结合生态毒性数据和外推模型推导乙二醇的海洋生物水质基准
Deriving Water Quality Criteria of Ethylene Glycol for Marine Organisms by Combining Ecotoxicity Data and Extrapolation Model
-
摘要: 乙二醇是海洋油气开发行业的重点关注污染物,作为水合物抑制剂使用并随生产水持续大量排放入海,其生态风险不容忽视。本研究在对乙二醇的水生生物毒性数据进行收集、筛选和评价的基础上,有针对性地选取关键营养级典型海洋模式生物黑点青鳉(Oryzias melastigma)和日本虎斑猛水蚤(Tigriopus japonicus)开展毒性实验,并利用种间相关估计模型(interspecies correlation estimation model, ICE)预测了乙二醇对4种我国本土海洋生物的急性毒性。在此基础上,应用物种敏感度分布法(species sensitivity distribution approach, SSD)和最终急-慢性毒性比法(final acute-chronic toxicity ratio method, FACR)使用我国本土水生生物毒性数据推导了乙二醇的海洋生物水质基准。结果显示,基于毒理学实验数据和ICE模型预测数据推导的乙二醇短期海洋生物水质基准为2 498 mg·L-1,与仅基于毒理学实验数据推导的结果(2 263 mg·L-1)接近;基于短期海洋生物水质基准,利用FACR方法推导的乙二醇长期海洋生物水质基准分别为313 mg·L-1和284 mg·L-1。结果表明,ICE模型和FACR方法应用于乙二醇的海洋生物水质基准推导具有较强的可行性。研究结果有望为乙二醇海洋环境管理目标的设定提供科学参考。Abstract: Ethylene glycol is a highly concerned pollutant in the offshore oil and gas production industry. It is used as a hydrate inhibitor and discharged into marine environment with a large amount of production water, of which the ecological risk cannot be ignored. In this study, based on the collection, screening and assessment of the toxicity data of ethylene glycol for aquatic organisms, two typical marine model organisms of key trophic levels—Oryzias melastigma and Tigriopus japonicus were selected to conduct toxicity tests, and the interspecies correlation estimation model (ICE) was employed to predict the acute toxicity of ethylene glycol to 4 native marine species. Afterwards, the species sensitivity distribution approach (SSD) and the final acute-chronic toxicity ratio method (FACR) were adopted to derive water quality criteria of ethylene glycol for marine organisms by using the toxicity data of native aquatic organisms in China. The results showed that the short-term water quality criteria of ethylene glycol for marine organisms derived by SSD approach based on both toxicology tests data and ICE model prediction data was 2 498 mg·L-1, which was close to the result (2 263 mg·L-1) obtained from toxicology tests data only. The long-term water quality criteria of ethylene glycol derived by FACR method based on the short-term water quality criteria were 313 mg·L-1 and 284 mg·L-1, respectively. Our study indicates that the ICE model and FACR method are feasible for the derivation of water quality criteria of ethylene glycol for marine organisms. These findings are expected to provide scientific reference for setting the objectives of marine environmental management regarding ethylene glycol.
