个人护理品中常见抗菌剂的环境分布及毒理学研究进展

石佳, 刘泽明, 马桥, 徐丹. 个人护理品中常见抗菌剂的环境分布及毒理学研究进展[J]. 生态毒理学报, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
引用本文: 石佳, 刘泽明, 马桥, 徐丹. 个人护理品中常见抗菌剂的环境分布及毒理学研究进展[J]. 生态毒理学报, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
SHI Jia, LIU Zeming, MA Qiao, XU Dan. Research Progress on Environmental Distribution and Toxicology of Commonly Used Antibacterial Agents in Personal Care Products[J]. Asian journal of ecotoxicology, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
Citation: SHI Jia, LIU Zeming, MA Qiao, XU Dan. Research Progress on Environmental Distribution and Toxicology of Commonly Used Antibacterial Agents in Personal Care Products[J]. Asian journal of ecotoxicology, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002

个人护理品中常见抗菌剂的环境分布及毒理学研究进展

    作者简介: 石佳(1997—),女,博士研究生,研究方向为环境毒理学,E-mail:774924022@qq.com
    通讯作者: 徐丹(1977-),女,博士,教授,研究方向为环境污染物的毒理学效应及对人体健康的影响、生物标志物的筛选与应用、空间生物学效应及损伤机制、小分子RNA (miRNA/lncRNA)调控机制研究。E-mail:jotan1995@dlmu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(42077382)

  • 中图分类号: X171.5

Research Progress on Environmental Distribution and Toxicology of Commonly Used Antibacterial Agents in Personal Care Products

    Corresponding author: XU Dan, jotan1995@dlmu.edu.cn
  • Fund Project:
  • 摘要: 个人护理品(PCPs)是人们生活中必不可少的一类日用品,包括洗手液、洗衣液及家用消毒剂等。在抗菌消毒类PCPs中添加的主要抗菌成分有三氯生(TCS)、对氯间二甲苯酚(PCMX)、氯己定(CHX)及季铵化合物(QACs),近年来这些物质作为新兴污染物在环境及人体中被频繁检出,具有潜在的环境和健康风险。本文系统归纳总结了TCS、PCMX、CHX及QACs的抗菌机制和应用、环境中的检出和归趋,以及毒性效应和健康风险,对深入研究PCPs中常用抗菌剂的毒性效应机制和评估健康风险具有重要参考价值。
  • 加载中
  • Yu Z Y, Jiang L, Yin D Q. Behavior toxicity to Caenorhabditis elegans transferred to the progeny after exposure to sulfamethoxazole at environmentally relevant concentrations[J]. Journal of Environmental Sciences, 2011, 23(2): 294-300
    Liu N, Jin X W, Feng C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system[J]. Environment International, 2020, 136: 105454
    Nowak-Lange M, Niedziałkowska K, Lisowska K. Cosmetic preservatives: Hazardous micropollutants in need of greater attention?[J]. International Journal of Molecular Sciences, 2022, 23(22): 14495
    Tan J H, Kuang H X, Wang C C, et al. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol[J]. Science of the Total Environment, 2021, 786: 147524
    Milanović M, Ðurić L, Milošević N, et al. Comprehensive insight into triclosan—From widespread occurrence to health outcomes[J]. Environmental Science and Pollution Research International, 2023, 30(10): 25119-25140
    Poger D, Mark A E. Effect of triclosan and chloroxylenol on bacterial membranes[J]. The Journal of Physical Chemistry B, 2019, 123(25): 5291-5301
    Alfhili M A, Lee M H. Triclosan: An update on biochemical and molecular mechanisms[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1607304
    AL-Adham I S I, Dinning A J, Eastwood I M, et al. Cell membrane effects of some common biocides[J].Journal of Industrial Microbiology and Biotechnology, 1998, 21(1): 6-10
    Maillard J Y. Bacterial target sites for biocide action[J]. Journal of Applied Microbiology, 2002, 92(Suppl.): 16S-27S
    Razin S, Argaman M.Lysis ofmycoplasma, bacterial protoplasts, spheroplasts and L-forms by various agents[J]. Journal of General Microbiology, 1963, 30: 155-172
    Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6): 442-448
    Heidler J, Halden R U. Mass balance assessment of triclosan removal during conventional sewage treatment[J]. Chemosphere, 2007, 66(2): 362-369
    Dar O I, Aslam R, Pan D, et al. Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review[J]. Environmental Technology & Innovation, 2022, 25: 102122
    代卓, 郑莉, 丁义燊, 等. 不同粒径微塑料对三氯生在热带爪蛙蝌蚪体内积累分布及其生态毒性的影响[J]. 环境科学学报, 2022, 42(12): 450-461

