低浓度PFOA污染对大豆生理生化特性的影响

陈平玉, 张巍巍, 胡恩柱. 低浓度PFOA污染对大豆生理生化特性的影响[J]. 生态毒理学报, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
引用本文: 陈平玉, 张巍巍, 胡恩柱. 低浓度PFOA污染对大豆生理生化特性的影响[J]. 生态毒理学报, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
CHEN Pingyu, ZHANG Weiwei, HU Enzhu. Effect of Low-Level PFOA Stress on the Physiological and Biochemical Characteristics of Soybean[J]. Asian journal of ecotoxicology, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
Citation: CHEN Pingyu, ZHANG Weiwei, HU Enzhu. Effect of Low-Level PFOA Stress on the Physiological and Biochemical Characteristics of Soybean[J]. Asian journal of ecotoxicology, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001

低浓度PFOA污染对大豆生理生化特性的影响

    作者简介: 陈平玉(2001—),女,硕士研究生,研究方向为全(多)氟烷基化合物污染的生态效应评价,E-mail:2201684@stu.neu.edu.cn
    通讯作者: 胡恩柱(1985-),男,博士,副教授,主要研究方向为土壤环境过程与生态效应。E-mail:huez@smm.neu.edu.cn
  • 基金项目:

    国家自然科学基金项目(41977388);中央高校基本科研业务费专项资金资助项目(N2225037)

  • 中图分类号: X171.5

Effect of Low-Level PFOA Stress on the Physiological and Biochemical Characteristics of Soybean

    Corresponding author: HU Enzhu, huez@smm.neu.edu.cn
  • Fund Project:
  • 摘要: 全氟辛酸(PFOA)在环境中广泛分布且难以降解,对生态系统存在潜在风险。本研究采用盆栽实验,研究了100 ng·g-1的土壤PFOA污染对大豆叶片可溶性蛋白含量、丙二醛含量、抗氧化能力、光合色素含量和光合作用的影响。结果显示,PFOA胁迫使得大豆植株地下部分干生物量下降21.3%,地上部分干生物量下降14.4%,幼苗期(V2)叶片中可溶性蛋白含量下降15.5%,鼓粒期(R6)叶片总酚含量显著下降61.9%,2个时期内叶片DPPH自由基清除率分别显著升高21.1%和23.6%。PFOA对大豆生长发育存在一定的胁迫作用,激活了植物的抗氧化防御机制,减少脂质过氧化产物的产生。随着处理时间的延长,大豆体内自由基产生与清除的平衡被打破,自由基大量积累,叶片中的酚类难以满足清除活性氧的需求,总酚含量显著下降。大豆能够通过激活抗氧化系统来减轻低浓度PFOA胁迫作用的影响。
  • 加载中
  • Krafft M P, Riess J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability: Part one[J]. Chemosphere, 2015, 129: 4-19
    Na S T, Hai R T, Wang X H, et al. Trends and levels of perfluorinated compounds in soil and sediment surrounding a cluster of metal plating industries[J]. Soil and Sediment Contamination, 2021, 30(4): 423-435
    Shigei M, Ahrens L, Hazaymeh A, et al. Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan[J]. Science of the Total Environment, 2020, 716: 137057
    Gebbink W A, van Leeuwen S P J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands[J]. Environment International, 2020, 137: 105583
    Washington J W, Yoo H, Ellington J J, et al. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22): 8390-8396
    Liu Z Y, Lu Y L, Shi Y J, et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China[J]. Environment International, 2017, 106: 37-47
    Liu Z Y, Lu Y L, Wang T Y, et al. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China[J]. Environment International, 2016, 91: 69-77
