聚乙烯微粒与菲对大型溞的联合毒性作用模式研究

王志远, 卢海悦, 王晓凡, 贾静, 巩宁. 聚乙烯微粒与菲对大型溞的联合毒性作用模式研究[J]. 生态毒理学报, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
引用本文: 王志远, 卢海悦, 王晓凡, 贾静, 巩宁. 聚乙烯微粒与菲对大型溞的联合毒性作用模式研究[J]. 生态毒理学报, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
WANG Zhiyuan, LU Haiyue, WANG Xiaofan, JIA Jing, GONG Ning. Toxic Effects of Polyethylene Particles and Phenanthrene and Their Combined Toxic Actions on Daphnia magna[J]. Asian journal of ecotoxicology, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
Citation: WANG Zhiyuan, LU Haiyue, WANG Xiaofan, JIA Jing, GONG Ning. Toxic Effects of Polyethylene Particles and Phenanthrene and Their Combined Toxic Actions on Daphnia magna[J]. Asian journal of ecotoxicology, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001

聚乙烯微粒与菲对大型溞的联合毒性作用模式研究

    作者简介: 王志远(1999—),男,硕士研究生,研究方向为生态毒理学,E-mail:18765979495@163.com
    通讯作者: 巩宁(1975-),女,博士,教授,硕士生导师,主要研究方向为水生毒理学。E-mail:cospar06@dlmu.edu.cn
  • 基金项目:

    中央高校基本科研业务费专项资金项目(3132023528)

  • 中图分类号: X171.5

Toxic Effects of Polyethylene Particles and Phenanthrene and Their Combined Toxic Actions on Daphnia magna

    Corresponding author: GONG Ning, cospar06@dlmu.edu.cn
  • Fund Project:
  • 摘要: 为研究微塑料与多环芳烃联合暴露对水生生物的毒性效应,本文以大型溞为受试生物,选用粒径范围为1~10 μm的聚乙烯颗粒以及菲为实验材料,研究不同浓度聚乙烯颗粒与菲对大型溞的单独及联合毒性,通过6种方法(毒性单位法、相加指数法、混合毒性指数法、联合指数法、相似性参数法和等效线法)评价二者的联合毒性作用模式。结果表明,单独暴露48 h后,聚乙烯和菲对大型溞均有活动抑制作用,呈现出明显的剂量-效应和时间-效应关系。EC50分别为5.07 mg·L-1和0.61 mg·L-1。在联合暴露条件下,大型溞的活动抑制作用增强,6种评估方法均表明,聚乙烯微粒与菲对大型溞的联合毒性作用模式为协同作用。本研究结果有助于进一步认识水生环境中微塑料与其他污染物联合暴露对生物的影响,为微塑料的生态风险研究提供数据支撑和参考。
  • 加载中
  • Chen Q Q, Yin D Q, Jia Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1312-1321
    Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703: 134699
    Teng J, Zhao J M, Zhu X P, et al. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas[J]. Environmental Pollution, 2021, 269: 116169
    Thompson R C, Olson Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838
    Ma H, Pu S Y, Liu S B, et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences[J]. Environmental Pollution, 2020, 261: 114089
    Andrady A L. The plastic in microplastics: A review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22
    Nava V, Leoni B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function[J]. Water Research, 2021, 188: 116476
    Liu Y, Shi H H, Chen L P, et al. An overview of microplastics in oysters: Analysis, hazards, and depuration[J]. Food Chemistry, 2023, 422: 136153
    Browne M A, Niven S J, Galloway T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2388-2392
    Besseling E, Wegner A, Foekema E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1): 593-600
    安浩, 张宴. 微塑料和三氯生对斑马鱼的神经毒性效应研究[J]. 能源环境保护, 2023, 37(4): 131-139

    An H, Zhang Y. Study on neurotoxic effects of microplastics and triclosan on the zebrafish[J]. Energy Environmental Protection, 2023, 37(4): 131-139(in Chinese)

    Almeda R, Rodriguez-Torres R, Rist S, et al. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions[J]. Science of the Total Environment, 2021, 751: 141264
    Koelmans A A, Besseling E, Wegner A, et al. Plastic as a carrier of POPs to aquatic organisms: A model analysis[J]. Environmental Science & Technology, 2013, 47(14): 7812-7820
    Koelmans A A, Besseling E, Foekema E M. Leaching of plastic additives to marine organisms[J]. Environmental Pollution, 2014, 187: 49-54
    钟圳, 陈肇文, 王有基, 等. 微纳米塑料和有机磷阻燃剂的联合毒性效应研究进展[J]. 生态毒理学报, 2022, 17(6): 37-68

