United Nations Office on Drugs and Crime. World Drug Report 2022 [R]. New York: United Nations Publications, 2022
Jansen K L R. A review of the nonmedical use of ketamine: Use, users and consequences [J]. Journal of Psychoactive Drugs, 2000, 32(4): 419-433
Curran H V, Morgan C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later [J]. Addiction, 2000, 95(4): 575-590
郑涵予, 王雪. 氯胺酮神经精神毒性的研究进展[J]. 中国药物依赖性杂志, 2010, 19(6): 450-453
Bobo W V, Miller S C. Ketamine as a preferred substance of abuse [J]. American Journal on Addictions, 2002, 11(4): 332-334
Wang K C, Shih T S, Cheng S G. Use of SPE and LC/TIS/MS/MS for rapid detection and quantitation of ketamine and its metabolite, norketamine, in urine [J]. Forensic Science International, 2005, 147(1): 81-88
Du P, Li K Y, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology [J]. Water Research, 2015, 84: 76-84
Lin A Y C, Lee W N, Wang X H. Ketamine and the metabolite norketamine: Persistence and phototransformation toxicity in hospital wastewater and surface water [J]. Water Research, 2014, 53: 351-360
Wang Z L, Han S, Cai M, et al. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community [J]. Water Research, 2020, 174: 115585
Wang Z L, Xu Z Q, Li X Q. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters [J]. Journal of Hazardous Materials, 2019, 363: 268-276
Baker D R, Kasprzyk-Hordern B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(12): 1620-1631
Vazquez-Roig P, Andreu V, Blasco C, et al. Spatial distribution of illicit drugs in surface waters of the natural park of Pego-Oliva Marsh (Valencia, Spain) [J]. Environmental Science and Pollution Research International, 2012, 19(4): 971-982
Liao P H, Hwang C C, Chen T H, et al. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish [J]. Aquatic Toxicology, 2015, 165: 84-92
Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish [J]. Neurotoxicology and Teratology, 2011, 33(6): 658-667
Félix L M, Antunes L M, Coimbra A M. Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development [J]. Neurotoxicology and Teratology, 2014, 41: 27-34
Schier A F. The maternal-zygotic transition: Death and birth of RNAs [J]. Science, 2007, 316(5823): 406-407
Guo R, Liu G J, Du M, et al. Early ketamine exposure results in cardiac enlargement and heart dysfunction in Xenopus embryos [J]. BMC Anesthesiology, 2015, 16(1): 23
Li S W, Wang Y H, Lin A Y C. Ecotoxicological effect of ketamine: Evidence of acute, chronic and photolysis toxicity to Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2017, 143: 173-179
Shi W J, Ying G G, Huang G Y, et al. Transcriptional and biochemical alterations in zebrafish eleuthero-embryos (Danio rerio) after exposure to synthetic progestogen dydrogesterone [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(1): 39-45
Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253-310
Sztal T E, Ruparelia A A, Williams C, et al. Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish [J]. Journal of Visualized Experiments, 2016, 116: 54431
Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo [J]. Journal of Neurobiology, 1998, 37(4): 622-632
Grunwald D J, Kimmel C B, Westerfield M, et al. A neural degeneration mutation that spares primary neurons in the zebrafish [J]. Developmental Biology, 1988, 126(1): 115-128
邹苏琪, 殷梧, 杨昱鹏, 等. 斑马鱼行为学实验在神经科学中的应用[J]. 生物化学与生物物理进展, 2009, 36(1): 5-12 Zou S Q, Yin W, Yang Y P, et al. The ethology application of zebrafish in neuroscience [J]. Progress in Biochemistry and Biophysics, 2009, 36(1): 5-12 (in Chinese)
Carmean V, Yonkers M A, Tellez M B, et al. Pigk mutation underlies macho behavior and affects Rohon-Beard cell excitability [J]. Journal of Neurophysiology, 2015, 114(2): 1146-1157
Stanley K A, Curtis L R, Simonich S L, et al. Endosulfan Ⅰ and endosulfan sulfate disrupts zebrafish embryonic development [J]. Aquatic Toxicology, 2009, 95(4): 355-361
Schnörr S J, Steenbergen P J, Richardson M K, et al. Measuring thigmotaxis in larval zebrafish [J]. Behavioural Brain Research, 2012, 228(2): 367-374
Hill A J, Teraoka H, Heideman W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19
Li J J, Zhang Y, Liu K C, et al. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the Wnt pathway [J]. Frontiers in Pharmacology, 2018, 9: 1250
Kopf P G, Walker M K. Overview of developmental heart defects by dioxins, PCBs, and pesticides [J]. Journal of Environmental Science and Health, Part C, 2009, 27(4): 276-285
Kanungo J, Cuevas E, Ali S F, et al. L-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos [J]. Reproductive Toxicology, 2012, 33(2): 205-212
