新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性

李思颖, 马栋栋, 张金阁, 龙小冰, 卢志杰, 刘昕, 黄楚舒, 史文俊, 刘芳. 新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性[J]. 生态毒理学报, 2023, 18(1): 246-260. doi: 10.7524/AJE.1673-5897.20221130002
引用本文: 李思颖, 马栋栋, 张金阁, 龙小冰, 卢志杰, 刘昕, 黄楚舒, 史文俊, 刘芳. 新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性[J]. 生态毒理学报, 2023, 18(1): 246-260. doi: 10.7524/AJE.1673-5897.20221130002
Li Siying, Ma Dongdong, Zhang Jinge, Long Xiaobing, Lu Zhijie, Liu Xin, Huang Chushu, Shi Wenjun, Liu Fang. Neurotoxicity of A New Psychoactive Substance Ketamine on Zebrafish Larvae[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 246-260. doi: 10.7524/AJE.1673-5897.20221130002
Citation: Li Siying, Ma Dongdong, Zhang Jinge, Long Xiaobing, Lu Zhijie, Liu Xin, Huang Chushu, Shi Wenjun, Liu Fang. Neurotoxicity of A New Psychoactive Substance Ketamine on Zebrafish Larvae[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 246-260. doi: 10.7524/AJE.1673-5897.20221130002

新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性

    作者简介: 李思颖(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:siying.li@m.scnu.edu.cn
    通讯作者: 史文俊, E-mail: wenjun.shi@m.scnu.edu.cn 刘芳, E-mail: liufang77@m.scnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42277268);广东省精神活性物质监测与安全重点实验室开放基金资助项目

