大蒜产地不同轮作模式对微塑料丰度和形态分布的影响

程钊, 严雅文, 张雷刚, 曹瑶瑶, 吕康, Fidèle Suanon, 葛静, 宋立晓, 余向阳, 生弘杰. 大蒜产地不同轮作模式对微塑料丰度和形态分布的影响[J]. 生态毒理学报, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
引用本文: 程钊, 严雅文, 张雷刚, 曹瑶瑶, 吕康, Fidèle Suanon, 葛静, 宋立晓, 余向阳, 生弘杰. 大蒜产地不同轮作模式对微塑料丰度和形态分布的影响[J]. 生态毒理学报, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
CHENG Zhao, YAN Yawen, ZHANG Leigang, CAO Yaoyao, LYU Kang, Fidèle Suanon, GE Jing, SONG Lixiao, YU Xiangyang, SHENG Hongjie. The Impact of Various Crop Rotation Patterns on Microplastic Abundance and Distribution in Garlic-producing Regions[J]. Asian journal of ecotoxicology, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
Citation: CHENG Zhao, YAN Yawen, ZHANG Leigang, CAO Yaoyao, LYU Kang, Fidèle Suanon, GE Jing, SONG Lixiao, YU Xiangyang, SHENG Hongjie. The Impact of Various Crop Rotation Patterns on Microplastic Abundance and Distribution in Garlic-producing Regions[J]. Asian journal of ecotoxicology, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001

大蒜产地不同轮作模式对微塑料丰度和形态分布的影响

    作者简介: 程钊(1999—),男,硕士研究生,研究方向为农产品质量与安全,E-mail:1617738784@qq.com
    通讯作者: 生弘杰(1989-),男,博士,副研究员,主要研究方向为土壤有机污染与修复。E-mail:hjsheng@jaas.ac.cn
  • 基金项目:

    国家自然科学基金项目(42007133);江苏省农业科技自主创新资金项目(CX (22)3131);福建省引导性项目(2022N0026);江苏中晚熟大蒜产业集群建设项目(13922204)

  • 中图分类号: X171.5

The Impact of Various Crop Rotation Patterns on Microplastic Abundance and Distribution in Garlic-producing Regions

    Corresponding author: SHENG Hongjie, hjsheng@jaas.ac.cn
  • Fund Project:
  • 摘要: 地膜的大量使用会导致土壤微塑料(microplastics, MPs)和邻苯二甲酸酯(phthalate acid esters, PAEs)的污染,但较少有研究报道不同轮作模式对土壤中MPs丰度和形态分布的影响,同时MPs与PAEs之间在农业土壤中的相关性尚不清楚。本研究采集了邳州大蒜种植区内大蒜-玉米、大蒜-大豆和大蒜-水稻3种不同轮作模式下的土壤,采用激光红外成像系统对土壤中MPs的丰度、组成以及形态特征进行分析鉴定,并采用气相色谱-质谱联用法(GC-MS)法分析土壤中16种PAEs含量,结合土壤MPs丰度分析二者之间的相关性。结果表明,邳州大蒜种植区土壤MPs的平均丰度为4 710.67 个·kg-1,主要由聚酰胺(PA)、聚乙烯(PE)和聚氯乙烯(PVC)等类型组成,分别占比47.82%、13.94%和17.51%;MPs以碎片状为主,且超过75%的MPs粒径≤ 50 μm。不同轮作模式下的MPs平均丰度差异明显,呈现大蒜-玉米土壤(5 788.02 个·kg-1)>大蒜-水稻土壤(4 983.71 个·kg-1)>大蒜-大豆土壤(3 090.93 个·kg-1)的趋势。大蒜-大豆土壤MPs的平均面积及高度和宽度等形态特征与大蒜-玉米土壤和大蒜-水稻土壤的MPs均存在显著差异。此外,土壤中的PAEs种类主要为邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二甲酯(DMP)。邳州大蒜种植区土壤中MPs总丰度与∑PAEs含量(R2= 0.68, P= 0.0005)和DEHP含量(R2= 0.54, P = 0.004)呈显著正相关。
  • 加载中
  • Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838
    Qi R M, Jones D L, Li Z, et al. Behavior of microplastics and plastic film residues in the soil environment: A critical review[J]. Science of the Total Environment, 2020, 703: 134722
    Xu Q J, Xing R L, Sun M D, et al. Microplastics in sediments from an interconnected river-estuary region[J]. Science of the Total Environment, 2020, 729: 139025
    Ivar do Sul J A, Costa M F. The present and future of microplastic pollution in the marine environment[J]. Environmental Pollution, 2014, 185: 352-364
    Wright S L, Thompson R C, Galloway T S. The physical impacts of microplastics on marine organisms: A review[J]. Environmental Pollution, 2013, 178: 483-492
    熊飞, 黄庆辰, 何玉虹, 等. 微塑料污染现状及其毒性效应和机制研究进展[J]. 生态毒理学报, 2021, 16(5): 211-220