Hotchkiss C E, Wang C, Slikker W Jr. Effect of prolonged ketamine exposure on cardiovascular physiology in pregnant and infant rhesus monkeys (Macaca mulatta) [J]. Journal of the American Association for Laboratory Animal Science, 2007, 46(6): 21-28
李岳振, 王文军, 王航, 等. 小剂量氯胺酮麻醉对感染性休克患者C-反应蛋白的影响[J]. 中华医院感染学杂志, 2016, 26(11): 2519-2521 Li Y Z, Wang W J, Wang H, et al. Impact of low dose of ketamine anesthesia on C-reactive protein of septic shock patients [J]. Chinese Journal of Nosocomiology, 2016, 26(11): 2519-2521 (in Chinese)
Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish [J]. Progress in Neurobiology, 2002, 68(2): 85-111
Saint-Amant L. Development of motor networks in zebrafish embryos [J]. Zebrafish, 2006, 3(2): 173-190
Richendrfer H, Creton R, Colwill R M. Zebrafish [M]. Hauppauge: Nova Science Publishers, 2014: 245-264
Borla M A, Palecek B, Budick S, et al. Prey capture by larval zebrafish: Evidence for fine axial motor control [J]. Brain, Behavior and Evolution, 2002, 60(4): 207-229
Leuthold D, Klüver N, Altenburger R, et al. Can environmentally relevant neuroactive chemicals specifically be detected with the locomotor response test in zebrafish embryos? [J]. Environmental Science & Technology, 2019, 53(1): 482-493
吴敏. 地西泮药物污染对斑马鱼神经行为毒性及机制研究[D]. 镇江: 江苏大学, 2021: 19-20 Wu M. Neurobehavioral toxicity and related mechanisms of diazepam to zebrafish (Danio rerio) [D]. Zhenjiang: Jiangsu University, 2021: 19 -20 (in Chinese)
Lau B Y, Mathur P, Gould G G, et al. Identification of a brain center whose activity discriminates a choice behavior in zebrafish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2581-2586
Sackerman J, Donegan J J, Cunningham C S, et al. Zebrafish behavior in novel environments: Effects of acute exposure to anxiolytic compounds and choice of Danio rerio line [J]. International Journal of Comparative Psychology, 2010, 23(1): 43-61
Miller N, Gerlai R. From schooling to shoaling: Patterns of collective motion in zebrafish (Danio rerio) [J]. PLoS One, 2012, 7(11): e48865
Childs E W, Udobi K F, Wood J G, et al. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock [J]. Shock, 2002, 18(5): 423-427
Wang L, Ryu B, Kim W S, et al. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish [J]. Algae, 2017, 32: 379-388
Bai X W, Yan Y S, Canfield S, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway [J]. Anesthesia and Analgesia, 2013, 116(4): 869-880
Zhang Y Y, Dong Y L, Wu X, et al. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis [J]. The Journal of Biological Chemistry, 2010, 285(6): 4025-4037
Wang C, Zhang X, Liu F, et al. Anesthetic-induced oxidative stress and potential protection [J]. The Scientific World Journal, 2010, 10: 1473-1482
Jones D C, Miller G W. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction [J]. Biochemical Pharmacology, 2008, 76(5): 569-581
Iversen S D, Iversen L L. Dopamine: 50 years in perspective [J]. Trends in Neurosciences, 2007, 30(5): 188-193
Beaulieu J M, Gainetdinov R R. The physiology, signaling, and pharmacology of dopamine receptors [J]. Pharmacological Reviews, 2011, 63(1): 182-217
Xu M, Koeltzow T E, Santiago G T, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors [J]. Neuron, 1997, 19(4): 837-848
Liang X F, Zhao Y Q, Liu W, et al. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio) [J]. Environmental Pollution, 2020, 257: 113624
Steiner H, Fuchs S, Accili D. D3 dopamine receptor-deficient mouse: Evidence for reduced anxiety [J]. Physiology & Behavior, 1997, 63(1): 137-141
Leggio G M, Micale V, Drago F. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST) [J]. European Neuropsychopharmacology, 2008, 18(4): 271-277
Borden L A. GABA transporter heterogeneity: Pharmacology and cellular localization [J]. Neurochemistry International, 1996, 29(4): 335-356
Morara S, Brecha N C, Marcotti W, et al. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex [J]. Neuroreport, 1996, 7(18): 2993-2996
Gadea A, López-Colomé A M. Glial transporters for glutamate, glycine and GABA Ⅰ. Glutamate transporters [J]. Journal of Neuroscience Research, 2001, 63(6): 453-460
Ma Y H, Zhou X G, Duan S H, et al. Overexpression of gamma-aminobutyric acid transporter subtype Ⅰ leads to cognitive deterioration in transgenic mice [J]. Acta Pharmacologica Sinica, 2001, 22(4): 340-348
Hu J H, Yang N, Ma Y H, et al. Hyperalgesic effects of gamma-aminobutyric acid transporter Ⅰ in mice [J]. Journal of Neuroscience Research, 2003, 73(4): 565-572
Isomoto S, Kondo C, Takahashi N, et al. A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes [J]. Biochemical and Biophysical Research Communications, 1996, 218(1): 286-291
Dhein S, van Koppen C J, Brodde O E. Muscarinic receptors in the mammalian heart [J]. Pharmacological Research, 2001, 44(3): 161-182