-
-
李翔. 海上平台乙二醇回收系统中闪蒸罐内件优化设计研究[D]. 成都: 西南石油大学, 2015: 1 国家市场监督管理总局, 国家标准化管理委员会. 化学品水生环境危害分类指导第3部分:水生毒性: GB/T 36700.3—2018[S]. 北京: 中国标准出版社, 2018 Calleja M C, Persoone G. Cyst-based toxicity tests. Ⅳ. The potential of ecotoxicological tests for the prediction of acute toxicity in man as evaluated on the first ten chemicals of the MEIC programme[J]. Alternatives to Laboratory Animals, 1992, 20(3): 396-405 Calleja M C, Persoone G, Geladi P. Comparative acute toxicity of the first 50 multicentre evaluation of in vitro cytotoxicity chemicals to aquatic non-vertebrates[J]. Archives of Environmental Contamination and Toxicology, 1994, 26(1): 69-78 Greene M W, Kocan R M. Toxicological mechanisms of a multicomponent agricultural seed protectant in the rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(6): 1387-1390 Mayes M A, Alexander H C, Dill D C. A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests[J]. Bulletin of Environmental Contamination and Toxicology, 1983, 31(2): 139-147 Pillard D A. Comparative toxicity of formulated glycol deicers and pure ethylene and propylene glycol to Ceriodaphnia dubia and Pimephales promelas[J]. Environmental Toxicology and Chemistry, 1995, 14(2): 311-315 United States Environmental Protection Agency (US EPA). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses: PB85-227049[R]. Washington DC: United States Environmental Protection Agency, 1985 European Commission. Common implementation strategy for the water framework directive (2000/60/EC). Guidance document No. 27 technical guidance for deriving environmental quality standards[R]. Copenhagen: European Commission, 2018 Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of water quality guidelines for the protection of aquatic life[R]. Ottawa: Canadian Council of Ministers of the Environment, 2007 Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC, ARMCANZ). Australian and New Zealand guidelines for fresh and marine water quality[R]. Canberra: Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000 中华人民共和国生态环境部. 海洋生物水质基准推导技术指南(试行): HJ 1260—2022[S]. 北京: 中国环境科学出版社, 2022 中华人民共和国生态环境部. 淡水生物水质基准推导技术指南: HJ 831—2022[S]. 北京: 中国环境科学出版社, 2022 National Institute for Public Health and the Environment (RIVM). Guidance for the derivation of environmental risk limits within the framework of 'International and national environmental quality standards for substances in the Netherlands’ (INS) Revision 2007: 601782001[R]. Bilthoven: National Institute for Public Health and the Environment, 2007 Gredelj A, Barausse A, Grechi L, et al. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the River Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling[J]. Environment International, 2018, 119: 66-78 Zhang L L, Shen L N, Qin S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods[J]. Environmental Pollution, 2020, 256: 113458 Lu B Q, Liu S S, Wang Z J, et al. Conlecs: A novel procedure for deriving the concentration limits of chemicals outside the criteria of human drinking water using existing criteria and species sensitivity distribution based on quantitative structure-activity relationship prediction[J]. Journal of Hazardous Materials, 2020, 384: 121380 Hong Y J, Feng C L, Jin X W, et al. A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity[J]. Environment International, 2022, 167: 107367 Chen M, Hong Y J, Jin X W, et al. Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy[J]. Science of the Total Environment, 2023, 878: 163184 Hong Y J, Xie H Y, Jin X W, et al. Prediction of HC5s for phthalate esters by use of the QSAR-ICE model and ecological risk assessment in Chinese surface waters[J]. Journal of Hazardous Materials, 2024, 467: 133642 Liang W G, Zhao X L, Wang X L, et al. Prediction of freshwater ecotoxicological hazardous concentrations of major surfactants using the QSAR-ICE-SSD method[J]. Environment International, 2024, 185: 108472 Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data[J]. Regulatory Toxicology and Pharmacology, 1997, 25(1): 1-5 陈碧鹃, 袁有宪, 曲克明, 等. 乙醛、对苯二甲酸、乙二醇对四链藻生长的联合毒性[J]. 中国水产科学, 2000, 7(2): 82-85 Chen B J, Yuan Y X, Qu K M, et al. Joint effect of acetadehyde, p-phthaalic acid and elhylene glycol on growth of Tetradesmus wisconsinense[J]. Journal of Fishery Sciences of China, 2000, 7(2): 82-85(in Chinese)