    Dai Z, Zheng L, Ding Y S, et al. Effects of microplastics with different particle sizes on the accumulation, distribution and ecotoxicity of triclosan in Xenopus tadpoles[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 450-461(in Chinese)

    Hawash H B, Moneer A A, Galhoum A A, etal. Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations[J]. Journal of Water Process Engineering, 2023, 52: 103490
    Zhang P W, Zhou H D, Li K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in North China[J]. Environmental Geochemistry and Health, 2018, 40(4): 1525-1539
    Kumar K S, Priya S M, Peck A M, et al. Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah,Georgia, USA[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(2): 275-285
    Zhang Z F, Wang L, Zhang X M, et al. Fate processes of parabens, triclocarban and triclosan during wastewater treatment: Assessment via field measurements and model simulations[J]. Environmental Science and Pollution Research International, 2021, 28(36): 50602-50610
    Lehutso R F, Daso A P, Okonkwo J O. Occurrence and environmental levels of triclosan and triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa[J]. Emerging Contaminants, 2017, 3(3): 107-114
    Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants[J]. Environment International, 2007, 33(2): 199-205
    Gangadharan Puthiya Veetil P, Vijaya Nadaraja A, Bhasi A, et al. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 167(6): 1603-1612
    Zhong W J, Wang D H, Xu X W. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents[J]. Journal of Hazardous Materials, 2012, 217: 286-292
    Kodama H, Hashimoto T, Tsuruoka M, et al. Microbial degradation of disinfectants. IV. Treatment by activated sludge of chlorhexidine[J]. Eisei Kagaku, 1988, 34(5): 408-413
    Golpe M C, Castro G, Ramil M, et al. Chlorhexidine residues in sludge from municipal wastewater treatment plants: Analytical determination and toxicity evaluation[J]. Analytical and Bioanalytical Chemistry, 2022, 414(22): 6571-6580
    Östman M, Lindberg R H, Fick J, et al. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater[J]. Water Research, 2017, 115: 318-328
    Keerthisinghe T P, Nguyen L N, Kwon E E, et al. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure[J]. Journal of Environmental Management, 2019, 237: 629-635
    Barber O W, Hartmann E M. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(15): 2691-2719
    Ejtahed H S, Hasani-Ranjbar S, Siadat S D, et al. The most important challenges ahead of microbiome pattern in the post era of the COVID-19 pandemic[J]. Journal of Diabetes and Metabolic Disorders, 2020, 19(2): 2031-2033
    Juksu K, Zhao J L, Liu Y S, et al. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand[J]. Science of the TotalEnvironment, 2019, 690: 1110-1119
    Petrie B, Youdan J, Barden R, et al. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2016, 1431: 64-78
    Komolafe O, Mrozik W, Dolfing J, et al. Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil[J]. Journal of Environmental Management, 2021, 287: 112286
    Reyes Contreras C, López D, Leiva A M, et al. Removal of organic micropollutants in wastewater treated by activated sludge and constructed wetlands: A comparative study[J]. Water, 2019, 11(12): 2515
    Mann B C, Bezuidenhout J J, Bezuidenhout C C. Biocide resistant and antibiotic cross-resistant potential pathogens from sewage and river water from a wastewater treatment facility in the North-West, Potchefstroom, South Africa[J]. Water Science and Technology, 2019, 80(3): 551-562
    Matamoros V, Arias C A, Nguyen L X, et al. Occurrence and behavior of emerging contaminants in surface water and a restored wetland[J]. Chemosphere, 2012, 88(9): 1083-1089
    Esteban S, Gorga M, Petrovic M, et al. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain[J]. Science of the Total Environment, 2014, 466/467: 939-951
    Nishi I, Kawakami T, Onodera S. Monitoring of triclosan in the surface water of the Tone Canal, Japan[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 80(2): 163-166
    Ma X Q, Wan Y J, Wu M Y, et al. Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure[J]. Chemosphere, 2018, 213: 517-525
    Ramaswamy B R, Shanmugam G, Velu G, et al. GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1586-1593
    Madikizela L, Muthwa S, Chimuka L. Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography[J]. South African Journal of Chemistry, 2014, 67
    Dsikowitzky L, Sträter M, Ariyani F, et al. First comprehensive screening of lipophilic organic contaminants in surface waters of the megacity Jakarta, Indonesia[J]. Marine pollution bulletin, 2016, 110(2): 654-664
    Smith A J, McGowan T, Devlin M J, et al. Screening for contaminant hotspots in the marine environment of Kuwait using ecotoxicological and chemical screening techniques[J]. Marine Pollution Bulletin, 2015, 100(2): 681-688
    Min K, Yang Q L, Zhong X J, et al. Rapid analysis of anionic and cationic surfactants in water by paper spray mass spectrometry[J]. Analytical Methods, 2021, 13(8): 986-995
    Li W L, Zhang Z F, Li Y F, et al. Assessing the distributions and fate of household and personal care chemicals (HPCCs) in the Songhua Catchment, Northeast China[J]. Science of the Total Environment, 2021, 786: 147484
    Olkowska E, Ruman M, Kowalska A, et al. Determination of surfactants in environmental samples. part Ⅱ. Anionic compounds[J]. Ecological Chemistry and Engineering S, 2013, 20(2): 331-342
    Lalonde B, Garron C, Dove A, et al. Investigation of spatial distributions and temporal trends of triclosan in Canadian surface waters[J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2): 231-245
    Lyndall J, Barber T, Mahaney W, et al. Evaluation of triclosan in Minnesota lakes and rivers: Part Ⅰ- Ecological risk assessment[J]. Ecotoxicology and Environmental Safety, 2017, 142: 578-587
    Karnjanapiboonwong A, Suski J G, Shah A A, et al. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site[J]. Water, Air, & Soil Pollution, 2011, 216(1): 257-273
    Sorensen J P, Lapworth D J, Nkhuwa D C, et al. Emerging contaminants in urban groundwater sources in Africa[J]. Water Research, 2015, 72: 51-63
    杨雅淇, 童一帆, 田胜艳. 三氯生在水生生态系统中的污染现状及其生物毒性效应[J]. 生态毒理学报, 2019, 14(6): 47-56

