Chen Q Q, Yin D Q, Jia Y L, et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish[J]. Science of the Total Environment, 2017, 609: 1312-1321
|
Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects[J]. Science of the Total Environment, 2020, 703: 134699
|
Teng J, Zhao J M, Zhu X P, et al. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas[J]. Environmental Pollution, 2021, 269: 116169
|
Thompson R C, Olson Y, Mitchell R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838
|
Ma H, Pu S Y, Liu S B, et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences[J]. Environmental Pollution, 2020, 261: 114089
|
Andrady A L. The plastic in microplastics: A review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22
|
Nava V, Leoni B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function[J]. Water Research, 2021, 188: 116476
|
Liu Y, Shi H H, Chen L P, et al. An overview of microplastics in oysters: Analysis, hazards, and depuration[J]. Food Chemistry, 2023, 422: 136153
|
Browne M A, Niven S J, Galloway T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23): 2388-2392
|
Besseling E, Wegner A, Foekema E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1): 593-600
|
安浩, 张宴. 微塑料和三氯生对斑马鱼的神经毒性效应研究[J]. 能源环境保护, 2023, 37(4): 131-139
An H, Zhang Y. Study on neurotoxic effects of microplastics and triclosan on the zebrafish[J]. Energy Environmental Protection, 2023, 37(4): 131-139(in Chinese)
|
Almeda R, Rodriguez-Torres R, Rist S, et al. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions[J]. Science of the Total Environment, 2021, 751: 141264
|
Koelmans A A, Besseling E, Wegner A, et al. Plastic as a carrier of POPs to aquatic organisms: A model analysis[J]. Environmental Science & Technology, 2013, 47(14): 7812-7820
|
Koelmans A A, Besseling E, Foekema E M. Leaching of plastic additives to marine organisms[J]. Environmental Pollution, 2014, 187: 49-54
|
钟圳, 陈肇文, 王有基, 等. 微纳米塑料和有机磷阻燃剂的联合毒性效应研究进展[J]. 生态毒理学报, 2022, 17(6): 37-68
Zhong Z, Chen Z W, Wang Y J, et al. Research progress on joint toxicity of micro-nano plastics and organo-phosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 37-68(in Chinese)
|
Kleinteich J, Seidensticker S, Marggrander N, et al. Microplastics reduce short-term effects of environmental contaminants. part II: Polyethylene particles decrease the effect of polycyclic aromatic hydrocarbons on microorganisms[J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 287
|
Rehse S, Kloas W, Zarfl C. Microplastics reduce short-term effects of environmental contaminants. part I: Effects of bisphenol A on freshwater zooplankton are lower in presence of polyamide particles[J]. International Journal of Environmental Research and Public Health, 2018, 15(2): 280
|
Organization for Economic Cooperation and Development (OECD). OECD Guideline for Testing of Chemicals. Daphnia sp., Acute Immobilisation Test[S]. Paris: OECD, 2009
|
Organization for Economic Cooperation and Development (OECD). OECD Guideline for Testing of Chemicals. Algal Growth Inhibition Test[S]. Paris: OECD, 1984
|
Anyakora C, Ogbeche A, Palmer P, et al. Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement[J]. Journal of Chromatography A, 2005, 1073(1/2): 323-330
|
An G, Na J, Song J, et al. Chronic toxicity of biodegradable microplastic (polylactic acid) to Daphnia magna: A comparison with polyethylene terephthalate[J]. Aquatic Toxicology, 2024, 266: 106790
|
Broderius S J, Kahl M D, Hoglund M D. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals[J]. Environmental Toxicology and Chemistry, 1995, 14(9): 1591-1605
|
Chou T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621-681
|
Chou T C, Paul T. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors[J]. Advances in Enzyme Regulation, 1984, 22: 27-55
