中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建

彭宇, 施妙盈, 贾旭东, 周萍萍, 曹佩, 王霞, 王子健. 中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建[J]. 生态毒理学报, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
引用本文: 彭宇, 施妙盈, 贾旭东, 周萍萍, 曹佩, 王霞, 王子健. 中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建[J]. 生态毒理学报, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
PENG Yu, SHI Miaoying, JIA Xudong, ZHOU Pingping, CAO Pei, WANG Xia, WANG Zijian. Construction of a Physiologically Based Toxicokinetic (PBTK) Model of Tris(2-chloroethyl) Phosphate (TCEP) in Chinese Adults[J]. Asian journal of ecotoxicology, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
Citation: PENG Yu, SHI Miaoying, JIA Xudong, ZHOU Pingping, CAO Pei, WANG Xia, WANG Zijian. Construction of a Physiologically Based Toxicokinetic (PBTK) Model of Tris(2-chloroethyl) Phosphate (TCEP) in Chinese Adults[J]. Asian journal of ecotoxicology, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001

中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建

    作者简介: 彭宇(1997—),女,硕士研究生,研究方向为营养与食品卫生学,E-mail:py18382446816@163.com
    通讯作者: 周萍萍(1973-),女,博士,研究员,主要研究方向为食品安全风险评估。E-mail:zhoupingping@cfsa.net.cn;  王霞(1982—),女,博士,副教授,主要研究方向为营养与食品卫生学。E-mail:wangxia@sdsmu.edu.cn; 
  • 基金项目:

    国家重点研发计划项目(2023YFF1104800)

  • 中图分类号: X171.5

Construction of a Physiologically Based Toxicokinetic (PBTK) Model of Tris(2-chloroethyl) Phosphate (TCEP) in Chinese Adults

    Corresponding authors: ZHOU Pingping ;  WANG Xia ; 
  • Fund Project:
  • 摘要: 随着全球范围内对溴系阻燃剂的禁用,有机磷酸酯(OPEs)作为其主要替代品在中国被大量生产,并且在食品塑料器皿、家装材料、工业制造等多个领域得到广泛应用。其中,磷酸三(2-乙基)酯(TCEP)已经被欧盟相关法规定义为生殖毒性和疑似人类致癌物,列入管控对象。为了更好地理解TCEP膳食暴露与人体健康之间的关联,本研究基于中国成人的生理参数和TCEP理化特性,应用Gastroplus软件构建了描述TCEP内暴露的PBTK模型,解析了TCEP在人体内的吸收、代谢、分布及排泄的动力学过程。所建PBTK模型能够预测TCEP暴露后在血液、脑、肝脏、肾脏等人体或哺乳动物组织器官中的分布和稳态浓度。对模型进行了精度、敏感性和相关性分析,说明模型具有管理可接受的表现。采用文献收集的小鼠血浆和中国成年人血清中TCEP实测值对模型进行了验证,表明其可以应用于TCEP膳食暴露的健康风险评估。
  • Abbasi G, Saini A, Goosey E, et al. Product screening for sources of halogenated flame retardants in Canadian house and office dust[J]. Science of the Total Environment, 2016, 545/546: 299-307
    Kefeni K K, Okonkwo J O, Olukunle O I, et al. Brominated flame retardants: Sources, distribution, exposure pathways, and toxicity[J]. Environmental Reviews, 2011, 19(1): 238-253
    Stasinska A, Heyworth J, Reid A, et al. Polybrominated diphenyl ether (PBDE) concentrations in plasma of pregnant women from Western Australia[J]. Science of the Total Environment, 2014, 493: 554-561
    Marklund A, Andersson B, Haglund P. Screening of organophosphorus compounds and their distribution in various indoor environments[J]. Chemosphere, 2003, 53(9): 1137-1146
    Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196: 29-46
    Gao F M, Zhang X H, Shen X M, et al. Exposure assessment of aryl-organophosphate esters based on specific urinary biomarkers and their associations with reproductive hormone homeostasis disruption in women of childbearing age[J]. Environment International, 2022, 169: 107503
    Hu F X, Li W, Wang H K, et al. Environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) induce hepatotoxicity in zebrafish (Danio rerio): A whole life-cycle assessment[J]. Fish Physiology and Biochemistry, 2023, 49(6): 1421-1433
    Hu W X, Gao P, Wang L, et al. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(1): 1-18
    Kang H, Lee J, Lee J P, et al. Urinary metabolites of organophosphate esters (OPEs) are associated with chronic kidney disease in the general US population, NHANES 2013-2014[J]. Environment International, 2019, 131: 105034
    M Al-Salem A, Saquib Q, Siddiqui M A, et al. Tris(2-chloroethyl) phosphate (TCEP) elicits hepatotoxicity by activating human cancer pathway genes in HepG2 cells[J]. Toxics, 2020, 8(4): 109
    Saquib Q, Al-Salem A M, Siddiqui M A, et al. Cyto-genotoxic and transcriptomic alterations in human liver cells by tris (2-ethylhexyl) phosphate (TEHP): A putative hepatocarcinogen[J]. International Journal of Molecular Sciences, 2022, 23(7): 3998
    van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153
    World Health Organization. Flame retardants: Tris-(chloropropyl)phosphate and tris-(2-chloroethyl)phosphate[R]. Geneva: World Health Organization, 1998
    Tran C M, Lee H, Lee B, et al. Effects of the chorion on the developmental toxicity of organophosphate esters in zebrafish embryos[J]. Journal of Hazardous Materials, 2021, 401: 123389
    叶长春, 李颖, 陈子璐, 等. 饮食中有机磷酸酯暴露现状及其对消化系统影响的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(5): 677-682