    Xiong F, Huang Q C, He Y H, et al. Research progress on current status of microplastics pollution and its toxic effects and mechanisms[J]. Asian Journal of Ecotoxicology, 2021, 16(5): 211-220(in Chinese)

    Bakir A, Rowland S J, Thompson R C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment[J]. Marine Pollution Bulletin, 2012, 64(12): 2782-2789
    Primpke S, Christiansen S H, Cowger W, et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics[J]. Applied Spectroscopy, 2020, 74(9): 1012-1047
    贾涛, 薛颖昊, 靳拓, 等. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展[J]. 生态毒理学报, 2022, 17(5): 202-216

    Jia T, Xue Y H, Jin T, et al. Research progress on sources, distribution and potential effects of microplastics in soil[J]. Asian Journal of Ecotoxicology, 2022, 17(5): 202-216(in Chinese)

    Büks F, Schaik N, Kaupenjohann M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?[J]. Soil, 2020, 6(2): 245-267
    Mintenig S M, Löder M G J, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635
    Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20): 10777-10779
    Chubarenko I, Bagaev A, Zobkov M, et al. On some physical and dynamical properties of microplastic particles in marine environment[J]. Marine Pollution Bulletin, 2016, 108(1/2): 105-112
    杜涛, 罗思, 田浩, 等. 农田地膜微塑料残留量的测定方法研究[J]. 再生资源与循环经济, 2022, 15(9): 28-31

    Du T, Luo S, Tian H, et al. Study on determination method of residual quantity of mulching film microplastics in farmland[J]. Recyclable Resources and Circular Economy, 2022, 15(9): 28-31(in Chinese)

    吴亚梅, 王育鹏, 王康, 等. 北京市设施农业土壤微塑料的污染特征及潜在来源[J]. 生态毒理学报, 2022, 17(4): 333-344

    Wu Y M, Wang Y P, Wang K, et al. Pollution characteristics and potential sources of microplastics in facility agricultural soil in Beijing[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 333-344(in Chinese)

    Zhou B Y, Wang J Q, Zhang H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814
    Soleimani Z, Gharavi S, Soudi M, et al. A survey of intact low-density polyethylene film biodegradation by terrestrial actinobacterial species[J]. International Microbiology, 2021, 24(1): 65-73
    闫亮, 邹芬芳, 刘琳, 等. 三峡库区消落带土壤中多环芳烃的污染特征、来源分析及生态风险[J]. 生态毒理学报, 2023, 18(6): 237-244

    Yan L, Zou F F, Liu L, et al. Pollution characteristics, source identification and ecological risk of polycyclic aromatic hydrocarbons in soil of water-level fluctuation zone in the three gorges reservoir[J]. Asian Journal of Ecotoxicology, 2023, 18(6): 237-244(in Chinese)

    Zeng L J, Huang Y H, Lyu H X, et al. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain[J]. Science of the Total Environment, 2022, 815: 152854
    陈永山, 骆永明, 章海波, 等. 设施菜地土壤酞酸酯污染的初步研究[J]. 土壤学报, 2011, 48(3): 516-523

    Chen Y S, Luo Y M, Zhang H B, et al. Preliminary study on phthalate pollution in facility vegetable field soil[J]. ActaPedologica Sinica, 201148(3): 516-523(in Chinese)

    冯宇希, 涂茜颖, 冯乃宪, 等. 我国温室大棚邻苯二甲酸酯(PAEs)污染及综合控制技术研究进展[J]. 农业环境科学学报, 2019, 38(10): 2239-2250

    Feng Y X, Tu Q Y, Feng N X, et al. Current status of phthalate acidesters (PAEs) in greenhouses in China and comprehensive control technology: A review[J]. Journal of Agro-Environment Science, 2019, 38(10): 2239-2250(in Chinese)

    Wu Z Y, Zhang X L, Wu X L, et al. Uptake of di(2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for lowering DEHP content of intercropped vegetables[J]. Journal of Agricultural and Food Chemistry, 2013, 61(22): 5220-5225
    Sokołowski A, Kończak M, Oleszczuk P, et al. Environmental and food contamination by phthalic acid esters (PAEs): Overview[J]. Water, Air, & Soil Pollution, 2024, 235(5): 313
    Cheng Z P, Wang Y, Qiao B T, et al. Insights into mechanisms involved in the uptake, translocation, and metabolism of phthalate esters in Chinese cabbage (Brassica rapa var. chinensis)[J]. Science of the Total Environment, 2021, 768: 144945
    Li X X, Wang Q, Jiang N, et al. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review[J]. Environmental Research, 2023, 220: 115196
    朱冰清, 高占啟, 胡冠九, 等. 太湖重点区域水环境中邻苯二甲酸酯的污染水平及生态风险评价[J]. 环境科学, 2018, 39(8): 3614-3621