|
Na J, Song J, Achar J C, et al. Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity[J]. Journal of Hazardous Materials, 2021, 402: 123845
|
苑文珂. 聚苯乙烯微/纳米塑料对重金属的吸附行为及其对两种典型水生生物的生态毒性研究[D]. 北京: 中国科学院大学, 2020: 67-68 Yuan W K. Adsorption behavior of polystyrene micro/nano plastics for heavy metals and its ecotoxicity to two typical aquatic organisms[D]. Beijing: University of Chinese Academy of Sciences, 2020: 67
-68(in Chinese)
|
Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153: 91-99
|
Ma Y N, Huang A N, Cao S Q, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219: 166-173
|
Wang Y, Zhang M X, Ding G H, et al. Polystyrene microplastics alleviate adverse effects of benzo[a] pyrene on tissues and cells of the marine mussel, Mytilus galloprovincialis[J]. Aquatic Toxicology, 2023, 256: 106430
|
Eltemsah Y S, Bøhn T. Acute and chronic effects of polystyrene microplastics on juvenile and adult Daphnia magna[J]. Environmental Pollution, 2019, 254: 112919
|
巩宁, 韩旭, 李佳璠, 等. 不同粒径聚乙烯微粒对大型溞的生物毒性效应[J]. 海洋环境科学, 2020, 39(2): 169-176
Gong N, Han X, Li J F, et al. Toxic effects of different particle size polyethylene microbeads on Daphnia magna[J]. Marine Environmental Science, 2020, 39(2): 169-176(in Chinese)
|
Zhang X T, Xia X H, Dong J W, et al. Enhancement of toxic effects of phenanthrene to Daphnia magna due to the presence of suspended sediment[J]. Chemosphere, 2014, 104: 162-169
|
Wan X, Cheng C, Gu Y R, et al. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the Cladoceran (Daphnia magna)[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112405
|
Tani K, Watanabe H, Noguchi M, et al. Toxicity assessment of typical polycyclic aromatic hydrocarbons to Daphnia magna and Hyalella azteca in water-only and sediment-water exposure systems[J]. Science of the Total Environment, 2021, 784: 147156
|
Kim D, Chae Y, An Y J. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21): 12852-12858
|
Jeong H, Lee Y H, Sayed A E D H, et al. Short- and long-term single and combined effects of microplastics and chromium on the freshwater water flea Daphnia magna[J]. Aquatic Toxicology, 2022, 253: 106348
|
修文洁, 闫淼, 顾冀海, 等. 微塑料PVC与磺胺甲恶唑联合暴露大型溞引发的急慢性毒理效应[J]. 水生生物学报, 2024, 48(3): 413-425
Xiu W J, Yan M, Gu J H, et al. Acute and chronic toxicological effects on combined exposure of microplastic PVC and sulfamethoxazole to Daphnia magna[J]. Acta Hydrobiologica Sinica, 2024, 48(3): 413-425(in Chinese)
|
张桂芝, 杨清伟, 蹇徽龙, 等. 水环境中微塑料对典型污染物的吸附行为研究进展[J]. 应用化工, 2022, 51(1): 246-250
Zhang G Z, Yang Q W, Jian H L, et al. Research progress on the adsorption behavior of typical pollutants by microplastics in water environment[J]. Applied Chemical Industry, 2022, 51(1): 246-250(in Chinese)
|
Hu L H, Zhao Y, Xu H Y. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants[J]. Journal of Hazardous Materials, 2022, 439: 129652
|
Li Y J, Yang G X, Wang J, et al. Microplastics increase the accumulation of phenanthrene in the ovaries of marine medaka (Oryzias melastigma) and its transgenerational toxicity[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127754
|
Guo J Y, Liu N, Xie Q T, et al. Polystyrene microplastics facilitate the biotoxicity and biomagnification of ZnO nanoparticles in the food chain from algae to Daphnia[J]. Environmental Pollution, 2023, 324: 121181
|
Qiu X C, Saovany S, Takai Y, et al. Quantifying the vector effects of polyethylene microplastics on the accumulation of anthracene to Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2020, 228: 105643
|
Wang J, Li X, Li P, et al. Porous microplastics enhance polychlorinated biphenyls-induced thyroid disruption in juvenile Japanese flounder (Paralichthys olivaceus)[J]. Marine Pollution Bulletin, 2022, 174: 113289
|
