唑类杀菌剂混合物对近头状尖孢藻的毒性相互作用评估
Assessment of Toxicity Interactions of Azole Fungicides Mixtures on Raphidocelis subcapitata
-
摘要: 唑类杀菌剂广泛存在水环境中,对水生生物产生有害影响,且其混合物的毒性相互作用未知。为探讨复合的唑类杀菌剂对非靶标生物绿藻的毒性相互作用,以苯醚甲环唑、戊菌唑、叶菌唑、四氟醚唑、粉唑醇、麦穗宁、氟菌唑、土菌灵和噁霉灵共9种唑类杀菌剂作为混合物组分,运用直接均分射线法设计了173条二元混合物射线,采用微板毒性分析法系统测定二元混合物对近头状尖孢藻(Raphidocelis subcapitata)的生长抑制毒性。以半数效应浓度(EC50)的负对数(pEC50)作为判断毒性大小的指标,173组二元唑类杀菌剂混合物的pEC50范围为3.053~6.415,含有叶菌唑和麦穗宁的混合物的毒性最大,最高毒性的pEC50分别为6.415和6.140。通过浓度加和、独立作用模型及其等效线图定性分析混合物毒性相互作用,采用模型偏差比、毒性单位法、相加指数法、混合毒性指数和组合指数定量评估混合物毒性相互作用。结果表明,混合物毒性相互作用通过毒性单位法、混合物毒性指数和组合指数的评价结果更为一致。由苯醚甲环唑、戊菌唑和氟菌唑设计的二元混合产生协同作用的频次更高,分别为46.9%、46.1%和61.1%。由粉唑醇、麦穗宁和叶菌唑设计的二元混合会降低混合物毒性,呈现为加和作用和拮抗作用。杀菌剂混合物毒性相互作用规律总体表现为低浓度的以协同、加和作用为主,高浓度以加和作用、拮抗作用为主。在环境浓度下,混合物相互作用主要以加和作用为主。Abstract: The widespread presence of azole fungicides in aquatic environments has raised concerns about their potential harmful effects on the growth of aquatic organisms. However, the toxic interactions that may occur when these fungicides are combined remain largely unexplored. To investigate these interactions on non-target organisms, specifically green algae, we selected nine azole fungicides, namely difenoconazole, penconazole metconazole, tetraconazole, flutriafol, fuberidazole, triflumizole, terrazole, and hymexazol, to create binary mixtures. A total of 173 binary mixtures were created using a direct equipartition ray design. The microplate toxicity analysis method was used to systematically measure the growth inhibition toxicity of these mixtures on Raphidocelis subcapitata. Toxicity was assessed using the negative logarithm of the median effective concentration (pEC50) as an indicator. The pEC50 values of 173 binary triazole fungicide mixtures ranged from 3.053 to 6.415. Mixtures containing metcona-zole and fuberidazole showed the highest toxicity, with maximum pEC50 values of 6.415 and 6.140, respectively. Toxicity interactions were qualitatively analyzed using concentration addition, independent action, and isobologram approaches. Quantitative assessments were performed using model deviation ratio, toxic unit, additivity index, mixture toxicity index, and combination index methods. The results showed that the binary mixtures designed with difenoconazole, penconazole, and triflumizole exhibited a higher frequency of synergistic effects, with occurrences of 46.9%, 46.1%, and 61.1%, respectively. In contrast, mixtures designed with flutriafol, fuberidazole, and metcona-zole generally exhibited reduced toxicity, showing additive and antagonistic effects. The toxic unit,mixture toxicity index, and combination index methods produced more consistent evaluations of these interactions. The mixtures predominantly showed synergistic and additive effects at low concentrations, while additive and antagonistic effects were more prevalent at high concentrations. The interactions of the mixtures were mainly additive at environmentally relevant concentrations.