    Zhu B Q, Gao Z Q, Hu G J, et al. Contamination levels and ecological risk assessment of phthalate esters (PAEs) in the aquatic environment of key areas of Taihu Lake[J]. Environmental Science, 2018, 39(8): 3614-3621(in Chinese)

    李彬, 吴山, 梁金明, 等. 中山市农业区域土壤-农产品中邻苯二甲酸酯(PAEs)污染特征[J]. 环境科学, 2015, 36(6): 2283-2291

    Li B, Wu S, Liang J M, et al. Characteristics of phthalic acid esters in agricultural soils and products in areas of Zhongshan City, South China[J]. Environmental Science, 2015, 36(6): 2283-2291(in Chinese)

    Niu L L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 2014, 195: 16-23
    Wang J, Luo Y M, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273
    Borges Ramirez M M, Dzul Caamal R, Rendón von Osten J. Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche, Mexico[J]. Science of the Total Environment, 2019, 672: 97-105
    王丽. 西安城市土壤微塑料及邻苯二甲酸酯分布特征的研究[D]. 西安: 西安建筑科技大学, 2022: 47-51 Wang L. Study on distribution characteristics of microplastics and phthalates in urban soils of Xi’an[D]. Xi’an: Xi’an University of Architecture and Technology, 2022: 47

    -51(in Chinese)

    Li Y, Yan H Q, Liu Q Y, et al. Accumulation and transport patterns of six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions[J]. Chemosphere, 2020, 249: 126457
    王亚, 肖霞霞, 杨云, 等. 江苏产区大蒜中邻苯二甲酸酯含量检测及溯源分析[J]. 环境科学, 2023, 44(2): 1029-1039

    Wang Y, Xiao X X, Yang Y, et al. Determination and traceability analysis of phthalic acid esters in garlic (Allium stivum L.) from Jiangsu Province, China[J]. Environmental Science, 2023, 44(2): 1029-1039(in Chinese)

    Li X T, Liang R F, Li Y, et al. Microplastics in inland freshwater environments with different regional functions: A case study on the Chengdu Plain[J]. Science of the Total Environment, 2021, 789: 147938
    Ding L, Zhang S Y, Wang X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-Western China[J]. Science of the Total Environment, 2020, 720: 137525
    Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20
    程万莉, 樊廷录, 王淑英, 等. 我国西北覆膜农田土壤微塑料数量及分布特征[J]. 农业环境科学学报, 2020, 39(11): 2561-2568

    Cheng W L, Fang T L, Wang S Y, et al. Quantity and distribution of microplastics in film mulching farmland soil of northwest China[J]. Journal of Agro-Environment Science, 2020, 39(11): 2561-2568(in Chinese)

    NicAogáin K, O’Byrne C P. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain[J]. Frontiers in Microbiology, 2016, 7: 1865
    Karpouzas D, Vryzas Z, Martin-Laurent F. Pesticide soil microbial toxicity: Setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2022, 94: 1161-1194
    Wołejko E, Jabłońska-Trypuć A, Wydro U, et al. Soil biological activity as an indicator of soil pollution with pesticides: A review[J]. Applied Soil Ecology, 2020, 147: 103356
    Chia, Hadibarata T, Kristanti R A, et al. The function of microbial enzymes in breaking down soil contaminated with pesticides: A review[J]. Bioprocess and Biosystems Engineering, 2024, 47(5): 597-620
    孙文潇, 杨帆, 侯梦宗, 等. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126

    Sun W X, Yang F, Hou M Z, et al. Microplastic pollution and degradation in environment[J]. China Plastics, 2023, 37(11): 117-126(in Chinese)

    Zhou Y F, Liu X N, Wang J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of Central China[J]. Science of the Total Environment, 2019, 694: 133798
    Feng S S, Lu H W, Tian P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739: 140087
    Weber C J, Opp C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes[J]. Environmental Pollution, 2020, 267: 115390
    Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242(Pt A): 855-862
    Lyu W W, Zhou W Z, Lu S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218
    Li Q L, Zeng A R, Jiang X, et al. Are microplastics correlated to phthalates in facility agriculture soil?[J]. Journal of Hazardous Materials, 2021, 412: 125164
    丁伟丽, 刘琪, 刘秋云, 等. 中国地膜产品塑化剂特点及风险评价[J]. 农业环境科学学报, 2021, 40(5): 1008-1016

