环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响

邓倩, 于春洋, 马瑞, 张亚文, 李姝霖, 雷雨, 冯利强, 田建英. 环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响[J]. 生态毒理学报, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
引用本文: 邓倩, 于春洋, 马瑞, 张亚文, 李姝霖, 雷雨, 冯利强, 田建英. 环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响[J]. 生态毒理学报, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
DENG Qian, YU Chunyang, MA Rui, ZHANG Yawen, LI Shulin, LEI Yu, FENG Liqiang, TIAN Jianying. The Effects of Chronic Exposure to EE2 in Early Life on Neurodevelopment and Spatial Learning Behavior in Adult Male Rats[J]. Asian journal of ecotoxicology, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
Citation: DENG Qian, YU Chunyang, MA Rui, ZHANG Yawen, LI Shulin, LEI Yu, FENG Liqiang, TIAN Jianying. The Effects of Chronic Exposure to EE2 in Early Life on Neurodevelopment and Spatial Learning Behavior in Adult Male Rats[J]. Asian journal of ecotoxicology, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001

环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响

    作者简介: 邓倩(1997—),女,硕士研究生,研究方向为神经可塑性研究,E-mail:2439024323@qq.com
    通讯作者: 冯利强(1977—),男,硕士,副教授,主要研究方向为神经可塑性研究。E-mail:279748103@qq.com;  田建英(1963-),女,硕士,博士生导师,教授,主要研究方向为神经退行性变的环境机制。E-mail:tenengyi@163.com
  • 基金项目:

    国家自然科学基金资助项目(81160338);宁夏自然科学基金项目(2022AAC03207,2024AAC03254);宁夏科技重点研发项目(2020BEG03048)

  • 中图分类号: X171.5

The Effects of Chronic Exposure to EE2 in Early Life on Neurodevelopment and Spatial Learning Behavior in Adult Male Rats

    Corresponding authors: FENG Liqiang ;  TIAN Jianying
  • Fund Project:
  • 摘要: 环境雌激素17α-乙炔雌二醇(17alpha-ethynylestradiol, EE2)是一种常见的环境内分泌干扰物,主要经消化道被人和动物摄入,但其对中枢神经系统的影响尚不清楚。为探讨EE2早期慢暴露对Sprague-Dawley (SD)大鼠神经发育和成年后认知行为的影响及其机制,本研究选择5日龄雄性SD大鼠,随机分为3组:空白对照组(Control组)、EE2低剂量组(0.1 μg·kg-1)、EE2高剂量组(10 μg·kg-1),每组8只,EE2持续暴露16周。观察大鼠体质量、脑质量变化。采用Morris水迷宫、旷场实验观察大鼠行为学表现。Nissl染色和免疫组织化学染色法观察各组大鼠海马CA1区(CA1)、海马CA3区(CA3)、齿状回(DG)的细胞形态和脑源性神经营养因子(BDNF)的表达,Western Blot检测海马、大脑皮层的IL-1β、IL-10蛋白水平,并测定皮层和海马丙二醛(MDA)含量。结果显示,EE2暴露组大鼠体质量增长速度较对照组减缓,脑质量减轻。行为学发现,EE2组逃逸潜伏期延长,目标象限停留时间、跨台次数减少,中央区运动距离和中央区停留时间减少,并呈剂量依赖性变化。EE2暴露组海马各区神经元排列紊乱、形态不规则,DG区神经元前体细胞数量减少。进一步发现,EE2暴露组大鼠大脑皮层、海马组织的MDA含量均升高,IL-1β表达量增加,IL-10表达量下降。低剂量组海马DG区BDNF表达减少,高剂量组CA1、CA3、DG区BDNF表达均减少。以上结果表明,生命早期0.1 μg·kg-1 EE2慢暴露可引起雄性大鼠成年后空间学习记忆行为障碍,与海马结构紊乱、BDNF水平降低和脑组织炎症反应有关。
  • 加载中
  • 王世豪, 何席伟, 张徐祥. 环境内分泌干扰物炔雌醇的危害、污水处理厂去除及微生物降解研究进展[J]. 环境监控与预警, 2023, 15(3): 1-13

    Wang S H, He X W, Zhang X X. Research progress on the hazard, the fate in the municipal wastewater treatment plants and microbial degradation of environmental endocrine disruptorethinylestradiol[J]. Environmental Monitoring and Forewarning, 2023, 15(3): 1-13(in Chinese)

    罗利军, 孟德梅, 戴建辉, 等. TiO2-NB/pg-C3N4可见光催化降解17α-乙炔雌二醇的机理[J]. 中国环境科学, 2022, 42(2): 654-664