  • 中图分类号: X171.5

Neurotoxicity of A New Psychoactive Substance Ketamine on Zebrafish Larvae

    Corresponding authors: Shi Wenjun, wenjun.shi@m.scnu.edu.cn ;  Liu Fang, liufang77@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 氯胺酮(ketamine, KET)是一种新精神活性物质,使用后会产生致幻、视听分离感和欣快感。KET已经在地表水中广泛检出,浓度高达420 ng·L-1。已有大量研究表明KET对人、鼠类等哺乳动物具有强烈的神经毒性,但KET对鱼类的神经毒性及潜在机制尚不清晰。目前研究多关注KET对非竞争性N-甲基-D-天门冬氨酸(N-methyl-D-aspartate, NMDA)受体的影响,较少考虑多巴胺(dopamine, DA)和γ-氨基丁酸(GABA)通路的影响。为研究KET对斑马鱼幼鱼早期神经毒性及其作用机制,将2 hpf (hours post-fertilization)的斑马鱼胚胎分为对照组和3个暴露组(10、100和1 000 ng·L-1),分析KET对斑马鱼胚胎和幼鱼行为、活性氧水平以及神经相关基因转录水平的影响。结果表明,10 ng·L-1 KET显著降低7 dpf斑马鱼心率(P<0.05)。行为分析显示,100 ng·L-1和1 000 ng·L-1 KET显著增加斑马鱼胚胎自发摆尾运动频率(P<0.001)。1 000 ng·L-1 KET显著升高27 hpf斑马鱼对触碰反应的敏感程度、而降低48 hpf斑马鱼的敏感程度(P<0.01)。10 ng·L-1 KET显著降低斑马鱼在黑暗状态下的趋触性(P<0.05)。活性氧水平检测结果表明,1 000 ng·L-1 KET显著增加斑马鱼幼鱼腹部ROS荧光信号强度(P<0.05)。qPCR分析结果表明,10 ng·L-1 KET下调多巴胺受体基因drd3转录水平,100 ng·L-1 KET上调钾内向整流通道亚家族J成员6基因kcnj6转录水平,1 000 ng·L-1 KET上调γ-氨基丁酸转运体基因slc6a1b、钾内向整流通道亚家族J成员5基因kcnj5转录水平。上述结果表明,KET通过影响DA和GABA通路来显著影响斑马鱼幼鱼行为和神经相关基因转录水平,产生神经毒性。
  • 加载中
  • United Nations Office on Drugs and Crime. World Drug Report 2022 [R]. New York: United Nations Publications, 2022
    Jansen K L R. A review of the nonmedical use of ketamine: Use, users and consequences [J]. Journal of Psychoactive Drugs, 2000, 32(4): 419-433
    Curran H V, Morgan C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later [J]. Addiction, 2000, 95(4): 575-590
    郑涵予, 王雪. 氯胺酮神经精神毒性的研究进展[J]. 中国药物依赖性杂志, 2010, 19(6): 450-453
    Bobo W V, Miller S C. Ketamine as a preferred substance of abuse [J]. American Journal on Addictions, 2002, 11(4): 332-334
    Wang K C, Shih T S, Cheng S G. Use of SPE and LC/TIS/MS/MS for rapid detection and quantitation of ketamine and its metabolite, norketamine, in urine [J]. Forensic Science International, 2005, 147(1): 81-88
    Du P, Li K Y, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84
    Lin A Y C, Lee W N, Wang X H. Ketamine and the metabolite norketamine: Persistence and phototransformation toxicity in hospital wastewater and surface water [J]. Water Research, 2014, 53: 351-360
    Wang Z L, Han S, Cai M, et al. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community [J]. Water Research, 2020, 174: 115585
    Wang Z L, Xu Z Q, Li X Q. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters [J]. Journal of Hazardous Materials, 2019, 363: 268-276
    Baker D R, Kasprzyk-Hordern B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(12): 1620-1631
    Vazquez-Roig P, Andreu V, Blasco C, et al. Spatial distribution of illicit drugs in surface waters of the natural park of Pego-Oliva Marsh (Valencia, Spain) [J]. Environmental Science and Pollution Research International, 2012, 19(4): 971-982
    Liao P H, Hwang C C, Chen T H, et al. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish [J]. Aquatic Toxicology, 2015, 165: 84-92
    Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish [J]. Neurotoxicology and Teratology, 2011, 33(6): 658-667
    Félix L M, Antunes L M, Coimbra A M. Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development [J]. Neurotoxicology and Teratology, 2014, 41: 27-34
    Schier A F. The maternal-zygotic transition: Death and birth of RNAs [J]. Science, 2007, 316(5823): 406-407
    Guo R, Liu G J, Du M, et al. Early ketamine exposure results in cardiac enlargement and heart dysfunction in Xenopus embryos [J]. BMC Anesthesiology, 2015, 16(1): 23
    Li S W, Wang Y H, Lin A Y C. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2017, 143: 173-179
    Shi W J, Ying G G, Huang G Y, et al. Transcriptional and biochemical alterations in zebrafish eleuthero-embryos (Danio rerio) after exposure to synthetic progestogen dydrogesterone [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(1): 39-45
    Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253-310
    Sztal T E, Ruparelia A A, Williams C, et al. Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish [J]. Journal of Visualized Experiments, 2016, 116: 54431
    Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo [J]. Journal of Neurobiology, 1998, 37(4): 622-632
    Grunwald D J, Kimmel C B, Westerfield M, et al. A neural degeneration mutation that spares primary neurons in the zebrafish [J]. Developmental Biology, 1988, 126(1): 115-128
    邹苏琪, 殷梧, 杨昱鹏, 等. 斑马鱼行为学实验在神经科学中的应用[J]. 生物化学与生物物理进展, 2009, 36(1): 5-12

    Zou S Q, Yin W, Yang Y P, et al. The ethology application of zebrafish in neuroscience [J]. Progress in Biochemistry and Biophysics, 2009, 36(1): 5-12 (in Chinese)

    Carmean V, Yonkers M A, Tellez M B, et al. Pigk mutation underlies macho behavior and affects Rohon-Beard cell excitability [J]. Journal of Neurophysiology, 2015, 114(2): 1146-1157
    Stanley K A, Curtis L R, Simonich S L, et al. Endosulfan Ⅰ and endosulfan sulfate disrupts zebrafish embryonic development [J]. Aquatic Toxicology, 2009, 95(4): 355-361
    Schnörr S J, Steenbergen P J, Richardson M K, et al. Measuring thigmotaxis in larval zebrafish [J]. Behavioural Brain Research, 2012, 228(2): 367-374
    Hill A J, Teraoka H, Heideman W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19
    Li J J, Zhang Y, Liu K C, et al. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the Wnt pathway [J]. Frontiers in Pharmacology, 2018, 9: 1250
    Kopf P G, Walker M K. Overview of developmental heart defects by dioxins, PCBs, and pesticides [J]. Journal of Environmental Science and Health, Part C, 2009, 27(4): 276-285
    Kanungo J, Cuevas E, Ali S F, et al. L-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos [J]. Reproductive Toxicology, 2012, 33(2): 205-212
    Hotchkiss C E, Wang C, Slikker W Jr. Effect of prolonged ketamine exposure on cardiovascular physiology in pregnant and infant rhesus monkeys (Macaca mulatta) [J]. Journal of the American Association for Laboratory Animal Science, 2007, 46(6): 21-28
    李岳振, 王文军, 王航, 等. 小剂量氯胺酮麻醉对感染性休克患者C-反应蛋白的影响[J]. 中华医院感染学杂志, 2016, 26(11): 2519-2521