    Yang Y Q, Tong Y F, Tian S Y. Pollution status and toxic effect of triclosan in aquatic ecosystem[J]. Asian Journal of Ecotoxicology, 2019, 14(6): 47-56(in Chinese)

    Nowak M, Zawadzka K, Szemraj J, et al. Biodegradation of chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into ecotoxicity and metabolic pathways[J]. International Journal of Molecular Sciences, 2021, 22(9): 4360
    Won E J, Byeon E, Lee Y H, et al. Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants[J]. Marine Pollution Bulletin, 2022, 175: 113396
    Capkin E, Ozcelep T, Kayis S, et al. Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout[J]. Chemosphere, 2017, 182: 720-729
    Jesus F T, Oliveira R, Silva A, et al. Lethal and sublethal effects of the biocide chlorhexidine on aquatic organisms[J]. Ecotoxicology, 2013, 22(9): 1348-1358
    Qian Y, He Y X, Li H, et al. Benzalkonium chlorides (C12) inhibits growth but motivates microcystins release of Microcystis aeruginosa revealed by morphological, physiological, and iTRAQ investigation[J]. Environmental Pollution, 2022, 292(Pt A): 118305
    中华人民共和国国家质量监督检验检疫总局. 化学品分类和标签规范第28部分: 对水生环境的危害: GB 30000.28—2013[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2013General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Rules for Classification and Labelling of Chemicals, Part 28: Hazardous to Aquatic Environment: GB 30000.28

    —2013[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2013(in Chinese)