    Zhong Z, Chen Z W, Wang Y J, et al. Research progress on joint toxicity of micro-nano plastics and organo-phosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 37-68(in Chinese)

    Kleinteich J, Seidensticker S, Marggrander N, et al. Microplastics reduce short-term effects of environmental contaminants. part II: Polyethylene particles decrease the effect of polycyclic aromatic hydrocarbons on microorganisms[J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 287
    Rehse S, Kloas W, Zarfl C. Microplastics reduce short-term effects of environmental contaminants. part I: Effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles[J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 280
    Organization for Economic Cooperation and Development (OECD). OECD Guideline for Testing of Chemicals. Daphnia sp., Acute Immobilisation Test[S]. Paris: OECD, 2009
    Organization for Economic Cooperation and Development (OECD). OECD Guideline for Testing of Chemicals. Algal Growth Inhibition Test[S]. Paris: OECD, 1984
    Anyakora C, Ogbeche A, Palmer P, et al. Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement[J]. Journal of Chromatography A, 2005, 1073(1/2): 323-330
    An G, Na J, Song J, et al. Chronic toxicity of biodegradable microplastic (polylactic acid) to Daphnia magna: A comparison with polyethylene terephthalate[J]. Aquatic Toxicology, 2024, 266: 106790
    Broderius S J, Kahl M D, Hoglund M D. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals[J]. Environmental Toxicology and Chemistry, 1995, 14(9): 1591-1605
    Chou T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621-681
    Chou T C, Paul T. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors[J]. Advances in Enzyme Regulation, 1984, 22: 27-55
    Na J, Song J, Achar J C, et al. Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity[J]. Journal of Hazardous Materials, 2021, 402: 123845
    苑文珂. 聚苯乙烯微/纳米塑料对重金属的吸附行为及其对两种典型水生生物的生态毒性研究[D]. 北京: 中国科学院大学, 2020: 67-68 Yuan W K. Adsorption behavior of polystyrene micro/nano plastics for heavy metals and its ecotoxicity to two typical aquatic organisms[D]. Beijing: University of Chinese Academy of Sciences, 2020: 67

    -68(in Chinese)

    Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153: 91-99
    Ma Y N, Huang A N, Cao S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219: 166-173
    Wang Y, Zhang M X, Ding G H, et al. Polystyrene microplastics alleviate adverse effects of benzo[a] pyrene on tissues and cells of the marine mussel, Mytilus galloprovincialis[J]. Aquatic Toxicology, 2023, 256: 106430
    Eltemsah Y S, Bøhn T. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna[J]. Environmental Pollution, 2019, 254: 112919
    巩宁, 韩旭, 李佳璠, 等. 不同粒径聚乙烯微粒对大型溞的生物毒性效应[J]. 海洋环境科学, 2020, 39(2): 169-176

    Gong N, Han X, Li J F, et al. Toxic effects of different particle size polyethylene microbeads on Daphnia magna[J]. Marine Environmental Science, 2020, 39(2): 169-176(in Chinese)

    Zhang X T, Xia X H, Dong J W, et al. Enhancement of toxic effects of phenanthrene to Daphnia magna due to the presence of suspended sediment[J]. Chemosphere, 2014, 104: 162-169
    Wan X, Cheng C, Gu Y R, et al. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the Cladoceran (Daphnia magna)[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112405
    Tani K, Watanabe H, Noguchi M, et al. Toxicity assessment of typical polycyclic aromatic hydrocarbons to Daphnia magna and Hyalella azteca in water-only and sediment-water exposure systems[J]. Science of the Total Environment, 2021, 784: 147156
    Kim D, Chae Y, An Y J. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21): 12852-12858
    Jeong H, Lee Y H, Sayed A E D H, et al. Short- and long-term single and combined effects of microplastics and chromium on the freshwater water flea Daphnia magna[J]. Aquatic Toxicology, 2022, 253: 106348
    修文洁, 闫淼, 顾冀海, 等. 微塑料PVC与磺胺甲恶唑联合暴露大型溞引发的急慢性毒理效应[J]. 水生生物学报, 2024, 48(3): 413-425