    Luo L J, Meng D M, Dai J H, et al. The degradation mechanism study of 17α-ethinylestradiol by TiO2 nanobelt/pg-C3N4 photocatalyst under visible light irradiation[J]. China Environmental Science, 2022, 42(2): 654-664(in Chinese)

    陈健琴, 代思媛, 张碟, 等. 粪肥源雌激素在农田土壤-作物中污染特征、转运规律及毒理风险[J]. 环境化学, 2024, 43(7): 2214-2223

    Chen J Q, Dai S Y, Zhang D, et al. Animal manure derived-estrogens in farmland soil-crop ecosystems: Pollution characteristics, transport regularities, and toxicological risks[J]. Environmental Chemistry, 2024, 43(7): 2214-2223(in Chinese)

    胡俊, 李同, 颜宇杰, 等. 类固醇雌激素在水环境中的分布及其深度去除技术研究进展[J]. 工业水处理, 2021, 41(6): 58-65

    Hu J, Li T, Yan Y J, et al. Distribution of steroid estrogen in aquatic environment and research progress of their advanced removal technologies[J]. Industrial Water Treatment, 2021, 41(6): 58-65(in Chinese)

    Xiao Y, Han D M, Currell M, et al. Review of endocrine disrupting compounds (EDCs) in China’s water environments: Implications for environmental fate, transport and health risks[J]. Water Research, 2023, 245: 120645
    Bhandari R K, Deem S L, Holliday D K, et al. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species[J]. General and Comparative Endocrinology, 2015, 214: 195-219
    Kernen L, Phan A, Bo J, et al. Estrogens asimmunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2022, 242: 106025
    Paravani E V, Bianchi M, Querubín Pereyra P L, et al. DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-α-ethinylestradiol[J]. Drug and Chemical Toxicology, 2024, 47(1): 60-66
    Lin P H, Kuo T H, Chen C C, et al. Downregulation of testosterone production through luteinizing hormone receptor regulation in male rats exposed to 17α-ethynylestradiol[J]. Scientific Reports, 2020, 10(1): 1576
    Derouiche L, Keller M, Martini M, et al. Developmental exposure to ethinylestradiol affects reproductive physiology, the GnRH neuroendocrine network and behaviors in female mouse[J]. Frontiers in Neuroscience, 2015, 9: 463
    McEwen B S. Hormones and behavior and the integration of brain-body science[J]. Hormones and Behavior, 2020, 119: 104619
    Nickel S, Mahringer A. The xenoestrogens ethinylestradiol and bisphenol A regulate BCRP at the blood-brain barrier of rats[J]. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 2014, 44(11): 1046-1054
    Semple B D, Blomgren K, Gimlin K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species[J]. Progress in Neurobiology, 2013, 106/107: 1-16
    He Z. Selective effects of perinatal estrogen on proliferation and new neurons in hippocampus and piriform cortex of rats at weaning[J]. Neurotoxicology, 2022, 91: 254-261
    Nasri A, Mezni A, Lafon P A, et al. Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae[J]. Science of the Total Environment, 2021, 770: 145272
    Pillon D, Cadiou V, Angulo L, et al. Maternal exposure to 17-alpha-ethinylestradiol alters embryonic development of GnRH-1 neurons in mouse[J]. Brain Research, 2012, 1433: 29-37
    Ferguson S A, Law C D, Kissling G E. Developmental treatment with ethinyl estradiol, but not bisphenol A, causes alterations in sexually dimorphic behaviors in male and female Sprague Dawley rats[J]. Toxicological Sciences, 2014, 140(2): 374-392
    Ferguson S A, Paule M G, He Z. Pre- and postnatal bisphenol A treatment does not alter the number of tyrosine hydroxylase-positive cells in the anteroventral periventricular nucleus (AVPV) of weanling male and female rats[J]. Brain Research, 2015, 1624: 1-8
    Bromley-Brits K, Deng Y, Song W H. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice[J]. Journal of Visualized Experiments, 2011(53): 2920
    Kraeuter A K, Guest P C, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior[J]. Methods in Molecular Biology, 2019, 1916: 99-103
    Wilson M E, Westberry J M, Prewitt A K. Dynamic regulation of estrogen receptor-alpha gene expression in the brain: A role for promoter methylation?[J]. Frontiers in Neuroendocrinology, 2008, 29(3): 375-385
    Thayil A J, Wang X G, Bhandari P, et al. Bisphenol A and 17α-ethinylestradiol-induced transgenerational gene expression differences in the brain-pituitary-testis axis of medaka, Oryzias latipes[J]. Biology of Reproduction, 2020, 103(6): 1324-1335
    Solomon G M, Schettler T. Environment and health: 6. Endocrine disruption and potential human health implications[J]. Canadian Medical Association Journal, 2000, 163(11): 1471-1476
    Han J, Qiu W, Gao W. Adsorption of estrone in microfiltration membrane filters[J]. Chemical Engineering Journal, 2010, 165(3): 819-826
    Renaud L, Huff M, da Silveira W A, et al. Genome-wide analysis of low dose bisphenol-A (BPA) exposure in human prostate cells[J]. Current Genomics, 2019, 20(4): 260-274
    牟星月, 陶芳标, 伍晓艳. 环境内分泌干扰物暴露与儿童青少年昼夜节律紊乱的关联[J]. 卫生研究, 2023, 52(2): 343-346
    Fudvoye J, Lopez-Rodriguez D, Franssen D, et al. Endocrine disrupters and possible contribution to pubertal changes[J]. Best Practice and Research Clinical Endocrinology and Metabolism, 2019, 33(3): 101300
