Yao C, Yang H P, Li Y. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity[J]. Science of the Total Environment, 2021, 795: 148837
|
Ali N, Ali L, Mehdi T, et al. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion[J]. Environment International, 2013, 55: 62-70
|
Hu W X, Gao P, Wang L, et al. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(1): 1-18
|
Dishaw L V, Powers C M, Ryde I T, et al. Is the Penta-BDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells[J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289
|
Wang Q W, Lam J C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158: 108-115
|
Li H, Li F L, Zhou C Y, et al. Exposure to OPFRs is associated with obesity and dysregulated serum lipid profiles: Data from 2017-2018 NHANES[J]. Metabolites, 2024, 14(2): 124
|
Yang D Q, Wei X J, Zhang Z Y, et al. Tris (2-chloroethyl) phosphate (TCEP) induces obesity and hepatic steatosis via FXR-mediated lipid accumulation in mice: Long-term exposure as a potential risk for metabolic diseases[J]. Chemico-Biological Interactions, 2022, 363: 110027
|
Wang D Z, Yan S, Yan J, et al. Effects of triphenyl phosphate exposure during fetal development on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal dysbiosis[J]. Environmental Pollution, 2019, 246: 630-638
|
Liu Q S, Sun Z D, Ren X M, et al. Chemical structure-related adipogenic effects of tetrabromobisphenol A and its analogues on 3T3-L1 preadipocytes[J]. Environmental Science & Technology, 2020, 54(10): 6262-6271
|
Li C H, Ren X M, Guo L H. Adipogenic activity of oligomeric hexafluoropropylene oxide (perfluorooctanoic acid alternative) through peroxisome proliferator-activated receptor γ pathway[J]. Environmental Science & Technology, 2019, 53(6): 3287-3295
|
Zebisch K, Voigt V, Wabitsch M, et al. Protocol for effective differentiation of 3T3-L1 cells to adipocytes[J]. Analytical Biochemistry, 2012, 425(1): 88-90
|
Poulos S P, Dodson M V, Hausman G J. Cell line models for differentiation: Preadipocytes and adipocytes[J]. Experimental Biology and Medicine, 2010, 235(10): 1185-1193
|
Pillai H K, Fang M L, Beglov D, et al. Ligand binding and activation of PPARγ by Firemaster® 550: Effects on adipogenesis and osteogenesis in vitro[J]. Environmental Health Perspectives, 2014, 122(11): 1225-1232
|
Tung E W Y, Ahmed S, Peshdary V, et al. Firemaster® 550 and its components isopropylated triphenyl phosphate and triphenyl phosphate enhance adipogenesis and transcriptional activity of peroxisome proliferator activated receptor (PPARγ) on the adipocyte protein 2(aP2) promoter[J]. PLoS One, 2017, 12(4): e0175855
|
Yue J J, Sun C T, Tang J Y, et al. Downregulation of miRNA-155-5p contributes to the adipogenic activity of 2-ethylhexyl diphenyl phosphate in 3T3-L1 preadipocytes[J]. Toxicology, 2023, 487: 153452
|
Kassotis C D, Hoffman K, Stapleton H M. Characterization of adipogenic activity of house dust extracts and semi-volatile indoor contaminants in 3T3-L1 cells[J]. Environmental Science & Technology, 2017, 51(15): 8735-8745
|
Wang X Y, Sun Z D, Liu Q S, et al. Environmental obesogens and their perturbations in lipid metabolism[J]. Environment & Health, 2024, 2(5): 253-268
|
Farmer S R. Transcriptional control of adipocyte formation[J]. Cell Metabolism, 2006, 4(4): 263-273
|
Reusch J E, Colton L A, Klemm D J. CREB activation induces adipogenesis in 3T3-L1 cells[J]. Molecular and Cellular Biology, 2000, 20(3): 1008-1020
|
Zhang J W, Klemm D J, Vinson C, et al. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis[J]. Journal of Biological Chemistry, 2004, 279(6): 4471-4478
|
Mayr B M, Canettieri G, Montminy M R. Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via[WT《Times New Roman#I》] CREB[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10936-10941
|
Sun Z D, Yang X X, Liu Q S, et al. Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells[J]. Journal of Hazardous Materials, 2019, 379: 120794
|
Delghandi M P, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells[J]. Cellular Signalling, 2005, 17(11): 1343-1351
|
Hua Y J, Ke S S, Wang Y, et al. Prolonged treatment with 3-isobutyl-1-methylxanthine improves the efficiency of differentiating 3T3-L1 cells into adipocytes[J]. Analytical Biochemistry, 2016, 507: 18-20
|
Nunes A R, Batuca J R, Monteiro E C. Acute hypoxia modifies cAMP levels induced by inhibitors of phosphodiesterase-4 in rat carotid bodies, carotid arteries and superior cervical Ganglia[J]. British Journal of Pharmacology, 2010, 159(2): 353-361
|
Laurenza A, Sutkowski E M, Seamon K B. Forskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action?[J]. Trends in Pharmacological Sciences, 1989, 10(11): 442-447
|
Gonzalez-Iglesias A E, Jiang Y H, Tomić M, et al. Dependence of electrical activity and calcium influx-controlled prolactin release on adenylyl cyclase signaling pathway in pituitary lactotrophs[J]. Molecular Endocrinology, 2006, 20(9): 2231-2246
|
Sun W J, Duan X Y, Chen H, et al. Adipogenic activity of 2-ethylhexyl diphenyl phosphate via peroxisome proliferator-activated receptor γ pathway[J]. Science of the Total Environment, 2020, 711: 134810
|
Zhang Q, Wang J H, Zhu J Q, et al. Potential glucocorticoid and mineralocorticoid effects of nine organophosphate flame retardants[J]. Environmental Science & Technology, 2017, 51(10): 5803-5810
|
Kojima H, Takeuchi S, Itoh T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology, 2013, 314(1): 76-83
|
Skledar D G, Carino A, Trontelj J, et al. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite[J]. Chemosphere, 2019, 215: 870-880
|
Hao Z L, Zhang Z J, Lu D Z, et al. Organophosphorus flame retardants impair intracellular lipid metabolic function in human hepatocellular cells[J]. Chemical Research in Toxicology, 2019, 32(6): 1250-1258
|