    Xiu W J, Yan M, Gu J H, et al. Acute and chronic toxicological effects on combined exposure of microplastic PVC and sulfamethoxazole to Daphnia magna[J]. Acta Hydrobiologica Sinica, 2024, 48(3): 413-425(in Chinese)

    张桂芝, 杨清伟, 蹇徽龙, 等. 水环境中微塑料对典型污染物的吸附行为研究进展[J]. 应用化工, 2022, 51(1): 246-250

    Zhang G Z, Yang Q W, Jian H L, et al. Research progress on the adsorption behavior of typical pollutants by microplastics in water environment[J]. Applied Chemical Industry, 2022, 51(1): 246-250(in Chinese)

    Hu L H, Zhao Y, Xu H Y. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants[J]. Journal of Hazardous Materials, 2022, 439: 129652
    Li Y J, Yang G X, Wang J, et al. Microplastics increase the accumulation of phenanthrene in the ovaries of marine medaka (Oryzias melastigma) and its transgenerational toxicity[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127754
    Guo J Y, Liu N, Xie Q T, et al. Polystyrene microplastics facilitate the biotoxicity and biomagnification of ZnO nanoparticles in the food chain from algae to Daphnia[J]. Environmental Pollution, 2023, 324: 121181
    Qiu X C, Saovany S, Takai Y, et al. Quantifying the vector effects of polyethylene microplastics on the accumulation of anthracene to Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2020, 228: 105643
    Wang J, Li X, Li P, et al. Porous microplastics enhance polychlorinated biphenyls-induced thyroid disruption in juvenile Japanese flounder (Paralichthys olivaceus)[J]. Marine Pollution Bulletin, 2022, 174: 113289
    Yang Z G, Zhu L L, Liu J N, et al. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis[J]. Science of the Total Environment, 2022, 829: 154586
    Li J N, Jong M C, Gin K Y, et al. Size-dominated biotoxicity of microplastics laden with benzophenone-3 and ciprofloxacin: Enhanced integrated biomarker evaluation on mussels[J]. Environmental Pollution, 2023, 333: 122018
    Rios-Fuster B, Alomar C, Deudero S. Elucidating the consequences of the co-exposure of microplastics jointly to other pollutants in bivalves: A review[J]. Environmental Research, 2023, 216(Pt 2): 114560
    Hu Y W, Lin S H, Tang J L, et al. Effects of microplastics and lead exposure on gut oxidative stress and intestinal inflammation in common carp (Cyprinus carpio L.)[J]. Environmental Pollution, 2023, 327: 121528
    Ma W Q, Sun Z J, Zhang X, et al. Alleviation of tris(2-chloroethyl) phosphate toxicity on the marine rotifer Brachionus plicatilis by polystyrene microplastics: Features and molecular evidence[J]. International Journal of Molecular Sciences, 2022, 23(9): 4934
    Araújo A M, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach[J]. Environmental Toxicology and Pharmacology, 2023, 99: 104088
    Lu J R, Wu J, Gong L L, et al. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos[J]. Environmental Science and Pollution Research International, 2022, 29(13): 19273-19282
    Chen C C, Shi Y H, Zhu Y J, et al. Combined toxicity of polystyrene microplastics and ammonium perfluorooctanoate to Daphnia magna: Mediation of intestinal blockage[J]. Water Research, 2022, 219: 118536
    姜航, 丁剑楠, 黄叶菁, 等. 聚苯乙烯微塑料和罗红霉素对斜生栅藻(Scenedesmus obliquus)和大型溞(Daphnia magna)的联合效应研究[J]. 生态环境学报, 2019, 28(7): 1457-1465

    Jiang H, Ding J N, Huang Y J, et al. Combined effects of polystyrene microplastics and roxithromycin on the green algae (Scenedesmus obliquus) and waterflea (Daphnia magna)[J]. Ecology and Environmental Sciences, 2019, 28(7): 1457-1465(in Chinese)