    Zhang Y H, Liu M, Liu J F, et al. Combined toxicity of triclosan, 2, 4-dichlorophenol and 2, 4, 6-trichlorophenol to zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2018, 57: 9-18
    Foran C M, Bennett E R, Benson W H. Developmental evaluation of a potential non-steroidal estrogen: Triclosan[J]. Marine Environmental Research, 2000, 50(1/2/3/4/5): 153-156
    Orvos D R, Versteeg D J, Inauen J, et al. Aquatic toxicity of triclosan[J]. Environmental Toxicology and Chemistry: An International Journal, 2002, 21(7): 1338-1349
    Liang X M, Nie X P, Ying G G, et al. Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach[J]. Chemosphere, 2013, 90(3): 1281-1288
    Escarrone A L, Caldas S S, Primel E G, et al. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater[J]. Science of the Total Environment, 2016, 560/561: 218-224
    Wang F, Guo X M, Chen W G, et al. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect[J]. Toxicology and Applied Pharmacology, 2017, 336: 49-54
    Wang F, Xu R J, Zheng F F, et al. Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus)[J]. Experimental Animals, 2018, 67(2): 219-227
    Khatikarn J, Satapornvanit K, Price O R, et al. Effects of triclosan on aquatic invertebrates in tropics and the influence of pH on its toxicity on microalgae[J]. Environmental Science and Pollution Research International, 2018, 25(14): 13244-13253
    Amusan B O, Koleosho A F, Richard G E. First report on the acute toxicity of chloroxylenol to the whirligig beetle, Orectogyrus alluaudi (Coleoptera: Gyrinidae)[EB/OL]. (2022-08-16)[2024-06-19]. https://doi.org/10.21203/rs.3.rs-1493089/v1
    Kim S, Ji K, Shin H, et al. Occurrences of benzalkonium chloride in streams near a pharmaceutical manufacturing complex in Korea and associated ecological risk[J]. Chemosphere, 2020, 256: 127084
    Tato T, Beiras R. The use of the marine microalga Tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species[J]. Frontiers in Marine Science, 2019, 6: 488
    Kwon Y S, Jung J W, Kim Y J, et al. Proteomic analysis of whole-body responses in medaka (Oryzias latipes) exposed to benzalkonium chloride[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(12): 1387-1397
    刘涛, 郭辰, 赵晓红. 毒理学研究中的体外细胞毒性评价[J]. 生命科学, 2014, 26(3): 319-324

    Liu T, Guo C, Zhao X H. In vitro cytotoxicity evaluation in toxicology[J]. Chinese Bulletin of Life Sciences, 2014, 26(3): 319-324(in Chinese)

    段晨晖, 房彦军, 梁俊, 等. 邻苯二甲酸酯类增塑剂的体外细胞毒性评价[J]. 生态毒理学报, 2019, 14(6): 23-31

    Duan C H, Fang Y J, Liang J, et al. In vitro cytotoxicity evaluation of phthalate plasticizers[J]. Asian Journal of Ecotoxicology, 2019, 14(6): 23-31(in Chinese)