    Li Y Z, Wang W J, Wang H, et al. Impact of low dose of ketamine anesthesia on C-reactive protein of septic shock patients [J]. Chinese Journal of Nosocomiology, 2016, 26(11): 2519-2521 (in Chinese)

    Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish [J]. Progress in Neurobiology, 2002, 68(2): 85-111
    Saint-Amant L. Development of motor networks in zebrafish embryos [J]. Zebrafish, 2006, 3(2): 173-190
    Richendrfer H, Creton R, Colwill R M. Zebrafish [M]. Hauppauge: Nova Science Publishers, 2014: 245-264
    Borla M A, Palecek B, Budick S, et al. Prey capture by larval zebrafish: Evidence for fine axial motor control [J]. Brain, Behavior and Evolution, 2002, 60(4): 207-229
    Leuthold D, Klüver N, Altenburger R, et al. Can environmentally relevant neuroactive chemicals specifically be detected with the locomotor response test in zebrafish embryos? [J]. Environmental Science & Technology, 2019, 53(1): 482-493
    吴敏. 地西泮药物污染对斑马鱼神经行为毒性及机制研究[D]. 镇江: 江苏大学, 2021: 19-20 Wu M. Neurobehavioral toxicity and related mechanisms of diazepam to zebrafish (Danio rerio) [D]. Zhenjiang: Jiangsu University, 2021: 19

    -20 (in Chinese)

    Lau B Y, Mathur P, Gould G G, et al. Identification of a brain center whose activity discriminates a choice behavior in zebrafish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2581-2586
    Sackerman J, Donegan J J, Cunningham C S, et al. Zebrafish behavior in novel environments: Effects of acute exposure to anxiolytic compounds and choice of Danio rerio line [J]. International Journal of Comparative Psychology, 2010, 23(1): 43-61
    Miller N, Gerlai R. From schooling to shoaling: Patterns of collective motion in zebrafish (Danio rerio) [J]. PLoS One, 2012, 7(11): e48865
    Childs E W, Udobi K F, Wood J G, et al. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock [J]. Shock, 2002, 18(5): 423-427
    Wang L, Ryu B, Kim W S, et al. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish [J]. Algae, 2017, 32: 379-388
    Bai X W, Yan Y S, Canfield S, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway [J]. Anesthesia and Analgesia, 2013, 116(4): 869-880
    Zhang Y Y, Dong Y L, Wu X, et al. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis [J]. The Journal of Biological Chemistry, 2010, 285(6): 4025-4037
    Wang C, Zhang X, Liu F, et al. Anesthetic-induced oxidative stress and potential protection [J]. The Scientific World Journal, 2010, 10: 1473-1482
    Jones D C, Miller G W. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction [J]. Biochemical Pharmacology, 2008, 76(5): 569-581
    Iversen S D, Iversen L L. Dopamine: 50 years in perspective [J]. Trends in Neurosciences, 2007, 30(5): 188-193
    Beaulieu J M, Gainetdinov R R. The physiology, signaling, and pharmacology of dopamine receptors [J]. Pharmacological Reviews, 2011, 63(1): 182-217
    Xu M, Koeltzow T E, Santiago G T, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors [J]. Neuron, 1997, 19(4): 837-848
    Liang X F, Zhao Y Q, Liu W, et al. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio) [J]. Environmental Pollution, 2020, 257: 113624
    Steiner H, Fuchs S, Accili D. D3 dopamine receptor-deficient mouse: Evidence for reduced anxiety [J]. Physiology & Behavior, 1997, 63(1): 137-141
    Leggio G M, Micale V, Drago F. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST) [J]. European Neuropsychopharmacology, 2008, 18(4): 271-277
    Borden L A. GABA transporter heterogeneity: Pharmacology and cellular localization [J]. Neurochemistry International, 1996, 29(4): 335-356
    Morara S, Brecha N C, Marcotti W, et al. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex [J]. Neuroreport, 1996, 7(18): 2993-2996
    Gadea A, López-Colomé A M. Glial transporters for glutamate, glycine and GABA Ⅰ. Glutamate transporters [J]. Journal of Neuroscience Research, 2001, 63(6): 453-460
    Ma Y H, Zhou X G, Duan S H, et al. Overexpression of gamma-aminobutyric acid transporter subtype Ⅰ leads to cognitive deterioration in transgenic mice [J]. Acta Pharmacologica Sinica, 2001, 22(4): 340-348
    Hu J H, Yang N, Ma Y H, et al. Hyperalgesic effects of gamma-aminobutyric acid transporter Ⅰ in mice [J]. Journal of Neuroscience Research, 2003, 73(4): 565-572
    Isomoto S, Kondo C, Takahashi N, et al. A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes [J]. Biochemical and Biophysical Research Communications, 1996, 218(1): 286-291
    Dhein S, van Koppen C J, Brodde O E. Muscarinic receptors in the mammalian heart [J]. Pharmacological Research, 2001, 44(3): 161-182
  • 加载中
计量
  • 文章访问数:  1246
  • HTML全文浏览数:  1246
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-30