-
Key words:
- azole fungicides /
- Raphidocelis subcapitata /
- combined toxicity /
- predictive model
-
-
Thabit T M A, Abdelkareem E M, Bouqellah N A, et al. Triazole fungicide residues and their inhibitory effect on some trichothecenes mycotoxin excretion in wheat grains[J]. Molecules, 2021, 26(6): 1784 Ahonsi M O, Ames K A, Gray M E, et al. Biomass reducing potential and prospective fungicide control of a new leaf blight of Miscanthus×giganteus caused by Leptosphaerulina chartarum[J]. BioEnergy Research, 2013, 6(2): 737-745 Zhang C Y, Wang W W, Xue M, et al. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea[J]. Journal of Fungi, 2021, 7(9): 685 De Nardo E A B, Grewal P S. Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production[J]. Biocontrol Science and Technology, 2003, 13(4): 441-448 Feng Q S, Han L, Wu Q, et al. Dissipation, residue and dietary risk assessment of difenoconazole in Rosa roxburghii[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2023, 58(11): 651-658 Battaglin W A, Sandstrom M W, Kuivila K M, et al. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006[J]. Water, Air, & Soil Pollution, 2011, 218(1): 307-322 Coscollà C, Yusà V, Beser M I, et al. Multi-residue analysis of 30 currently used pesticides in fine airborne particulate matter (PM2.5) by microwave-assisted extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(51): 8817-8827 Zhang J, Zhang J, Huang X H, et al. Combined toxicity and adverse outcome pathways of common pesticides on Chlorella pyrenoidosa[J]. Environmental Science Processes & Impacts, 2024, 26(3): 611-621 Christen V, Crettaz P, Fent K. Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin[J]. Toxicology and Applied Pharmacology, 2014, 279(3): 455-466 Wang Y H, Zhu Y C, Li W H. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.)[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110100 Wang R K, Liu N, Huang N, et al. Combined toxicity assessment of a naturally occurring toxin and a triazole fungicide on different biological processes through toxicogenomic data mining with mixtures[J]. Pesticide Biochemistry and Physiology, 2023, 193: 105440 Organization for Economic Co-operation and Development (OECD). Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals, section 2[R]. Paris: OECD, 2011 Altenburger R, Backhaus T, Boedeker W, et al. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals[J]. Environmental Toxicology and Chemistry, 2000, 19(9): 2341-2347 刘树深, 张瑾, 张亚辉, 等. APTox: 化学混合物毒性评估与预测[J]. 化学学报, 2012, 70(14): 1511-1517 Liu S S, Zhang J, Zhang Y H, et al. APTox: Assessment and prediction on toxicity of chemical mixtures[J]. Acta Chimica Sinica, 2012, 70(14): 1511-1517(in Chinese)
刘雪, 刘树深, 刘海玲. 构建三元混合污染物的三维等效图[J]. 环境科学, 2015, 36(12): 4574-4581 Liu X, Liu S S, Liu H L. Construction of three-dimensional isobologram for ternary pollutant mixtures[J]. Environmental Science, 2015, 36(12): 4574-4581(in Chinese)
王滔, 班龙科, 张瑾, 等. 三嗪类农药复合污染物对蛋白核小球藻的联合毒性作用评估[J]. 农业环境科学学报, 2020, 39(3): 482-495 Wang T, Ban L K, Zhang J, et al. Evaluation of combined toxicity of triazine pesticide contaminants against Chlorella pyrenoidosa[J]. Journal of Agro-Environment Science, 2020, 39(3): 482-495(in Chinese)
董玉瑛, 雷炳莉, 柏丽杰, 等. 环境化合物联合作用及其研究方法评价[J]. 大连民族学院学报, 2006, 8(5): 39-41 , 48 Dong Y Y, Lei B L, Bai L J, et al. Joint toxicity effects of environmental chemicals and the evaluation of present research methods[J]. Journal of Dalian Minzu University, 2006, 8(5): 39-41, 48(in Chinese)
吴宗凡, 刘兴国, 王高学. 重金属与有机磷农药二元混合物对卤虫联合毒性的评价及预测[J]. 生态毒理学报, 2013, 8(4): 602-608 Wu Z F, Liu X G, Wang G X. Evaluating and modeling the toxicity of binary mixtures of heavy metals and organophosphate pesticides to Artemia salina[J]. Asian Journal of Ecotoxicology, 2013, 8(4): 602-608(in Chinese)
Assress H A, Nyoni H, Mamba B B, et al. Occurrence and risk assessment of azole antifungal drugs in water and wastewater[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109868 Bundschuh M, Goedkoop W, Kreuger J. Evaluation of pesticide monitoring strategies in agricultural streams based on the toxic-unit concept: Experiences from long-term measurements[J]. Science of the Total Environment, 2014, 484: 84-91 Cao C W, Niu F, Li X P, et al. Acute and joint toxicity of twelve substituted benzene compounds to Propsilocerus akamusi Tokunaga[J]. Central European Journal of Biology, 2014, 9(5): 550-558 唐柱云, 陆光华. 苯酚、2, 4-二氯酚与苯胺类化合物联合毒性效应[J]. 环境科技, 2014, 27(4): 18-22 , 51 Tang Z Y, Lu G H. Joint toxicity effect of phenol or 2,4-dichlorophenol and anilines[J]. Environmental Science and Technology, 2014, 27(4): 18-22, 51(in Chinese)