    Thomas R E, Kotchevar A T. Comparative in vitro metabolism of chloroxylenol, chlorophene, and triclosan with rat, mouse, and human hepatic microsomes[J]. Toxicological & Environmental Chemistry, 2010, 92(9): 1735-1747
    An G, Kim M, Park J, et al. Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2023, 268: 109617
    Böhle S, Röhner E, Zippelius T, et al. Cytotoxic effect of sodium hypochlorite (Lavanox 0.08%) and chlorhexidine gluconate (Irrisept 0.05%) on human osteoblasts[J]. European Journal of Orthopaedic Surgery & Traumatology, 2022, 32(1): 81-89
    Herron J, Reese R C, Tallman K A, et al. Identification of environmental quaternary ammonium compounds as direct inhibitors of cholesterol biosynthesis[J]. Toxicological Sciences, 2016, 151(2): 261-270
    Datta S, He G C, Tomilov A, et al. In vitro evaluation of mitochondrial function and estrogen signaling in cell lines exposed to the antiseptic cetylpyridinium chloride[J]. Environmental Health Perspectives, 2017, 125(8): 087015
    Arias-Cavieres A, More J, Vicente J M, et al. Triclosan impairs hippocampal synaptic plasticity and spatial memory in male rats[J]. Frontiers in Molecular Neuroscience, 2018, 11: 429
    Szychowski K A, Wnuk A, Rzemieniec J, et al. Triclosan-evoked neurotoxicity involves NMDAR subunits with the specific role of GluN2A in caspase-3-dependent apoptosis[J]. Molecular Neurobiology, 2019, 56(1): 1-12
    Wu Y F, Beland F A, Fang J L. Effect of triclosan, triclocarban, 2,2’,4,4’-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis[J]. Toxicology in Vitro, 2016, 32: 310-319
    Zhang P, Yang M, Zeng L, et al. P38/TRHr-dependent regulation of TPO in thyroid cells contributes to the hypothyroidism of triclosan-treated rats[J]. Cellular Physiology and Biochemistry, 2018, 45(4): 1303-1315
    Kenda, Karas Kuželič]ki N, Iida M, et al. Triclocarban, triclosan, bromochlorophene, chlorophene, and climbazole effects on nuclear receptors: An in silico and in vitro study[J]. Environmental Health Perspectives, 2020, 128(10): 107005
    Liu J X, Werner J, Kirsch T, et al. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts[J]. Journal of Bone and Joint Infection, 2018, 3(4): 165-172
    Inácio  S, Costa G N, Domingues N S, et al. Mitochondrial dysfunction is the focus of quaternary ammonium surfactant toxicity to mammalian epithelial cells[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(6): 2631-2639
    Li D S, Sangion A, Li L. Evaluating consumer exposure to disinfecting chemicals against coronavirus disease 2019(COVID-19) and associated health risks[J]. Environment International, 2020, 145: 106108
    Zhang H, Li J X, An Y L, et al. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood[J]. Chemosphere, 2022, 288(Pt 2): 132563
    Arnold W A, Blum A, Branyan J, et al. Quaternary ammonium compounds: A chemical class of emerging concern[J]. Environmental Science & Technology, 2023, 57(20): 7645-7665
    Cai S F, Zhu J H, Sun L L, et al. Association between urinary triclosan with bone mass density and osteoporosis in US adult women, 2005—2010[J]. The Journal of Clinical Endocrinology and Metabolism, 2019, 104(10): 4531-4538
    Gerges B Z, Rosenblatt J, Truong Y L, et al. Review of allergic reactions from use of chlorhexidine on medical products in clinical settings over 40 years: Risks and mitigations[J]. Infection Control and Hospital Epidemiology, 2022, 43(6): 775-789
    Pereira-Maróstica H V, Ames-Sibin A P, Pateis V O, et al. Harmful effects of chlorhexidine on hepatic metabolism[J]. Environmental Toxicology and Pharmacology, 2023, 102: 104217
  • 加载中
计量
  • 文章访问数:  447
  • HTML全文浏览数:  447
  • PDF下载数:  82
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-19
石佳, 刘泽明, 马桥, 徐丹. 个人护理品中常见抗菌剂的环境分布及毒理学研究进展[J]. 生态毒理学报, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
引用本文: 石佳, 刘泽明, 马桥, 徐丹. 个人护理品中常见抗菌剂的环境分布及毒理学研究进展[J]. 生态毒理学报, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
SHI Jia, LIU Zeming, MA Qiao, XU Dan. Research Progress on Environmental Distribution and Toxicology of Commonly Used Antibacterial Agents in Personal Care Products[J]. Asian journal of ecotoxicology, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002
Citation: SHI Jia, LIU Zeming, MA Qiao, XU Dan. Research Progress on Environmental Distribution and Toxicology of Commonly Used Antibacterial Agents in Personal Care Products[J]. Asian journal of ecotoxicology, 2024, 19(6): 48-63. doi: 10.7524/AJE.1673-5897.20240619002

个人护理品中常见抗菌剂的环境分布及毒理学研究进展

    通讯作者: 徐丹(1977-),女,博士,教授,研究方向为环境污染物的毒理学效应及对人体健康的影响、生物标志物的筛选与应用、空间生物学效应及损伤机制、小分子RNA (miRNA/lncRNA)调控机制研究。E-mail:jotan1995@dlmu.edu.cn
    作者简介: 石佳(1997—),女,博士研究生,研究方向为环境毒理学,E-mail:774924022@qq.com
  • 大连海事大学环境科学与工程学院环境系统生物学研究所, 大连 116026
基金项目:

国家自然科学基金面上项目(42077382)

摘要: 个人护理品(PCPs)是人们生活中必不可少的一类日用品,包括洗手液、洗衣液及家用消毒剂等。在抗菌消毒类PCPs中添加的主要抗菌成分有三氯生(TCS)、对氯间二甲苯酚(PCMX)、氯己定(CHX)及季铵化合物(QACs),近年来这些物质作为新兴污染物在环境及人体中被频繁检出,具有潜在的环境和健康风险。本文系统归纳总结了TCS、PCMX、CHX及QACs的抗菌机制和应用、环境中的检出和归趋,以及毒性效应和健康风险,对深入研究PCPs中常用抗菌剂的毒性效应机制和评估健康风险具有重要参考价值。

English Abstract

参考文献 (87)

返回顶部

目录

/

返回文章
返回