新精神活性物质氯胺酮对斑马鱼幼鱼的神经毒性

    通讯作者: 史文俊, E-mail: wenjun.shi@m.scnu.edu.cn ;  刘芳, E-mail: liufang77@m.scnu.edu.cn
    作者简介: 李思颖(1998—),女,硕士研究生,研究方向为生态毒理学,E-mail:siying.li@m.scnu.edu.cn
  • 1. 华南师范大学环境研究院广东省化学污染与环境安全重点实验室, 华南师范大学环境理论化学教育部重点实验室, 广州 510006;
  • 2. 华南师范大学环境学院, 广州 510006;
  • 3. 广东省毒品实验技术中心(国家毒品实验室广东分中心), 广东省精神活性物质监测与安全重点实验室, 广州 510000;
  • 4. 华南师范大学地理科学学院, 广州 510631
基金项目:

国家自然科学基金资助项目(42277268);广东省精神活性物质监测与安全重点实验室开放基金资助项目

摘要: 氯胺酮(ketamine, KET)是一种新精神活性物质,使用后会产生致幻、视听分离感和欣快感。KET已经在地表水中广泛检出,浓度高达420 ng·L-1。已有大量研究表明KET对人、鼠类等哺乳动物具有强烈的神经毒性,但KET对鱼类的神经毒性及潜在机制尚不清晰。目前研究多关注KET对非竞争性N-甲基-D-天门冬氨酸(N-methyl-D-aspartate, NMDA)受体的影响,较少考虑多巴胺(dopamine, DA)和γ-氨基丁酸(GABA)通路的影响。为研究KET对斑马鱼幼鱼早期神经毒性及其作用机制,将2 hpf (hours post-fertilization)的斑马鱼胚胎分为对照组和3个暴露组(10、100和1 000 ng·L-1),分析KET对斑马鱼胚胎和幼鱼行为、活性氧水平以及神经相关基因转录水平的影响。结果表明,10 ng·L-1 KET显著降低7 dpf斑马鱼心率(P<0.05)。行为分析显示,100 ng·L-1和1 000 ng·L-1 KET显著增加斑马鱼胚胎自发摆尾运动频率(P<0.001)。1 000 ng·L-1 KET显著升高27 hpf斑马鱼对触碰反应的敏感程度、而降低48 hpf斑马鱼的敏感程度(P<0.01)。10 ng·L-1 KET显著降低斑马鱼在黑暗状态下的趋触性(P<0.05)。活性氧水平检测结果表明,1 000 ng·L-1 KET显著增加斑马鱼幼鱼腹部ROS荧光信号强度(P<0.05)。qPCR分析结果表明,10 ng·L-1 KET下调多巴胺受体基因drd3转录水平,100 ng·L-1 KET上调钾内向整流通道亚家族J成员6基因kcnj6转录水平,1 000 ng·L-1 KET上调γ-氨基丁酸转运体基因slc6a1b、钾内向整流通道亚家族J成员5基因kcnj5转录水平。上述结果表明,KET通过影响DA和GABA通路来显著影响斑马鱼幼鱼行为和神经相关基因转录水平,产生神经毒性。

English Abstract

参考文献 (61)

目录

/

返回文章
返回