汞胁迫下鱼腥草生长生理特性的响应
Effect of Mercury Stress on Growth and Physiological Characteristics of Houttuynia cordata
-
摘要: 汞是贵州省农田土壤中的主要污染物之一,但其对鱼腥草生长及生理特性影响未见报道。本研究通过土壤盆栽实验,探究不同浓度(0、50、100、200、400和800 mg·kg-1)汞胁迫下,鱼腥草的生长和生理特性的变化,为研究汞胁迫毒害鱼腥草的机理及汞污染土壤的植物修护提供理论依据。结果表明,汞胁迫并未对鱼腥草新根根茎粗、根茎长及老根根茎粗产生明显影响(P>0.05),但汞浓度为800 mg·kg-1时,鱼腥草老根根茎长度显著降低(P<0.05),其平均根茎长度降低40.57%;鱼腥草总鲜质量随着汞浓度的增加而降低(P<0.05)。当汞浓度达到200 mg·kg-1时,鱼腥草盆栽生长状况出现明显的毒害作用。汞胁迫抑制鱼腥草叶绿素的生成,当汞浓度为400 mg·kg-1时,鱼腥草叶绿素含量最低,此时鱼腥草总叶绿素、叶绿素a、叶绿素b含量相比于对照组分别降低56.37%、58.88%、51.32%。随汞胁迫浓度增加,鱼腥草叶片超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)活性均呈现先下降后上升的趋势、鱼腥草叶片过氧化酶(peroxidase, POD)活性呈现上升趋势;而鱼腥草根茎SOD活性呈现上升趋势、CAT活性呈现先上升后降低、鱼腥草根茎POD活性呈现下降的趋势。汞浓度增加降低了鱼腥草叶片黄酮含量(P<0.05)。本研究表明汞胁迫对鱼腥草具有毒害作用,可损害鱼腥草的生长发育,影响鱼腥草的抗氧化酶系统,并抑制鱼腥草中叶绿素和黄酮的生成。鱼腥草对汞胁迫具有一定的耐受能力,结合鱼腥草本身对生长环境适应能力强的特点,可作为土壤汞浓度不超过200 mg·kg-1的汞污染土壤修复植物。Abstract: Mercury (Hg) is one of the main pollutants in agricultural soils in Guizhou Province, but the effect of Hg on the growth and physiological characteristics of Houttuynia cordata has not been reported. To provide theoretical basis for the mechanism of Houttuynia cordata damage caused by Hg stress and the phytoremediation technologies for mercury-contaminated soil, this study explored the growth and physiological characteristics of Houttuynia cordata under different concentrations (0, 50, 100, 200, 400, 800 mg·kg-1) of Hg stress using soil pot experiments. The results showed that Hg stress had no significant effect on the new root and stem thickness, new root and stem length, and old root and stem thickness of Houttuynia cordata (P>0.05). However, the old root and stem length of Houttuynia cordata significantly decreased under Hg stress when the Hg concentration reached 800 mg·kg-1 (P<0.05), and the average root and stem length of Houttuynia cordata decreased by 40.57% compared with the control group. The total fresh weight of Houttuynia cordata in each group decreased with the Hg concentration (P<0.05). The Houttuynia cordata significantly deteriorated under Hg stress when the Hg concentration was higher than 200 mg·kg-1. Mercury stress inhibits the generation of chlorophyll in Houttuynia cordata. The lowest chlorophyll content in Houttuynia cordata under Hg stress occurred in 400 mg·kg-1 Hg concentration. The total chlorophyll, chlorophyll a, and chlorophyll b content in Houttuynia cordata reduced by 56.37%, 58.88%, and 51.32% compared to the control group, respectively. With the increase of Hg concentration, the superoxide dismutase (SOD) and catalase (CAT) enzymes activities in the leaves of Houttuynia cordata first showed a decreasing trend and then showed an increasing trend, while the peroxidase (POD) enzyme activity in the leaves of Houttuynia cordata showed an increased trend. With the increase of Hg concentration, the SOD enzyme activity in the roots and stems of Houttuynia cordata increases, the CAT enzyme activity in the roots and stems of Houttuynia cordata first increases and then decreases, while the POD enzyme activity in the roots and stems of Houttuynia cordata decreases. The flavonoid content in Houttuynia cordata leaves decreases with Hg concentration (P<0.05). These results indicated that Hg stress has a toxic effect on Houttuynia cordata, which can damage its growth and development, affect its antioxidant enzyme system, and inhibit the generation of chlorophyll and flavonoids in Houttuynia cordata. The Houttuynia cordata has a certain tolerance to Hg stress. Considering its strong adaptability to the growth environment, Houttuynia cordata can be used as a soil remediation plant for Hg contaminated soil with Hg levels less than 200 mg·kg-1.