    Ye C C, Li Y, Chen Z L, et al. Research progress on the exposure of organophosphate in diet and its influence on digestive system[J]. Chinese Journal of Bases and Clinics in General Surgery, 2022, 29(5): 677-682(in Chinese)

    Zhang W, Giesy J P, Wang P L. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges[J]. Science of the Total Environment, 2022, 827: 154271
    Zhao L M, Jian K, Su H J, et al. Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry[J]. Environment International, 2019, 128: 343-352
    Yao S Y, Chen X L, Lyu B, et al. Comprehensive dietary exposure assessment of the Chinese population to organophosphate esters (OPEs): Results of the sixth China total diet study[J]. Chemosphere, 2024, 364: 143281
    管娜, 朱斌, 赵申升, 等. 生理动力学模型及其在健康风险评估中的应用进展和展望[J]. 生态毒理学报, 2024, 19(4): 1-12

    Guan N, Zhu B, Zhao S S, et al. The development and future prospective of physiologically based kinetic models and its applications in risk assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 1-12(in Chinese)

    王小丹, 谢锐莉, 许宜平, 等. 替代动物实验中的体外-体内外推方法[J]. 生态毒理学报, 2024, 19(4): 13-26

    Wang X D, Xie R L, Xu Y P, et al. In vitro to in vivo extrapolation: Facilitating alternatives to animal testing in chemical health risk assessment[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 13-26(in Chinese)