    Wang T T, Ying G G, Shi W J, et al. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: Tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS)[J]. Environmental Science & Technology, 2020, 54(10): 6009-6020
    Wang T T, Ying G G, He L Y, et al. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale[J]. Science of the Total Environment, 2020, 733: 139383
    Zhao S Y, Fang S H, Zhu L Y, et al. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil[J]. Environmental Pollution, 2014, 184: 495-501
    Judy J D, Gravesen C, Christopher Wilson P, et al. Trophic transfer of PFAS from tomato (Solanum lycopersicum) to tobacco hornworm (Manduca sexta) caterpillars[J]. Environmental Pollution, 2022, 310: 119814
    Wang Z Y, Zhang T T, Wu J J, et al. Male reproductive toxicity of perfluorooctanoate (PFOA): Rodent studies[J]. Chemosphere, 2021, 270: 128608
    Zhang P P, Qi C Y, Ma Z N, et al. Perfluorooctanoic acid exposure in vivo perturbs mitochondrial metabolic during oocyte maturation[J]. Environmental Toxicology, 2022, 37(12): 2965-2976
    Li P Y, Xiao Z Y, Xie X C, et al. Perfluorooctanoic acid (PFOA) changes nutritional compositions in lettuce (Lactuca sativa) leaves by activating oxidative stress[J]. Environmental Pollution, 2021, 285: 117246
    Wang T T, Wang S, Shao S, et al. Perfluorooctanoic acid (PFOA)-induced alterations of biomolecules in the wetland plant Alisma orientale[J]. Science of the Total Environment, 2022, 820: 153302
    Gredelj A, Nicoletto C, Polesello S, et al. Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications[J]. Science of the Total Environment, 2020, 720: 137333
    Zhou L N, Xia M J, Wang L, et al. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.)[J]. Chemosphere, 2016, 159: 420-425
    Pietrini F, Wyrwicka-Drewniak A, Passatore L, et al. PFOA accumulation in the leaves of basil (Ocimum basilicum L.) and its effects on plant growth, oxidative status, and photosynthetic performance[J]. BMC Plant Biology, 2024, 24(1): 556
    Felizeter S, Jürling H, Kotthoff M, et al. Influence of soil on the uptake of perfluoroalkyl acids by lettuce: A comparison between a hydroponic study and a field study[J]. Chemosphere, 2020, 260: 127608
    Zhang Y W, Tan D F, Geng Y, et al. Perfluorinated compounds in greenhouse and open agricultural producing areas of three provinces of China: Levels, sources and risk assessment[J]. International Journal of Environmental Research and Public Health, 2016, 13(12): 1224
    杨鸿波, 廖朝选, 赵亚洲, 等. 3种作物初期生长对全氟辛烷磺酸盐和全氟辛酸的响应及富集特征[J]. 江苏农业科学, 2018, 46(15): 232-237