Knauert S, Knauer K. The role of reactive oxygen species in copper toxicity to two freshwater green algae[J]. Journal of Phycology, 2008, 44(2): 311-319 Chou T C, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors[J]. Advances in Enzyme Regulation, 1984, 22: 27-55 Howard P H, Muir D C G. Identifying new persistent and bioaccumulative organics among chemicals in commerce Ⅱ: Pharmaceuticals[J]. Environmental Science & Technology, 2011, 45(16): 6938-6946 Gao Y F, Feng J F, Kang L L, et al. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae[J]. Science of the Total Environment, 2018, 610: 442-450 Cedergreen N, Christensen A M, Kamper A, et al. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites[J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1621-1632 Fraser T R. An experimental research on the antagonism between the actions of physostigma and atropia[J]. Proceedings of the Royal Society of Edinburgh, 1872, 7: 506-511 Huang R Y, Pei L L, Liu Q J, et al. Isobologram analysis: A comprehensive review of methodology and current research[J]. Frontiers in Pharmacology, 2019, 10: 1222 孟庆俊, 肖昕. 不同方法对联合毒性作用的评价[J]. 污染防治技术, 2004, 17(1): 33-35 Boobis A, Budinsky R, Collie S, et al. Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment[J]. Critical Reviews in Toxicology, 2011, 41(5): 369-383 莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估4种重金属及2种农药混合物对费氏弧菌的毒性相互作用[J]. 生态毒理学报, 2018, 13(1): 251-260 Mo L Y, Liang L Y, Qin L T, et al. Qualitative and quantitative assessment for the toxicity interaction of mixtures of four heavy metals and two pesticides on Vibrio fischeri[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 251-260(in Chinese)
More S J, Bampidis V, Benford S H, et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals[J]. EFSA Journal European Food Safety Authority, 2019, 17(3): 5634 Macacu A, Guillot G. Dose-response analysis of toxicological and pharmacological mixtures with the model deviation ratio method: Problems and solutions[J]. Toxicology Letters, 2020, 325: 62-66 Sprague J B, Ramsay B A. Lethal levels of mixed copper: Zinc solutions for juvenile salmon[J]. Journal of the Fisheries Research Board of Canada, 1965, 22(2): 425-432 Jin Y, Mo L Y, Qin L T, et al. Study on the joint toxicity of multi-component mixtures of quaternary ammonium compounds[J]. Nature Environment and Pollution Technology, 2021, 20(4): 1643-51 Mori I C, Arias-Barreiro C R, Koutsaftis A, et al. Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide[J]. Chemosphere, 2015, 120: 299-304 Chou T C, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors[J]. Advances in Enzyme Regulation, 1984, 22: 27-55 Bjergager M A, Dalhoff K, Kretschmann A, et al. Determining lower threshold concentrations for synergistic effects[J]. Aquatic Toxicology, 2017, 182: 79-90 Zhou X, Seto S W, Chang D, et al. Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research[J]. Frontiers in Pharmacology, 2016, 7: 201 Greco W R, Bravo G, Parsons J C. The search for synergy: A critical review from a response surface perspective[J]. Pharmacological Reviews, 1995, 47(2): 331-385 Syberg K, Elleby A, Pedersen H, et al. Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 69(3): 428-436 Nørgaard K B, Cedergreen N. Pesticide cocktails can interact synergistically on aquatic crustaceans[J]. Environmental Science and Pollution Research International, 2010, 17(4): 957-967 Mora-Navarro C, Caraballo-León J, Torres-Lugo M, et al. Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida albicans[J]. Journal of Peptide Science, 2015, 21(12): 853-861 Matzke M, Stolte S, Böschen A, et al. Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants (Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus)[J]. Green Chemistry, 2008, 10(7): 784-792 张瑾, 董欣琪, 陈敏, 等. 五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点[J]. 生态毒理学报, 2017, 12(4): 138-145 Zhang J, Dong X Q, Chen M, et al. Toxicity characteristics of five-carbamate pesticide mixture system towards Vibrio qinghaiensis sp. Q67[J]. Asian Journal of Ecotoxicology, 2017, 12(4): 138-145(in Chinese)
Liu S S, Song X Q, Liu H L, et al. Combined Photobacterium toxicity of herbicide mixtures containing one insecticide[J]. Chemosphere, 2009, 75(3): 381-388 王滔, 张瑾, 卞志强, 等. 2种经典模型对抗生素与重金属锌的蛋白核小球藻时间依赖联合毒性作用的评估比较[J]. 生态毒理学报, 2019, 14(4): 130-139 Wang T, Zhang J, Bian Z Q, et al. Comparative evaluation on the time-dependent joint toxicity of antibiotics and heavy metal zinc towards Chlorella pyrenoidosa between two classical models[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 130-139(in Chinese)
Fai P B A, Tsobgny Kinfack J S, Tala Towa Y J. Acute effects of binary mixtures of TypeⅡ pyrethroids and organophosphate insecticides on Oreochromis niloticus[J]. Ecotoxicology, 2017, 26(7): 889-901 Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure-activity relationships[J]. Environmental Toxicology and Chemistry, 2003, 22(8): 1900-1915 Rider C V, LeBlanc G A. An integrated addition and interaction model for assessing toxicity of chemical mixtures[J]. Toxicological Sciences, 2005, 87(2): 520-528 -
20240708002-支撑文件 - 终版.docx
-

计量
- 文章访问数: 254
- HTML全文浏览数: 254
- PDF下载数: 62
- 施引文献: 0