    Ding W L, Liu Q, Liu Q Y, et al. Characteristics and safety of phthalates (PAEs) for plastic mulch films in China[J]. Journal of Agro-Environment Science, 2021, 40(5): 1008-1016(in Chinese)

  • 加载中
计量
  • 文章访问数:  324
  • HTML全文浏览数:  324
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-13
程钊, 严雅文, 张雷刚, 曹瑶瑶, 吕康, Fidèle Suanon, 葛静, 宋立晓, 余向阳, 生弘杰. 大蒜产地不同轮作模式对微塑料丰度和形态分布的影响[J]. 生态毒理学报, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
引用本文: 程钊, 严雅文, 张雷刚, 曹瑶瑶, 吕康, Fidèle Suanon, 葛静, 宋立晓, 余向阳, 生弘杰. 大蒜产地不同轮作模式对微塑料丰度和形态分布的影响[J]. 生态毒理学报, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
CHENG Zhao, YAN Yawen, ZHANG Leigang, CAO Yaoyao, LYU Kang, Fidèle Suanon, GE Jing, SONG Lixiao, YU Xiangyang, SHENG Hongjie. The Impact of Various Crop Rotation Patterns on Microplastic Abundance and Distribution in Garlic-producing Regions[J]. Asian journal of ecotoxicology, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001
Citation: CHENG Zhao, YAN Yawen, ZHANG Leigang, CAO Yaoyao, LYU Kang, Fidèle Suanon, GE Jing, SONG Lixiao, YU Xiangyang, SHENG Hongjie. The Impact of Various Crop Rotation Patterns on Microplastic Abundance and Distribution in Garlic-producing Regions[J]. Asian journal of ecotoxicology, 2024, 19(6): 109-118. doi: 10.7524/AJE.1673-5897.20240613001

大蒜产地不同轮作模式对微塑料丰度和形态分布的影响

    通讯作者: 生弘杰(1989-),男,博士,副研究员,主要研究方向为土壤有机污染与修复。E-mail:hjsheng@jaas.ac.cn
    作者简介: 程钊(1999—),男,硕士研究生,研究方向为农产品质量与安全,E-mail:1617738784@qq.com
  • 1. 泉州师范学院海洋与食品学院, 泉州 362000;
  • 2. 南京财经大学食品科学与工程学院/江苏省现代粮食流通与安全协同创新中心, 南京 210023;
  • 3. Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Benin Cotonou 01 BP 526;
  • 4. 江苏省农业科学院农产品质量安全与营养研究所, 南京 210014
基金项目:

国家自然科学基金项目(42007133);江苏省农业科技自主创新资金项目(CX (22)3131);福建省引导性项目(2022N0026);江苏中晚熟大蒜产业集群建设项目(13922204)

摘要: 地膜的大量使用会导致土壤微塑料(microplastics, MPs)和邻苯二甲酸酯(phthalate acid esters, PAEs)的污染,但较少有研究报道不同轮作模式对土壤中MPs丰度和形态分布的影响,同时MPs与PAEs之间在农业土壤中的相关性尚不清楚。本研究采集了邳州大蒜种植区内大蒜-玉米、大蒜-大豆和大蒜-水稻3种不同轮作模式下的土壤,采用激光红外成像系统对土壤中MPs的丰度、组成以及形态特征进行分析鉴定,并采用气相色谱-质谱联用法(GC-MS)法分析土壤中16种PAEs含量,结合土壤MPs丰度分析二者之间的相关性。结果表明,邳州大蒜种植区土壤MPs的平均丰度为4 710.67 个·kg-1,主要由聚酰胺(PA)、聚乙烯(PE)和聚氯乙烯(PVC)等类型组成,分别占比47.82%、13.94%和17.51%;MPs以碎片状为主,且超过75%的MPs粒径≤ 50 μm。不同轮作模式下的MPs平均丰度差异明显,呈现大蒜-玉米土壤(5 788.02 个·kg-1)>大蒜-水稻土壤(4 983.71 个·kg-1)>大蒜-大豆土壤(3 090.93 个·kg-1)的趋势。大蒜-大豆土壤MPs的平均面积及高度和宽度等形态特征与大蒜-玉米土壤和大蒜-水稻土壤的MPs均存在显著差异。此外,土壤中的PAEs种类主要为邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二甲酯(DMP)。邳州大蒜种植区土壤中MPs总丰度与∑PAEs含量(R2= 0.68, P= 0.0005)和DEHP含量(R2= 0.54, P = 0.004)呈显著正相关。

English Abstract

参考文献 (49)

返回顶部

目录

/

返回文章
返回