    Yang H B, Liao C X, Zhao Y Z, et al. Response and enrichment characteristics of initial growth of three crops to perfluorooctane sulfonate and perfluorooctanoic acid[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 232-237(in Chinese)

    Jiang T, Zhang W L, Liang Y N. Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects on functional genes related to nitrification, denitrification, and nitrogen fixation[J]. Science of the Total Environment, 2022, 838: 156640
    Zhao S Y, Liang T K, Zhou T, et al. Biotransformation and responses of antioxidant enzymes in hydroponically cultured soybean and pumpkin exposed to perfluorooctane sulfonamide (FOSA)[J]. Ecotoxicology and Environmental Safety, 2018, 161: 669-675
    朱秀红, 樊博, 杨会焕, 等. 生物炭配施氮素对Cd胁迫下泡桐幼苗生理生态的影响[J]. 西南农业学报, 2024, 37(2): 302-312

    Zhu X H, Fan B, Yang H H, et al. Effects of biochar combined with nitrogen on physiology and ecology of Paulownia fortunei seedlings under Cd stress[J]. Southwest China Journal of Agricultural Sciences, 2024, 37(2): 302-312(in Chinese)

    王晶英, 敖红, 张杰. 植物生理生化实验技术与原理[M]. 哈尔滨: 东北林业大学出版社, 2003: 22-23, 135
    Kähkönen M P, Hopia A I, Vuorela H J, et al. Antioxidant activity of plant extracts containing phenolic compounds[J]. Journal of Agricultural and Food Chemistry, 1999, 47(10): 3954-3962
    Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions, 1983, 11(5): 591-592
    Qu B C, Zhao H X, Zhou J T. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant[J]. Chemosphere, 2010, 79(5): 555-560
    Du W C, Liu X, Zhao L J, et al. Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics[J]. Science of the Total Environment, 2020, 724: 138257
    Lan Z H, Zhou M, Yao Y M, et al. Plant uptake and translocation of perfluoroalkyl acids in a wheat-soil system[J]. Environmental Science and Pollution Research International, 2018, 25(31): 30907-30916
    Li R, Tang T H, Qiao W C, et al. Toxic effect of perfluorooctane sulfonate on plants in vertical-flow constructed wetlands[J]. Journal of Environmental Sciences (China), 2020, 92: 176-186
    Yang X P, Ye C C, Liu Y, et al. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana[J]. Environmental Pollution, 2015, 206: 560-566
    An J, Cheng C, Hu Z M, et al. The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS[J]. Environmental and Experimental Botany, 2018, 155: 45-55
    Sharma N, Barion G, Shrestha I, et al. Accumulation and effects of perfluoroalkyl substances in three hydroponically grown Salix L. species[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110150
    Pietrini F, Passatore L, Fischetti E, et al. Evaluation of morpho-physiological traits and contaminant accumulation ability in Lemna minor L. treated with increasing perfluorooctanoic acid (PFOA) concentrations under laboratory conditions[J]. Science of the Total Environment, 2019, 695: 133828
    Zhang D Y, Shen X Y, Xu X L. The effects of perfluorooctane sulfonate (PFOS) on Chinese cabbage (Brassica rapa pekinensis) germination and development[J]. Procedia Engineering, 2011, 18: 206-213
    Liu W, Li J W, Gao L C, et al. Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus[J]. Environmental Pollution, 2018, 233: 8-15
    Xu D M, Chen X S, Shao B. Oxidative damage and cytotoxicity of perfluorooctane sulfonate on Chlorella vulgaris[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(1): 127-132
    González-Naranjo V, Boltes K, de Bustamante I, et al. Environmental risk of combined emerging pollutants in terrestrial environments: Chlorophyll a fluorescence analysis[J]. Environmental Science and Pollution Research International, 2015, 22(9): 6920-6931
    Li P Y, Sun J, Xie X C, et al. Stress response and tolerance to perfluorooctane sulfonate (PFOS) in lettuce (Lactuca sativa)[J]. Journal of Hazardous Materials, 2021, 404(Pt B): 124213
    Lin Q Q, Zhou C, Chen L, et al. Accumulation and associated phytotoxicity of novel chlorinated polyfluorinated ether sulfonate in wheat seedlings[J]. Chemosphere, 2020, 249: 126447
    Li P Y, Oyang X, Xie X C, et al. Perfluorooctanoic acid and perfluorooctane sulfonate co-exposure induced changes of metabolites and defense pathways in lettuce leaves[J]. Environmental Pollution, 2020, 256: 113512
    Zhao L J, Lu L, Wang A D, et al. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1935-1947
    Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: From genes to the field[J]. Journal of Experimental Botany, 2012, 63(10): 3523-3543
    Tauqeer H M, Ali S, Rizwan M, et al. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response[J]. Ecotoxicology and Environmental Safety, 2016, 126: 138-146
    王贺正, 马均, 李旭毅, 等. 水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究[J]. 西南农业学报, 2004, 17(5): 594-599

    Wang H Z, Ma J, Li X Y, et al. Study on drought resistance and screening of the drought resistance assessment indexes at germinating stage of rice[J]. Southwest China Journal of Agricultural Sciences, 2004, 17(5): 594-599(in Chinese)

    Li Y L, He L Y, Lyu L X, et al. Review on plant uptake of PFOS and PFOA for environmental cleanup: Potential and implications[J]. Environmental Science and Pollution Research International, 2021, 28(24): 30459-30470
    杨顺航, 李立杰, 余佳妮, 等. 斜生栅藻对全氟辛酸和Zn2+联合胁迫的生理生化响应[J]. 广东海洋大学学报, 2024, 44(1): 64-75

    Yang S H, Li L J, Yu J N, et al. Physiological and biochemical responses of Scenedesmus obliquus under the stress of PFOA and Zn2+[J]. Journal of Guangdong Ocean University, 2024, 44(1): 64-75(in Chinese)