    Delclos K B, Weis C C, Bucci T J, et al. Overlapping but distinct effects of genistein and ethinyl estradiol (EE2) in female Sprague-Dawley rats in multigenerational reproductive and chronic toxicity studies[J]. Reproductive Toxicology, 2009, 27(2): 117-132
    Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status[J]. Learning and Memory, 2022, 29(9): 234-245
    Luine V. Estradiol: Mediator of memories, spine density and cognitive resilience to stress in female rodents[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2016, 160: 189-195
    Zhou J, Zhang H B, Cohen R S, et al. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures[J]. Neuroendocrinology, 2005, 81(5): 294-310
    Ferguson S A, Delclos K B, Newbold R R, et al. Dietary ethinyl estradiol exposure during development causes increased voluntary sodium intake and mild maternal and offspring toxicity in rats[J]. Neurotoxicology and Teratology, 2003, 25(4): 491-501
    Vosges M, Braguer J C, Combarnous Y. Long-term exposure of male rats to low-dose ethinylestradiol (EE2) in drinking water: Effects on ponderal growth and on litter size of their progeny[J]. Reproductive Toxicology, 2008, 25(2): 161-168
    Zaccaroni M, Seta D D, Farabollini F, et al. Developmental exposure to very low levels of ethynilestradiol affects anxiety in a novelty place preference test of juvenile rats[J]. Neurotoxicity Research, 2016, 30(4): 553-562
    Zaccaroni M, Massolo A, Beani L, et al. Developmental exposure to low levels of ethinylestradiol affects social play in juvenile male rats[J]. Toxicological Research, 2020, 36(4): 301-310
    Ferguson S A, Law C D, Abshire J S. Developmental treatment with bisphenol A causes few alterations on measures of postweaning activity and learning[J]. Neurotoxicology and Teratology, 2012, 34(6): 598-606
    Goundadkar B B, Katti P. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2017, 54: 146-154
    Othman M Z, Hassan Z, Che Has A T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory[J]. Experimental Animals, 2022, 71(3): 264-280
    Borzello M, Ramirez S, Treves A, et al. Assessments of dentate gyrus function: Discoveries and debates[J]. Nature Reviews Neuroscience, 2023, 24(8): 502-517
    Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer[J]. International Journal of Molecular Sciences, 2020, 21(20): 7777
    Ferraguti G, Terracina S, Micangeli G, et al. NGF and BDNF in pediatrics syndromes[J]. Neuroscience and Biobehavioral Reviews, 2023, 145: 105015
    Ramírez-Montero M D C, Gómez-Oliván L M, Gutiérrez-Noya V M, et al. Acute exposure to 17-α-ethinylestradiol disrupt the embryonic development and oxidative status of Danio rerio[J]. Comparative Biochemistry and Physiology Toxicology and Pharmacology, 2022, 251: 109199
    de Souza V G, Bandeira L B, Souza N C S E, et al. Prenatal and pubertal exposure to 17α-ethinylestradiol disrupts folliculogenesis and promotes morphophysiological changes in ovaries of old gerbils (Meriones unguiculatus)[J]. Journal of Developmental Origins of Health and Disease, 2022, 13(1): 49-60
    Kresnamurti A, Rakhma D N, Damayanti A, et al. AST/ALT levels, MDA, and liver histopathology of Echinometra mathaei ethanol extract on paracetamol-induced hepatotoxicity in rats[J]. Journal of Basic and Clinical Physiology and Pharmacology, 2021, 32(4): 511-516
    Tamagno W A, de Oliveira Sofiatti J R, Alves C, et al. Synthetic estrogen bioaccumulates and changes the behavior and biochemical biomarkers in adult zebrafish[J]. Environmental Toxicology and Pharmacology, 2022, 92: 103857
    Zhang F L, Kong L, Zhao A H, et al. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary[J]. Environmental Research, 2021, 198: 111225
    Massart S, Milla S, Redivo B, et al. Influence of short-term exposure to low levels of 17α-ethynylestradiol on expression of genes involved in immunity and on immune parameters in rainbow trout, Oncorhynchus mykiss[J]. Aquatic Toxicology, 2014, 157: 57-69
  • 加载中
计量
  • 文章访问数:  324
  • HTML全文浏览数:  324
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-23
邓倩, 于春洋, 马瑞, 张亚文, 李姝霖, 雷雨, 冯利强, 田建英. 环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响[J]. 生态毒理学报, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
引用本文: 邓倩, 于春洋, 马瑞, 张亚文, 李姝霖, 雷雨, 冯利强, 田建英. 环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响[J]. 生态毒理学报, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
DENG Qian, YU Chunyang, MA Rui, ZHANG Yawen, LI Shulin, LEI Yu, FENG Liqiang, TIAN Jianying. The Effects of Chronic Exposure to EE2 in Early Life on Neurodevelopment and Spatial Learning Behavior in Adult Male Rats[J]. Asian journal of ecotoxicology, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001
Citation: DENG Qian, YU Chunyang, MA Rui, ZHANG Yawen, LI Shulin, LEI Yu, FENG Liqiang, TIAN Jianying. The Effects of Chronic Exposure to EE2 in Early Life on Neurodevelopment and Spatial Learning Behavior in Adult Male Rats[J]. Asian journal of ecotoxicology, 2024, 19(6): 64-75. doi: 10.7524/AJE.1673-5897.20240623001