Yang Z G, Zhu L L, Liu J N, et al. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis[J]. Science of the Total Environment, 2022, 829: 154586
|
Li J N, Jong M C, Gin K Y, et al. Size-dominated biotoxicity of microplastics laden with benzophenone-3 and ciprofloxacin: Enhanced integrated biomarker evaluation on mussels[J]. Environmental Pollution, 2023, 333: 122018
|
Rios-Fuster B, Alomar C, Deudero S. Elucidating the consequences of the co-exposure of microplastics jointly to other pollutants in bivalves: A review[J]. Environmental Research, 2023, 216(Pt 2): 114560
|
Hu Y W, Lin S H, Tang J L, et al. Effects of microplastics and lead exposure on gut oxidative stress and intestinal inflammation in common carp (Cyprinus carpio L.)[J]. Environmental Pollution, 2023, 327: 121528
|
Ma W Q, Sun Z J, Zhang X, et al. Alleviation of tris(2-chloroethyl) phosphate toxicity on the marine rotifer Brachionus plicatilis by polystyrene microplastics: Features and molecular evidence[J]. International Journal of Molecular Sciences, 2022, 23(9): 4934
|
Araújo A M, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach[J]. Environmental Toxicology and Pharmacology, 2023, 99: 104088
|
Lu J R, Wu J, Gong L L, et al. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos[J]. Environmental Science and Pollution Research International, 2022, 29(13): 19273-19282
|
Chen C C, Shi Y H, Zhu Y J, et al. Combined toxicity of polystyrene microplastics and ammonium perfluorooctanoate to Daphnia magna: Mediation of intestinal blockage[J]. Water Research, 2022, 219: 118536
|
姜航, 丁剑楠, 黄叶菁, 等. 聚苯乙烯微塑料和罗红霉素对斜生栅藻(Scenedesmus obliquus)和大型溞(Daphnia magna)的联合效应研究[J]. 生态环境学报, 2019, 28(7): 1457-1465
Jiang H, Ding J N, Huang Y J, et al. Combined effects of polystyrene microplastics and roxithromycin on the green algae (Scenedesmus obliquus) and waterflea (Daphnia magna)[J]. Ecology and Environmental Sciences, 2019, 28(7): 1457-1465(in Chinese)
|
Zeidi A, Sayadi M H, Rezaei M R, et al. Single and combined effects of CuSO4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacus leptodactylus [J]. Chemosphere, 2023, 345: 140478
|
Eom H J, Haque M N, Lee S, et al. Exposure to metals premixed with microplastics increases toxicity through bioconcentration and impairs antioxidant defense and cholinergic response in a marine mysid[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 249: 109142
|
Avio C G, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat[J]. Marine Environmental Research, 2017, 128: 2-11
|
Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms[J]. Water Research, 2020, 184: 116170
|
Pires A, Cuccaro A, Sole M, et al. Micro(nano) plastics and plastic additives effects in marine annelids: A literature review[J]. Environmental Research, 2022, 214(Pt 1): 113642
|
Shore E A, Huber K E, Garrett A D, et al. Four plastic additives reduce larval growth and survival in the sea urchin Strongylocentrotus purpuratus[J]. Marine Pollution Bulletin, 2022, 175: 113385
|
Tanaka K, Watanuki Y, Takada H, et al. In vivo accumulation of plastic-derived chemicals into seabird tissues[J]. Current Biology, 2020, 30(4): 723-728.e3
|
Savva K, Farré M, Barata C. Sublethal effects of bio-plastic microparticles and their components on the behaviour of Daphnia magna[J]. Environmental Research, 2023, 236: 116775
|
王亦凡, 刘建超. 纳米聚苯乙烯塑料对红霉素生物毒性效应的影响研究[J]. 环境科学学报, 2023, 43(2): 499-508
Wang Y F, Liu J C. Research on the effect of polystyrene nanoplastics on the ecotoxicity of erythromycin[J]. Acta Scientiae Circumstantiae, 2023, 43(2): 499-508(in Chinese)
|
Song J, Kim C, Na J, et al. Transgenerational effects of polyethylene microplastic fragments containing benzophenone-3 additive in Daphnia magna[J]. Journal of Hazardous Materials, 2022, 436: 129225
|