    Wang X L, Zhang J W, Liu Y, et al. Effect of florasulam on oxidative damage and apoptosis in larvae and adult zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2023, 446: 130682
    刘文娇, 钱骏榆, 段星, 等. 全氟辛酸暴露对小鼠肝脏损伤的机制研究[C]// 中国毒理学会. 中国毒理学会第十次全国毒理学大会论文集. 杭州: 浙江农林大学动物科技学院,动物医学院, 2023: 1
    Xu D M, Li C D, Chen H, et al. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity[J]. Ecotoxicology and Environmental Safety, 2013, 88: 103-107
    Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT - Food Science and Technology, 1995, 28(1): 25-30
    Li P Y, Xiao Z Y, Sun J, et al. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media[J]. Science of the Total Environment, 2020, 726: 138382
    Mittler R. ROS are good[J]. Trends in Plant Science, 2017, 22(1): 11-19
    Li P Y, Oyang X, Xie X C, et al. Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics[J]. Journal of Hazardous Materials, 2020, 389: 121852
    Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols: Chemical properties, biological activities, and synthesis[J]. Angewandte Chemie, 2011, 50(3): 586-621
    Arora A, Byrem T M, Nair M G, et al. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids[J]. Archives of Biochemistry and Biophysics, 2000, 373(1): 102-109
  • 加载中
计量
  • 文章访问数:  295
  • HTML全文浏览数:  295
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-27
陈平玉, 张巍巍, 胡恩柱. 低浓度PFOA污染对大豆生理生化特性的影响[J]. 生态毒理学报, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
引用本文: 陈平玉, 张巍巍, 胡恩柱. 低浓度PFOA污染对大豆生理生化特性的影响[J]. 生态毒理学报, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
CHEN Pingyu, ZHANG Weiwei, HU Enzhu. Effect of Low-Level PFOA Stress on the Physiological and Biochemical Characteristics of Soybean[J]. Asian journal of ecotoxicology, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001
Citation: CHEN Pingyu, ZHANG Weiwei, HU Enzhu. Effect of Low-Level PFOA Stress on the Physiological and Biochemical Characteristics of Soybean[J]. Asian journal of ecotoxicology, 2024, 19(6): 119-127. doi: 10.7524/AJE.1673-5897.20240627001

低浓度PFOA污染对大豆生理生化特性的影响

    通讯作者: 胡恩柱(1985-),男,博士,副教授,主要研究方向为土壤环境过程与生态效应。E-mail:huez@smm.neu.edu.cn
    作者简介: 陈平玉(2001—),女,硕士研究生,研究方向为全(多)氟烷基化合物污染的生态效应评价,E-mail:2201684@stu.neu.edu.cn
  • 1. 东北大学冶金学院, 沈阳 110819;
  • 2. 沈阳大学区域污染环境生态修复教育部重点实验室, 沈阳 110044
基金项目:

国家自然科学基金项目(41977388);中央高校基本科研业务费专项资金资助项目(N2225037)

摘要: 全氟辛酸(PFOA)在环境中广泛分布且难以降解,对生态系统存在潜在风险。本研究采用盆栽实验,研究了100 ng·g-1的土壤PFOA污染对大豆叶片可溶性蛋白含量、丙二醛含量、抗氧化能力、光合色素含量和光合作用的影响。结果显示,PFOA胁迫使得大豆植株地下部分干生物量下降21.3%,地上部分干生物量下降14.4%,幼苗期(V2)叶片中可溶性蛋白含量下降15.5%,鼓粒期(R6)叶片总酚含量显著下降61.9%,2个时期内叶片DPPH自由基清除率分别显著升高21.1%和23.6%。PFOA对大豆生长发育存在一定的胁迫作用,激活了植物的抗氧化防御机制,减少脂质过氧化产物的产生。随着处理时间的延长,大豆体内自由基产生与清除的平衡被打破,自由基大量积累,叶片中的酚类难以满足清除活性氧的需求,总酚含量显著下降。大豆能够通过激活抗氧化系统来减轻低浓度PFOA胁迫作用的影响。

English Abstract

参考文献 (57)

返回顶部

目录

/

返回文章
返回