Sauvant M P, Pépin D, Grolière C A, et al. Effects of organic and inorganic substances on the cell proliferation of L-929 fibroblasts and Tetrahymena pyriformis GL protozoa used for toxicological bioassays[J]. Bulletin of Environmental Contamination and Toxicology, 1995, 55(2): 171-178 Cowgill U M, Takahashi I T, Applegath S L. A comparison of the effect of four benchmark chemicals on Daphnia magna and Ceriodaphnia dubia-affinis tested at two different temperatures[J]. Environmental Toxicology and Chemistry, 1985, 4(3): 415-422 Gersich F M, Blanchard F A, Applegath S L, et al. The precision of daphnid (Daphnia magna Straus, 1820) static acute toxicity tests[J]. Archives of Environmental Contamination and Toxicology, 1986, 15(6): 741-749 Conway R A, Waggy G T, Spiegel M H, et al. Environmental fate and effects of ethylene oxide[J]. Environmental Science & Technology, 1983, 17(2): 107-112 Blackman R A A. Toxicity of oil-sinking agents[J]. Marine Pollution Bulletin, 1974, 5(8): 116-118 Pillard D A, DuFresne D L. Toxicity of formulated glycol deicers and ethylene and propylene glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor[J]. Archives of Environmental Contamination and Toxicology, 1999, 37(1): 29-35 Aruoja V, Moosus M, Kahru A, et al. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga pseudokirchneriella subcapitata[J]. Chemosphere, 2014, 96: 23-32 United States Environmental Protection Agency (US EPA). Aquatic life ambient water quality criteria cadmium: EPA 820-R-16-002[R]. Washington DC: United States Environmental Protection Agency, 2016 Yu F W, Jin F, Cong Y, et al. Bisphenol A decreases the developmental toxicity and histopathological alterations caused by polystyrene nanoplastics in developing marine medaka Oryzias melastigma[J]. Chemosphere, 2023, 336: 139174 Zhang C Y, Li F G, Liu X F, et al. Polylactic acid (PLA), polyethylene terephthalate (PET), and polystyrene (PS) microplastics differently affect the gut microbiota of marine medaka (Oryzias melastigma) after individual and combined exposure with sulfamethazine[J]. Aquatic Toxicology, 2023, 259: 106522 Chen Z C, Li X Y, Gao J H, et al. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2024, 271: 106927 Liu L, Du R Y, Jia R L, et al. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin[J]. Environmental Pollution, 2024, 342: 123079 Lee K W, Raisuddin S, Hwang D S, et al. Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: Evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions[J]. Environmental Toxicology, 2007, 22(5): 532-538 Yu J, Tian J Y, Xu R, et al. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, Copepod)[J]. Environmental Pollution, 2020, 267: 115429 崔修鑫, 李昭川, 曹硕, 等. 氨基修饰聚苯乙烯纳米塑料及其滤液对日本虎斑猛水蚤毒性效应研究[J]. 海洋环境科学, 2024, 43(4): 637-648 Cui X X, Li Z C, Cao S, et al. Toxic effects of amino-modified polystyrene nanoplastics their filtrates on Tigriopus japonicus[J]. Marine Environmental Science, 2024, 43(4): 637-648(in Chinese)
董双林. 黄海冷水团大型鲑科鱼类养殖研究进展与展望[J]. 中国海洋大学学报(自然科学版), 2019, 49(3): 1-6Dong S L. Researching progresses and prospects in large Salmonidae farming in cold water mass of Yellow Sea[J]. Periodical of Ocean University of China, 2019, 49(3): 1-6(in Chinese) 纪凯, 黄天晴, 谷伟, 等. 温度和盐度对虹鳟(Oncorhynchus mykiss)“水科1号”生长、消化酶活性和相关基因表达的影响[J]. 海洋与湖沼, 2023, 54(5): 1476-1487 Ji K, Huang T Q, Gu W, et al. Effects of temperature and salinity on growth, intestinal digestive enzyme activity, and gene expression in tissues of rainbow trout (Oncorhynchus mykiss)[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1476-1487(in Chinese)
黄宗国. 中国海洋物种多样性[M]. 北京: 海洋出版社, 2012: 1-1373 冯承莲, 付卫强, Dyer Scott, 等. 种间关系预测(ICE)模型在水质基准研究中的应用[J]. 生态毒理学报, 2015, 10(1): 81-87 Feng C L, Fu W Q, Scott D, et al. Application of interspecies correlation estimation (ICE) models in the study of water quality criteria[J]. Asian Journal of Ecotoxicology, 2015, 10(1): 81-87(in Chinese)
Moermond C T, Kase R, Korkaric M, et al. CRED: Criteria for reporting and evaluating ecotoxicity data[J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1297-1309 National Institute for Public Health and the Environment. Environmental risk limits for alcohols, glycols, and some other relatively soluble and/or volatile compounds 1. Ecotoxicological evaluation[R]. Bilthoven: National Institute for Public Health and the Environment, 2005 -

计量
- 文章访问数: 474
- HTML全文浏览数: 474
- PDF下载数: 76
- 施引文献: 0