-
Key words:
- mercury stress /
- Houttuynia cordata /
- physiological characteristics /
- phytoremediation
-
-
冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊, 2020, 35(11): 1344-1350 Feng X B, Shi J B, Li P, et al. Progress of mercury pollution research and implementation of Minamata convention in China[J]. China Academic Journal Publishing House, 2020, 35(11): 1344-1350(in Chinese)
李强, 郭飞, 莫测辉, 等. 贵州省环境中汞污染现状与分布特征[J]. 生态科学, 2013, 32(2): 235-240 Li Q, Guo F, Mo C H, et al. A study of distribution of environmental mercury in Guizhou Province[J]. Ecological Science, 2013, 32(2): 235-240(in Chinese)
Xu Z D, Lu Q H, Xu X H, et al. Multi-pathway mercury health risk assessment, categorization and prioritization in an abandoned mercury mining area: A pilot study for implementation of the Minamata convention[J]. Chemosphere, 2020, 260: 127582 赵金璇, 李玉锋, 梁佳, 等. 贵阳和万山地区部分蔬菜中的重金属含量及其健康风险[J]. 生态毒理学报, 2009, 4(3): 392-398 Zhao J X, Li Y F, Liang J, et al. Contents of heavy metals in some vegetables and their potential risks to human health in Guiyang and Wanshan areas[J]. Asian Journal of Ecotoxicology, 2009, 4(3): 392-398(in Chinese)
Wang Q F, Li Z G, Feng X B, et al. Mercury accumulation in vegetable Houttuynia cordata Thunb. from two different geological areas in Southwest China and implications for human consumption[J]. Scientific Reports, 2021, 11(1): 52 Ranieri E, Moustakas K, Barbafieri M, et al. Phytoextraction technologies for mercury- and chromium-contaminated soil: A review[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(2): 317-327 洪纬. 食物、药物和景物: 鱼腥草在传统中国的利用[J]. 中国农史, 2016, 35(6): 111-120 Hong W. Food, drug and landscape: Shaping the history of Houttuynia cordata Thunb in traditional China[J]. Agricultural History of China, 2016, 35(6): 111-120(in Chinese)
赵徐立. 鱼腥草GAP高产栽培技术[J]. 云南农业, 2012(1): 50 Zhao X L. GAP high-yield cultivation techniques of Houttuynia cordata Thunb[J]. Yunnan Agriculture, 2012(1 ): 50(in Chinese)
李铮铮, 伍钧, 唐亚, 等. 铅、锌及其交互作用对鱼腥草(Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响[J]. 生态学报, 2007, 27(12): 5441-5446 Li Z Z, Wu J, Tang Y, et al. Effect of Pb, Zn and their interactions on the chlorophyll content and antioxidant enzyme systems of Houttuynia cordata Thunb[J]. Acta Ecologica Sinica, 2007, 27(12): 5441-5446(in Chinese)
吴正卓, 刘桂华, 范成五, 等. 镉胁迫下不同生态型鱼腥草生长及生理特性的响应[J]. 西南农业学报, 2022, 35(2): 359-365 Wu Z Z, Liu G H, Fan C W, et al. Effects of cadmium stress on growth and physiological characteristics of different ecotype Houttuynia casdata Thunbs[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(2): 359-365(in Chinese)