    Zeidi A, Sayadi M H, Rezaei M R, et al. Single and combined effects of CuSO4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacus leptodactylus [J]. Chemosphere, 2023, 345: 140478
    Eom H J, Haque M N, Lee S, et al. Exposure to metals premixed with microplastics increases toxicity through bioconcentration and impairs antioxidant defense and cholinergic response in a marine mysid[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 249: 109142
    Avio C G, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat[J]. Marine Environmental Research, 2017, 128: 2-11
    Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms[J]. Water Research, 2020, 184: 116170
    Pires A, Cuccaro A, Sole M, et al. Micro(nano) plastics and plastic additives effects in marine annelids: A literature review[J]. Environmental Research, 2022, 214(Pt 1): 113642
    Shore E A, Huber K E, Garrett A D, et al. Four plastic additives reduce larval growth and survival in the sea urchin Strongylocentrotus purpuratus[J]. Marine Pollution Bulletin, 2022, 175: 113385
    Tanaka K, Watanuki Y, Takada H, et al. In vivo accumulation of plastic-derived chemicals into seabird tissues[J]. Current Biology, 2020, 30(4): 723-728.e3
    Savva K, Farré M, Barata C. Sublethal effects of bio-plastic microparticles and their components on the behaviour of Daphnia magna[J]. Environmental Research, 2023, 236: 116775
    王亦凡, 刘建超. 纳米聚苯乙烯塑料对红霉素生物毒性效应的影响研究[J]. 环境科学学报, 2023, 43(2): 499-508

    Wang Y F, Liu J C. Research on the effect of polystyrene nanoplastics on the ecotoxicity of erythromycin[J]. Acta Scientiae Circumstantiae, 2023, 43(2): 499-508(in Chinese)

    Song J, Kim C, Na J, et al. Transgenerational effects of polyethylene microplastic fragments containing benzophenone-3 additive in Daphnia magna[J]. Journal of Hazardous Materials, 2022, 436: 129225
  • 加载中
计量
  • 文章访问数:  278
  • HTML全文浏览数:  278
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-05-20
王志远, 卢海悦, 王晓凡, 贾静, 巩宁. 聚乙烯微粒与菲对大型溞的联合毒性作用模式研究[J]. 生态毒理学报, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
引用本文: 王志远, 卢海悦, 王晓凡, 贾静, 巩宁. 聚乙烯微粒与菲对大型溞的联合毒性作用模式研究[J]. 生态毒理学报, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
WANG Zhiyuan, LU Haiyue, WANG Xiaofan, JIA Jing, GONG Ning. Toxic Effects of Polyethylene Particles and Phenanthrene and Their Combined Toxic Actions on Daphnia magna[J]. Asian journal of ecotoxicology, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001
Citation: WANG Zhiyuan, LU Haiyue, WANG Xiaofan, JIA Jing, GONG Ning. Toxic Effects of Polyethylene Particles and Phenanthrene and Their Combined Toxic Actions on Daphnia magna[J]. Asian journal of ecotoxicology, 2024, 19(6): 324-334. doi: 10.7524/AJE.1673-5897.20240520001

聚乙烯微粒与菲对大型溞的联合毒性作用模式研究

    通讯作者: 巩宁(1975-),女,博士,教授,硕士生导师,主要研究方向为水生毒理学。E-mail:cospar06@dlmu.edu.cn
    作者简介: 王志远(1999—),男,硕士研究生,研究方向为生态毒理学,E-mail:18765979495@163.com
  • 大连海事大学环境科学与工程学院环境系统生物学研究所, 大连 116026
基金项目:

中央高校基本科研业务费专项资金项目(3132023528)

摘要: 为研究微塑料与多环芳烃联合暴露对水生生物的毒性效应,本文以大型溞为受试生物,选用粒径范围为1~10 μm的聚乙烯颗粒以及菲为实验材料,研究不同浓度聚乙烯颗粒与菲对大型溞的单独及联合毒性,通过6种方法(毒性单位法、相加指数法、混合毒性指数法、联合指数法、相似性参数法和等效线法)评价二者的联合毒性作用模式。结果表明,单独暴露48 h后,聚乙烯和菲对大型溞均有活动抑制作用,呈现出明显的剂量-效应和时间-效应关系。EC50分别为5.07 mg·L-1和0.61 mg·L-1。在联合暴露条件下,大型溞的活动抑制作用增强,6种评估方法均表明,聚乙烯微粒与菲对大型溞的联合毒性作用模式为协同作用。本研究结果有助于进一步认识水生环境中微塑料与其他污染物联合暴露对生物的影响,为微塑料的生态风险研究提供数据支撑和参考。

English Abstract

参考文献 (62)

返回顶部

目录

/

返回文章
返回