环境雌激素EE2早期慢暴露对雄性大鼠成年后神经发育与空间学习行为的影响

    通讯作者: 冯利强(1977—),男,硕士,副教授,主要研究方向为神经可塑性研究。E-mail:279748103@qq.com;  田建英(1963-),女,硕士,博士生导师,教授,主要研究方向为神经退行性变的环境机制。E-mail:tenengyi@163.com
    作者简介: 邓倩(1997—),女,硕士研究生,研究方向为神经可塑性研究,E-mail:2439024323@qq.com
  • 1. 宁夏医科大学基础医学院, 银川 750004;
  • 2. 银川市第一人民医院, 银川 750004;
  • 3. 青岛大学医学部基础医学院, 青岛 266071;
  • 4. 中国人民解放军联勤保障部队第九四二医院, 银川 750004
基金项目:

国家自然科学基金资助项目(81160338);宁夏自然科学基金项目(2022AAC03207,2024AAC03254);宁夏科技重点研发项目(2020BEG03048)

摘要: 环境雌激素17α-乙炔雌二醇(17alpha-ethynylestradiol, EE2)是一种常见的环境内分泌干扰物,主要经消化道被人和动物摄入,但其对中枢神经系统的影响尚不清楚。为探讨EE2早期慢暴露对Sprague-Dawley (SD)大鼠神经发育和成年后认知行为的影响及其机制,本研究选择5日龄雄性SD大鼠,随机分为3组:空白对照组(Control组)、EE2低剂量组(0.1 μg·kg-1)、EE2高剂量组(10 μg·kg-1),每组8只,EE2持续暴露16周。观察大鼠体质量、脑质量变化。采用Morris水迷宫、旷场实验观察大鼠行为学表现。Nissl染色和免疫组织化学染色法观察各组大鼠海马CA1区(CA1)、海马CA3区(CA3)、齿状回(DG)的细胞形态和脑源性神经营养因子(BDNF)的表达,Western Blot检测海马、大脑皮层的IL-1β、IL-10蛋白水平,并测定皮层和海马丙二醛(MDA)含量。结果显示,EE2暴露组大鼠体质量增长速度较对照组减缓,脑质量减轻。行为学发现,EE2组逃逸潜伏期延长,目标象限停留时间、跨台次数减少,中央区运动距离和中央区停留时间减少,并呈剂量依赖性变化。EE2暴露组海马各区神经元排列紊乱、形态不规则,DG区神经元前体细胞数量减少。进一步发现,EE2暴露组大鼠大脑皮层、海马组织的MDA含量均升高,IL-1β表达量增加,IL-10表达量下降。低剂量组海马DG区BDNF表达减少,高剂量组CA1、CA3、DG区BDNF表达均减少。以上结果表明,生命早期0.1 μg·kg-1 EE2慢暴露可引起雄性大鼠成年后空间学习记忆行为障碍,与海马结构紊乱、BDNF水平降低和脑组织炎症反应有关。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回