañas J E, Long M, Nations S, et al. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1922-1931 吴康, 苏安琪, 田雪娇, 等. 叶面喷施羧基化碳纳米管对平邑甜茶幼苗生长及抗氧化系统的影响[J]. 山东农业科学, 2023, 55(9): 121-127 Wu K, Su A Q, Tian X J, et al. Effects of foliar application of carboxylated carbon nanotubes on growth and antioxidant system of Malus hupehensis[J]. Shandong Agricultural Sciences, 2023, 55(9): 121-127(in Chinese)
Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009, 43(24): 9473-9479 袁刚强, 龚继来, 曾光明. 单壁碳纳米管材料对水稻幼苗的毒性效应[J]. 环境科学学报, 2015, 35(12): 4143-4149 Yuan G Q, Gong J L, Zeng G M. Phytotoxicity of single-walled carbon nanotubes to rice seedling (Oryza sativa L.)[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4143-4149(in Chinese)
Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12): 3907-3919 Shen C X, Zhang Q F, Li J, et al. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes[J]. American Journal of Botany, 2010, 97(10): 1602-1609 李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016: 50-213 王慧敏, 陈莉荣, 任文杰, 等. 单壁碳纳米管对紫花苜蓿根际土壤中PAHs降解及微生物群落的影响[J]. 农业环境科学学报, 2021, 40(12): 2647-2659 Wang H M, Chen L R, Ren W J, et al. Effects of single-walled carbon nanotubes on degradation of polycyclic aromatic hydrocarbons and microbial community in rhizosphere soil of Medicago sativa[J]. Journal of Agro-Environment Science, 2021, 40(12): 2647-2659(in Chinese)
刘晓红, 郭波红, 许丹翘, 等. 冬凌草甲素-单壁碳纳米管载药体系的制备及其吸附动力学[J]. 医药导报, 2017, 36(10): 1170-1174 Liu X H, Guo B H, Xu D Q, et al. Preparation of oridonin-single-walled carbon nanotubes and study on its adsorption kinetics[J]. Herald of Medicine, 2017, 36(10): 1170-1174(in Chinese)
李鸽子, 刘金, 张丹丹, 等. TaHIPP32通过调控TaHAK1表达参与小麦缺钾胁迫耐性研究[J]. 麦类作物学报, 2023, 43(2): 1-11 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924(in Chinese)
杜琪, 赵跃, 周东英, 等. 低钾胁迫下不同耐低钾玉米品种(系)开花后根系生长和结构的变化[J]. 植物营养与肥料学报, 2021, 27(2): 301-311 Du Q, Zhao Y, Zhou D Y, et al. Response of root growth and structure of different potassium sensitive maize cultivars (lines) to low potassium stress after flowering stage[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 301-311(in Chinese)
李海云, 司东霞, 吕福堂, 等. 不同耐性大白菜苗期根系形态对低钾胁迫的响应[J]. 中国蔬菜, 2015(7): 49-52, 53 Li H Y, Si D X, Lyu F T, et al. Response of Chinese cabbage seedling’s root morphology with different tolerance to potassium deficiency[J]. China Vegetables, 2015(7): 49-52, 53(in Chinese)
李艳芬, 郑君岗, 尹美强, 等. 低钾胁迫对谷子幼苗叶片光合作用的影响[J]. 西北植物学报, 2022, 42(6): 1021-1024 杨然, 郭树勋, 杨小慧, 等. 硅对低钾胁迫下番茄幼苗生长及生理特性的影响[J]. 山东农业科学, 2022, 54(9): 55-63 Yang R, Guo S X, Yang X H, et al. Effects of silicon on growth and physiological characteristics of tomato seedlings under low potassium stress[J]. Shandong Agricultural Sciences, 2022, 54(9): 55-63(in Chinese)
Zhang H, Yue M X, Zheng X K, et al. Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings[J]. IEEE Transactions on Nanobioscience, 2017, 16(7): 563-570 Martínez-Ballesta M C, Zapata L, Chalbi N, et al. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity[J]. Journal of Nanobiotechnology, 2016, 14(1): 42 Fan X J, Xu J H, Lavoie M, et al. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana[J]. Environmental Pollution, 2018, 233: 633-641 Nair R, Varghese S H, Nair B G, et al. Nanoparticulate material delivery to plants[J]. Plant Science, 2010, 179(3): 154-163 Wang C R, Liu H T, Chen J Y, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274: 404-412 刘玲, 戴慧芳, 唐凤雪, 等. 水稻幼苗根对羧基化多壁碳纳米管复合镉胁迫的生长生理响应[J]. 生态学杂志, 2020, 39(1): 252-259 Liu L, Dai H F, Tang F X, et al. Responses of growth and physiology of rice (Oryza sativa L.) seedling roots to MWCNTs-COOH combined with Cd stress[J]. Chinese Journal of Ecology, 2020, 39(1): 252-259(in Chinese)
Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32(5): 577-584 Yan S H, Zhao L, Li H, et al. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression[J]. Journal of Hazardous Materials, 2013, 246/247: 110-118 汪雨茜, 李大婧, 何伟伟, 等. 高等植物叶黄素合成代谢与调控机制[J]. 食品工业科技, 2018, 39(15): 322-328 Wang Y Q, Li D J, He W W, et al. Biosynthesis metabolism and regulation mechanism of lutein in higher plants[J]. Science and Technology of Food Industry, 2018, 39(15): 322-328(in Chinese)
王运强, 肖炼, 邹正康, 等. 碳量子点对甜瓜幼苗镉胁迫的缓解作用[J]. 中国瓜菜, 2019, 32(6): 19-26 Wang Y Q, Xiao L, Zou Z K, et al. Alleviation of carbon quantum dots on cadmium stress of melon seedlings[J]. China Cucurbits and Vegetables, 2019, 32(6): 19-26(in Chinese)
Molaei M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J].Talanta, 2019, 196: 456-478 张健龙, 易科, 张一岚, 等. 干旱胁迫对不同彩粒小麦苗期生长发育的影响[J]. 西北农业学报, 2020, 29(6): 842-850 Zhang J L, Yi K, Zhang Y L, et al. Effects of drought stress on development of different colored wheat at seedling stage[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(6): 842-850(in Chinese)
于婵, 张依琳, 李秋莹, 等. 盐碱胁迫对牛至种子萌发和幼苗生理生化特性的影响[J]. 草地学报, 2024, 32(6): 1882-1892 Yu C, Zhang Y L, Li Q Y, et al. Effects of saline-alkali stresses on seed germination and seedling physiological and biochemical characteristics of Origanum vulgare[J]. Acta Agrestia Sinica, 2024, 32(6): 1882-1892(in Chinese)
Wang P J, Xu Z J, Zhang Y, et al. Over-expression of spermidine synthase 2(SlSPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis[J]. Plant Physiology and Biochemistry, 2022, 192: 172-185 陈珏, 殷志敏, 裴晓丽, 等. 天然低共熔溶剂对植物种子萌发及幼苗抗氧化特性的影响[J]. 生态毒理学报, 2024, 19(4): 416-428 Chen J, Yin Z M, Pei X L, et al. Effect of natural deep eutectic solvents on plant seed germination and seedling antioxidant properties[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 416-428(in Chinese)
贾若凌. 铜胁迫对菊芋幼叶生理生化指标的影响[J]. 河南农业科学, 2012, 41(8): 154-156 Jia R L. Effects of Cu treatment on physiological and biochemical characters of Jerusalem artichoke (Helianthus tuberosus) leaves[J]. Journal of Henan Agricultural Sciences, 2012, 41(8): 154-156(in Chinese)
王娟, 李德全, 谷令坤. 不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J]. 西北植物学报, 2002, 22(2): 285-290 Wang J, Li D Q, Gu L K. The response to water stress of the antioxidant system in maize seedling roots with different drought resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 285-290(in Chinese)
Hong J, Wang C, Wagner D C, et al. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts[J]. Environmental Science: Nano, 2021, 8(5): 1196-1210 Imtiaz H, Shiraz M, Mir A R, et al. Nano-priming techniques for plant physio-biochemistry and stress tolerance[J]. Journal of Plant Growth Regulation, 2023, 42(11): 6870-6890 Zhong M, Yue L Q, Chen Q Q, et al. Spermidine carbon dots enhance thermotolerance by modulating photosynthesis and cellular redox homeostasis in tomato[J]. Environmental Science: Nano, 2023, 10(2): 595-610 鞠晓影, 赵勇, 陈桂顺, 等. 小麦苗期抗氧化酶活性及丙二醛含量QTL定位[J]. 河北农业大学学报, 2017, 40(3): 1-7 Ju X Y, Zhao Y, Chen G S, et al. QTL mapping for antioxidant enzyme activity and malondialdehyde content in wheat seedling stage[J]. Journal of Hebei Agricultural University, 2017, 40(3): 1-7(in Chinese)
-

计量
- 文章访问数: 312
- HTML全文浏览数: 312
- PDF下载数: 62
- 施引文献: 0