Wang Q F, Li Z G, Feng X B, et al. Vegetable Houttuynia cordata Thunb as an important human mercury exposure route in Kaiyang County, Guizhou Province, SW China[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110575 中华人民共和国国家卫生健康委员会, 中华人民共和国国家市场监督管理总局. 食品安全国家标准食品中污染物限量: GB 2762—2022[S]. 北京: 中国标准出版社, 2022 Chen J, Yang Z M. Mercury toxicity, molecular response and tolerance in higher plants[J]. Biometals, 2012, 25(5): 847-857 秦永田, 陈黎霞, 汤继华, 等. 玉米苗期根汞胁迫响应中miRNA的鉴定及初步验证[J]. 作物学报, 2022, 48(12): 3018-3028 Qin Y T, Chen L X, Tang J H, et al. Identification and validation of miRNA involved in mercury stress response in maize seedling roots[J]. Acta Agronomica Sinica, 2022, 48(12): 3018-3028(in Chinese)
杜建雄, 任尉香, 袁涓文, 等. 汞胁迫对4个草坪草、牧草品种幼苗生长和生理的影响[J]. 草地学报, 2021, 29(8): 1712-1718 Du J X, Ren W X, Yuan J W, et al. Effects of mercury stress on seedling growth and physiology of four turfgrass and forage varieties[J]. Acta Agrestia Sinica, 2021, 29(8): 1712-1718(in Chinese)
中华人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018 孙睿婕. 贵州某汞矿区下游土壤: 农作物系统汞污染现状及风险评估[D]. 呼和浩特: 内蒙古大学, 2018: 1-52 Sun R J. Present situation and risk assessment of mercury pollution in soil-crop system downstream of a mercury mining area in Guizhou[D]. Hohhot: Inner Mongolia University, 2018: 1 -52(in Chinese)
中华人民共和国农业部. 水果、蔬菜及其制品中叶绿素含量的测定分光光度法: NY/T 3082—2017[S]. 北京: 中国农业出版社, 2017 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 蜂胶中总黄酮含量的测定方法分光光度比色法: GB/T 20574—2006[S]. 北京: 中国标准出版社, 2007 Cobbett C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiology, 2000, 123(3): 825-832 Cargnelutti D, Tabaldi L A, Spanevello R M, et al. Mercury toxicity induces oxidative stress in growing cucumber seedlings[J]. Chemosphere, 2006, 65(6): 999-1006 徐小蓉, 张习敏, 杨立昌, 等. 汞胁迫对蜈蚣草生理特性的影响[J]. 安徽农业科学, 2011, 39(24): 14772-14774 Xu X R, Zhang X M, Yang L C, et al. Effect of Hg2+ stress on physiological characteristics of Pteris vittata L.[J]. Journal of Anhui Agricultural Sciences, 2011, 39(24): 14772-14774(in Chinese)
Chen Y A, Chi W C, Huang T L, et al. Mercury-induced biochemical and proteomic changes in rice roots[J]. Plant Physiology and Biochemistry, 2012, 55: 23-32 Huang Y M, Li F B, Yi J C, et al. Transcriptomic and physio-biochemical features in rice (Oryza sativa L.) in response to mercury stress[J]. Chemosphere, 2022, 309(Pt 1): 136612 Guedes F R C M, Maia C F, Silva B R S D, et al. Exogenous 24-epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress[J]. Environmental Pollution, 2021, 280: 116992 刘泽静, 薛生玲, 夏雪, 等. 鱼腥草不同部位生物活性物质和抗氧化能力分析[J]. 浙江农业学报, 2016, 28(6): 992-998 Liu Z J, Xue S L, Xia X, et al. Analysis of bioactive compounds and antioxidant capacities in Houttuynia cordata [J]. Acta Agriculturae Zhejiangensis, 2016, 28(6): 992-998(in Chinese)
Jia Y D, Li X Y, Liu Q, et al. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of Stylosanthes to manganese toxicity[J]. BMC Genomics, 2020, 21(1): 861 -

计量
- 文章访问数: 333
- HTML全文浏览数: 333
- PDF下载数: 64
- 施引文献: 0