    Bessems J G, Loizou G, Krishnan K, et al. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment[J]. Regulatory Toxicology and Pharmacology, 2014, 68(1): 119-139
    Hartung T, FitzGerald R E, Jennings P, et al. Systems toxicology: Real world applications and opportunities[J]. Chemical Research in Toxicology, 2017, 30(4): 870-882
    Thiel C, Smit I, Baier V, et al. Using quantitative systems pharmacology to evaluate the drug efficacy of COX-2 and 5-LOX inhibitors in therapeutic situations[J]. NPJ Systems Biology and Applications, 2018, 4: 28
    European Union. European Union risk assessment report tris (2-chloroethyl)phosphate, TCEP[R]. Brussels: European Union, 2009
    Environmental Protection Agency. Proposed designation of tris(2-chloroethyl) phosphate (CASRN 115-96-8) as a high-priority substance for risk evaluation[R]. Washington, DC: Environmental Protection Agency, 2019
    Wang X L, Liu Q, Zhong W J, et al. Estimating renal and hepatic clearance rates of organophosphate esters in humans: Impacts of intrinsic metabolism and binding affinity with plasma proteins[J]. Environment International, 2020, 134: 105321
    Jeong S H, Jang J H, Cho H Y, et al. Human risk assessment of 4-n-nonylphenol (4-n-NP) using physiologically based pharmacokinetic (PBPK) modeling: Analysis of gender exposure differences and application to exposure analysis related to large exposure variability in population[J]. Archives of Toxicology, 2022, 96(10): 2687-2715
    Ding J Q, He W Y, Sha W X, et al. Physiologically based toxicokinetic modelling of tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes[J]. Ecotoxicology and Environmental Safety, 2024, 271: 115976
    World Health Organization. Characterization and application of physiologically based pharmacokinetic models in risk assessment[R]. Geneva: World Health Organization, 2010
    Tang B, Poma G, Bastiaensen M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio)[J]. Environment International, 2019, 126: 512-522
    Wang Y, Li W H, Martínez-Moral M P, et al. Metabolites of organophosphate esters in urine from the United States: Concentrations, temporal variability, and exposure assessment[J]. Environment International, 2019, 122: 213-221
    Zhao J Y, Zhan Z X, Lu M J, et al. A systematic scoping review of epidemiological studies on the association between organophosphate flame retardants and neurotoxicity[J]. Ecotoxicology and Environmental Safety, 2022, 243: 113973
    Liu M, Li A, Meng L L, et al. Exposure to novel brominated flame retardants and organophosphate esters and associations with thyroid cancer risk: A case-control study in Eastern China[J]. Environmental Science & Technology, 2022, 56(24): 17825-17835
    Kanda K, Ito S, Koh D H, et al. Effects of tris(2-chloroethyl) phosphate exposure on chicken embryos in a shell-less incubation system[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111263
    Wang H K, Jing C, Peng H K, et al. Parental whole life-cycle exposure to tris (2-chloroethyl) phosphate (TCEP) disrupts embryonic development and thyroid system in zebrafish offspring[J]. Ecotoxicology and Environmental Safety, 2022, 248: 114313
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080100Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 32.3 %DOWNLOAD: 32.3 %HTML全文: 66.5 %HTML全文: 66.5 %摘要: 1.3 %摘要: 1.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.7 %其他: 99.7 %张家口: 0.3 %张家口: 0.3 %其他张家口Highcharts.com
计量
  • 文章访问数:  485
  • HTML全文浏览数:  485
  • PDF下载数:  104
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-10-29
彭宇, 施妙盈, 贾旭东, 周萍萍, 曹佩, 王霞, 王子健. 中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建[J]. 生态毒理学报, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
引用本文: 彭宇, 施妙盈, 贾旭东, 周萍萍, 曹佩, 王霞, 王子健. 中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建[J]. 生态毒理学报, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
PENG Yu, SHI Miaoying, JIA Xudong, ZHOU Pingping, CAO Pei, WANG Xia, WANG Zijian. Construction of a Physiologically Based Toxicokinetic (PBTK) Model of Tris(2-chloroethyl) Phosphate (TCEP) in Chinese Adults[J]. Asian journal of ecotoxicology, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001
Citation: PENG Yu, SHI Miaoying, JIA Xudong, ZHOU Pingping, CAO Pei, WANG Xia, WANG Zijian. Construction of a Physiologically Based Toxicokinetic (PBTK) Model of Tris(2-chloroethyl) Phosphate (TCEP) in Chinese Adults[J]. Asian journal of ecotoxicology, 2024, 19(6): 1-11. doi: 10.7524/AJE.1673-5897.20241029001

中国成人磷酸三(2-氯乙基)酯的生理毒代动力学(PBTK)模型构建

    通讯作者: 周萍萍(1973-),女,博士,研究员,主要研究方向为食品安全风险评估。E-mail:zhoupingping@cfsa.net.cn;  王霞(1982—),女,博士,副教授,主要研究方向为营养与食品卫生学。E-mail:wangxia@sdsmu.edu.cn; 
    作者简介: 彭宇(1997—),女,硕士研究生,研究方向为营养与食品卫生学,E-mail:py18382446816@163.com
  • 1. 山东第二医科大学公共卫生学院, 潍坊 261053;
  • 2. 国家食品安全风险评估中心, 北京 100022;
  • 3. 中国科学院生态环境研究中心, 北京 100085
基金项目:

国家重点研发计划项目(2023YFF1104800)

摘要: 随着全球范围内对溴系阻燃剂的禁用,有机磷酸酯(OPEs)作为其主要替代品在中国被大量生产,并且在食品塑料器皿、家装材料、工业制造等多个领域得到广泛应用。其中,磷酸三(2-乙基)酯(TCEP)已经被欧盟相关法规定义为生殖毒性和疑似人类致癌物,列入管控对象。为了更好地理解TCEP膳食暴露与人体健康之间的关联,本研究基于中国成人的生理参数和TCEP理化特性,应用Gastroplus软件构建了描述TCEP内暴露的PBTK模型,解析了TCEP在人体内的吸收、代谢、分布及排泄的动力学过程。所建PBTK模型能够预测TCEP暴露后在血液、脑、肝脏、肾脏等人体或哺乳动物组织器官中的分布和稳态浓度。对模型进行了精度、敏感性和相关性分析,说明模型具有管理可接受的表现。采用文献收集的小鼠血浆和中国成年人血清中TCEP实测值对模型进行了验证,表明其可以应用于TCEP膳食暴露的健康风险评估。

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回